1
|
Aspragkathou DD, Spilioti MG, Gkampeta A, Dalpa E, Holeva V, Papadopoulou MT, Serdari A, Dafoulis V, Zafeiriou DI, Evangeliou AE. Branched-chain amino acids as adjunctive-alternative treatment in patients with autism: a pilot study. Br J Nutr 2024; 131:73-81. [PMID: 37424284 DOI: 10.1017/s0007114523001496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The branched-chain amino acid (BCAA) is a group of essential amino acids that are involved in maintaining the energy balance of a human being as well as the homoeostasis of GABAergic, glutamatergic, serotonergic and dopaminergic systems. Disruption of these systems has been associated with the pathophysiology of autism while low levels of these amino acids have been discovered in patients with autism. A pilot open-label, prospective, follow-up study of the use of BCAA in children with autistic behaviour was carried out. Fifty-five children between the ages of 6 and 18 participated in the study from May 2015 to May 2018. We used a carbohydrate-free BCAA-powdered mixture containing 45·5 g of leucine, 30 g of isoleucine and 24·5 g of valine in a daily dose of 0·4 g/kg of body weight which was administered every morning. Following the initiation of BCAA administration, children were submitted to a monthly psychological examination. Beyond the 4-week mark, BCAA were given to thirty-two people (58·18 %). Six of them (10·9 %) discontinued after 4-10 weeks owing to lack of improvement. The remaining twenty-six children (47·27 %) who took BCAA for longer than 10 weeks displayed improved social behaviour and interactions, as well as improvements in their speech, cooperation, stereotypy and, principally, their hyperactivity. There were no adverse reactions reported during the course of the treatment. Although these data are preliminary, there is some evidence that BCAA could be used as adjunctive treatment to conventional therapeutic methods for the management of autism.
Collapse
Affiliation(s)
- Despoina D Aspragkathou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Martha G Spilioti
- Department of Neurology, Aristotle University of Thessaloniki, Medical School, AHEPA Hospital, Thessaloniki, Greece
| | - Anastasia Gkampeta
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Efterpi Dalpa
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Vasiliki Holeva
- Psychiatric Clinic, Papageorgiou Hospital, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
| | - Maria T Papadopoulou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| | - Aspasia Serdari
- Psychiatric Clinic, University Hospital of Alexandroupolis, Thrace University, Medical School, Alexandroupolis, Greece
| | - Vaios Dafoulis
- Psychiatric Clinic of the Hippokration Hospital, Thessaloniki, Greece
| | - Dimitrios I Zafeiriou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Hippokration Hospital, Thessaloniki, Greece
| | - Athanasios E Evangeliou
- Department of Pediatrics, Aristotle University of Thessaloniki, Medical School, Papageorgiou Hospital, Efkarpia, 56403Thessaloniki, Greece
| |
Collapse
|
2
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
3
|
Gruenbaum SE, Chen EC, Sandhu MRS, Deshpande K, Dhaher R, Hersey D, Eid T. Branched-Chain Amino Acids and Seizures: A Systematic Review of the Literature. CNS Drugs 2019; 33:755-770. [PMID: 31313139 DOI: 10.1007/s40263-019-00650-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Up to 40% of patients with epilepsy experience seizures despite treatment with antiepileptic drugs; however, branched-chain amino acid (BCAA) supplementation has shown promise in treating refractory epilepsy. OBJECTIVES The purpose of this systematic review was to evaluate all published studies that investigated the effects of BCAAs on seizures, emphasizing therapeutic efficacy and possible underlying mechanisms. METHODS On 31 January, 2017, the following databases were searched for relevant studies: MEDLINE (OvidSP), EMBASE (OvidSP), Scopus (Elsevier), the Cochrane Library, and the unindexed material in PubMed (National Library of Medicine/National Institutes of Health). The searches were repeated in all databases on 18 February, 2019. We only included full-length preclinical and clinical studies that were published in the English language that examined the effects of BCAA administration on seizures. RESULTS Eleven of 2045 studies met our inclusion criteria: ten studies were conducted in animal models and one study in human subjects. Seven seizure models were investigated: the strychnine (one study), pentylenetetrazole (two studies), flurothyl (one study), picrotoxin (two studies), genetic absence epilepsy in rats (one study), kainic acid (two studies), and methionine sulfoximine (one study) paradigms. Three studies investigated the effect of a BCAA mixture whereas the other studies explored the effects of individual BCAAs on seizures. In most animal models and in humans, BCAAs had potent anti-seizure effects. However, in the methionine sulfoximine model, long-term BCAA supplementation worsened seizure propagation and caused neuron loss, and in the genetic absence epilepsy in rats model, BCAAs exhibited pro-seizure effects. CONCLUSIONS The contradictory effects of BCAAs on seizure activity likely reflect differences in the complex mechanisms that underlie seizure disorders. Some of these mechanisms are likely mediated by BCAA's effects on glucose, glutamate, glutamine, and ammonia metabolism, activation of the mechanistic target of rapamycin signaling pathway, and their effects on aromatic amino acid transport and neurotransmitter synthesis. We propose that a better understanding of mechanisms by which BCAAs affect seizures and neuronal viability is needed to advance the field of BCAA supplementation in epilepsy.
Collapse
Affiliation(s)
- Shaun E Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, USA.
| | - Eric C Chen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Ketaki Deshpande
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Denise Hersey
- Lewis Science Library, Princeton University, Princeton, NJ, USA
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Young JC, Nasser HM, Casillas-Espinosa PM, O'Brien TJ, Jackson GD, Paolini AG. Multiunit cluster firing patterns of piriform cortex and mediodorsal thalamus in absence epilepsy. Epilepsy Behav 2019; 97:229-243. [PMID: 31254843 DOI: 10.1016/j.yebeh.2019.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The objective of the study were to investigate patterns of multiunit cluster firing in the piriform cortex (PC) and mediodorsal thalamus (MDT) in a rat model of genetic generalized epilepsy (GGE) with absence seizures and to assess whether these regions contribute to the initiation or spread of generalized epileptiform discharges. METHODS Multiunit clusters and their corresponding local field potentials (LFPs) were recorded from microelectrode arrays implanted in the PC and MDT in urethane anesthetized Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and nonepileptic control (NEC) rats. Peristimulus time histograms (PSTHs) and cross-correlograms were used to observe transient changes in both the rate of firing and synchrony over time. The phase locking of multiunit clusters to LFP signals (spike-LFP phase locking) was calculated for frequency bands associated with olfactory communication between the two brain regions. RESULTS There were significant increases in both rate of firing and synchronous activity at the onset of generalized epileptiform discharges in both PC and MDT. Prior to and following these increases in synchronous activity, there were periods of suppression. Significant increases in spike-LFP phase locking were observed within the PC prior to the onset of epileptiform discharges across all spectral bands. There were also significant increases in spike-LFP phase locking within the theta band of the MDT prior to onset. Between the two brain regions, there was a significant decrease in spike-LFP phase locking -0.5 s prior to onset in the theta band which coincided with a significant elevation in spike-LFP phase locking in the gamma band. CONCLUSIONS Both the PC and MDT are engaged in the absence epilepsy network. Early spike-LFP phase locking between these two brain regions suggests potential involvement in the initiation of seizure activity.
Collapse
Affiliation(s)
- James C Young
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Helen M Nasser
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Monash University, Melbourne, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Australia
| | - Graeme D Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; Department of Neurology, Austin Health, Melbourne, Australia
| | - Antonio G Paolini
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; ISN Psychology - Institute for Social Neuroscience, Melbourne, Australia; School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
5
|
Çavdar S, Özgür M, Kirazlı Ö, Karahüseyinoğlu S, Onat F. Comparing glutamatergic neuron population in the mediodorsal thalamic nucleus of genetic absence epilepsy rats from strasbourg (GAERS) and normal control Wistar rats. J Chem Neuroanat 2016; 77:93-99. [PMID: 27262783 DOI: 10.1016/j.jchemneu.2016.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 11/17/2022]
Abstract
An imbalance between GABAergic inhibition and glutamatergic excitation is suspected to play a role in the genesis of epileptic processes. In the present study we quantified the number of glutamate+ve neurons in the mediodorsal thalamic nucleus (MD) of genetic absence epilepsy rats from Strasbourg (GAERS) and compared these with values for normal Wistar rats. The MD thalamic nucleus was removed from each animal and the glutamatergic neurons were labelled using light-microscopy glutamate immunohistochemistry. The disector method was used to quantify the glutamate+ve neurons in the MD thalamic nucleus of GAERS and Wistar rats. The data were statistically analyzed. In the Wistar animals glutamate+ve neurons formed 89% and in GAERS 92.3% of the total neurons in 1000μm3 of MD thalamic nucleus. In GAERS glutamate+ve neurons showed statistically significant increase in the MD thalamic nucleus compared to Wistar animals. In Wistar animals the glutamate-ve neurons formed 11% and in GAERS 7.7% of the total neurons in 1000μm3 of MD thalamic. No significant difference was observed in glutamate-ve neurons between the two strains. The average diameter of glutamate+ve neurons showed no significance, while glutamate-ve neurons were significant between the two strains. The results of the present study, on genetic absence epilepsy model, GAERS, confirms the role of MD thalamic nucleus in chemically induced absence epilepsy.
Collapse
Affiliation(s)
- Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, Sarıyer, Istanbul, Turkey.
| | - Merve Özgür
- Department of Anatomy, School of Medicine, Koç University, Sarıyer, Istanbul, Turkey
| | - Özlem Kirazlı
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Serçin Karahüseyinoğlu
- Department of Histology-Embryology, School of Medicine, Koç University, Sarıyer, Istanbul, Turkey
| | - Filiz Onat
- Department of Pharmacology and Clinic Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Germé K, Faure JB, Koning E, Nehlig A. Effect of caffeine and adenosine receptor ligands on the expression of spike-and-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). Epilepsy Res 2015; 110:105-14. [DOI: 10.1016/j.eplepsyres.2014.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/20/2014] [Accepted: 11/28/2014] [Indexed: 11/28/2022]
|
7
|
Greenberg DA, Subaran R. Blinders, phenotype, and fashionable genetic analysis: a critical examination of the current state of epilepsy genetic studies. Epilepsia 2011; 52:1-9. [PMID: 21219301 PMCID: PMC3021750 DOI: 10.1111/j.1528-1167.2010.02734.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although it is accepted that idiopathic generalized epilepsy (IGE) is strongly, if not exclusively, influenced by genetic factors, there is little consensus on what those genetic influences may be, except for one point of agreement: epilepsy is a "channelopathy." This point of agreement has continued despite the failure of studies investigating channel genes to demonstrate the primacy of their influence on IGE expression. The belief is sufficiently entrenched that the more important issues involving phenotype definition, data collection, methods of analysis, and the interpretation of results have become subordinate to it. The goal of this article is to spark discussion of where the study of epilepsy genetics has been and where it is going, suggesting we may never get there if we continue on the current road. We use the long history of psychiatric genetic studies as a mirror and starting point to illustrate that only when we expand our outlook on how to study the genetics of the epilepsies, consider other mechanisms that could lead to epilepsy susceptibility, and, especially, focus on the critical problem of phenotype definition, will the major influences on common epilepsy begin to be understood.
Collapse
Affiliation(s)
- David A Greenberg
- Division of Statistical Genetics, Department of Biostatistics, Mailman School of Public Health, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York, USA.
| | | |
Collapse
|
8
|
Roche-Labarbe N, Zaaimi B, Mahmoudzadeh M, Osharina V, Wallois A, Nehlig A, Grebe R, Wallois F. NIRS-measured oxy- and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in a genetic model of absence epilepsy: The GAERS. Epilepsia 2010; 51:1374-84. [DOI: 10.1111/j.1528-1167.2010.02574.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Evangeliou A, Spilioti M, Doulioglou V, Kalaidopoulou P, Ilias A, Skarpalezou A, Katsanika I, Kalamitsou S, Vasilaki K, Chatziioanidis I, Garganis K, Pavlou E, Varlamis S, Nikolaidis N. Branched chain amino acids as adjunctive therapy to ketogenic diet in epilepsy: pilot study and hypothesis. J Child Neurol 2009; 24:1268-72. [PMID: 19687389 DOI: 10.1177/0883073809336295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A pilot prospective follow-up study of the role of the branched chain amino acids as additional therapy to the ketogenic diet was carried out in 17 children, aged between 2 and 7 years, with refractory epilepsy. All of these patients were on the ketogenic diet; none of them was seizure free, while only 13 had more or less benefited from the diet. The addition of branched chain amino acids induced a 100% seizure reduction in 3 patients, while a 50% to 90% reduction was noticed in 5. Moreover, in all of the patients, no reduction in ketosis was recorded despite the change in the fat-to-protein ratio from 4:1 to 2.5:1. Although our data are preliminary, we suggest that branched chain amino acids may increase the effectiveness of the ketogenic diet and the diet could be more easily tolerated by the patients because of the change in the ratio of fat to protein.
Collapse
Affiliation(s)
- Athanasios Evangeliou
- 4th Paediatric Clinic, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nehlig A, Dufour F, Klinger M, Willing LB, Simpson IA, Vannucci SJ. The ketogenic diet has no effect on the expression of spike-and-wave discharges and nutrient transporters in genetic absence epilepsy rats from Strasbourg. J Neurochem 2009; 109 Suppl 1:207-13. [PMID: 19393029 DOI: 10.1111/j.1471-4159.2009.05938.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genetic absence epilepsy rat from Strasbourg is considered an isomorphic, predictive, and homologous model of typical childhood absence epilepsy. It is characterized by the expression of spike-and-wave discharges (SWDs) in the thalamus and cortex. The ketogenic diet (KD) is successfully used in humans and animals with various types of seizures, but was not effective in children with intractable atypical absence epilepsy. Here, we studied its potential impact on the occurrence of SWDs in genetic absence epilepsy rat from Strasbourg. Rats were fed the KD for 3 weeks during which they were regularly subjected to the electroencephalographic recording of SWDs. The KD did not influence the number and duration of SWDs despite a 15-22% decrease in plasma glucose levels and a large increase in beta-hydroxybutyrate levels. Likewise, the KD did not affect the level of expression of the blood-brain barrier glucose transporter GLUT1 or of the monocarboxylate transporters, MCT1 and MCT2. This report extends the observation in humans that the KD does not appear to show effectiveness in intractable atypical absence epilepsy to this model of typical childhood absence epilepsy which responds to specific antiepileptic drugs.
Collapse
|
11
|
Melø TM, Sonnewald U, Bastholm IA, Nehlig A. Astrocytes may play a role in the etiology of absence epilepsy: A comparison between immature GAERS not yet expressing seizures and adults. Neurobiol Dis 2007; 28:227-35. [PMID: 17719229 DOI: 10.1016/j.nbd.2007.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 07/02/2007] [Accepted: 07/04/2007] [Indexed: 11/25/2022] Open
Abstract
Neuronal-astrocytic interactions in 1-month-old Genetic Absence Epilepsy Rats from Strasbourg (GAERS) before the occurrence of seizures are compared to those in non-epileptic rats (NERs) and in adult GAERS expressing epilepsy. Animals received [1-13C]glucose and [1,2-13C]acetate, preferential substrates of neurons and astrocytes, respectively, and extracts from cerebral cortex, subcortex and cerebellum were analyzed by NMR spectroscopy. Increased mitochondrial metabolism took place in the cortical neurons of immature and adult GAERS and therefore does not seem to be a consequence of the occurrence of absence seizures. Glutamine supply to GABAergic neurons was reduced in cortex and subcortex in young GAERS, as reflected by increased glutamine content and decreased 13C-labeling of GABA. In the brain of immature GAERS, interactions between glutamatergic neurons and astrocytes appeared normal whereas increased astrocytic metabolism took place in adult GAERS, suggesting that astrocytic alterations could possibly be the cause of seizures.
Collapse
Affiliation(s)
- Torun Margareta Melø
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), N-7489 Trondheim, Norway
| | | | | | | |
Collapse
|
12
|
Tokuda S, Kuramoto T, Tanaka K, Kaneko S, Takeuchi IK, Sasa M, Serikawa T. The ataxic groggy rat has a missense mutation in the P/Q-type voltage-gated Ca2+ channel alpha1A subunit gene and exhibits absence seizures. Brain Res 2006; 1133:168-77. [PMID: 17196942 DOI: 10.1016/j.brainres.2006.10.086] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/21/2006] [Accepted: 10/23/2006] [Indexed: 11/23/2022]
Abstract
The groggy rat (strain name; GRY) exhibits ataxia, an unstable gait, and paroxysmal severe extension of the entire body. Adults show a reduction in size of the cerebellum and presynaptic and axon terminal abnormalities of Purkinje cells. These neurological abnormalities are inherited in an autosomal recessive manner, and the causative mutation has been named groggy (gry). In this study, we mapped gry on rat chromosome 19 and found a nonconservative missense (M251K) mutation in the alpha(1A) subunit of the P/Q-type voltage-gated Ca(2+) channel gene (Cacna1a) within the gry-critical region. This mutation was located at a highly conserved site close to the ion-selective pore and led to the shortening of the inactivation phase of the Ca(2+) channel current without a change of peak current density or current-voltage relationship in whole cell patch recordings of the recombinant Ca(2+) channel expressed in HEK cells. It has been well established that mice with a mutation at Cacna1a such as tottering and leaner show absence seizures. The Cacna1a-mutant GRY rat also exhibited absence-like seizures from 6 to 8 weeks of age, which were characterized by bilateral and synchronous 7-8 Hz spike-and-wave discharges concomitant with sudden immobility and staring, on cortical and hippocampal EEGs. The pharmacological profile of the seizures was similar to that of human absence epilepsy: the seizures were inhibited by ethosuximide and valproic acid but not phenytoin. Thus, the GRY rat with P/Q-type Ca(2+) channel disorders is a useful model for studying absence epilepsy and Cacna1a-related diseases.
Collapse
Affiliation(s)
- Satoko Tokuda
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501 Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Melø TM, Sonnewald U, Touret M, Nehlig A. Cortical glutamate metabolism is enhanced in a genetic model of absence epilepsy. J Cereb Blood Flow Metab 2006; 26:1496-506. [PMID: 16538229 DOI: 10.1038/sj.jcbfm.9600300] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Disturbances in GABAergic and glutamatergic neurotransmission in the thalamocortical loop are involved in absence seizures. Here, we examined potential disturbances in metabolism and interactions between neurons and glia in 5-month-old genetic absence epilepsy rats from Strasbourg (GAERS) and nonepileptic rats (NER). Animals received [1-(13)C]glucose and [1,2-(13)C]acetate, the preferential substrates of neurons and astrocytes, respectively. Extracts from cerebral cortex, thalamus, and hippocampus were analyzed by (13)C nuclear magnetic resonance spectroscopy. Most changes were detected in the cortex. Pyruvate metabolism was enhanced as evidenced by increases of lactate, and labeled and unlabeled alanine. Neuronal mitochondrial metabolism was also enhanced as detected by elevated amounts of N-acetylaspartate and nicotinamide adenine dinucleotide as well as increased incorporation of label from [2-(13)C]acetyl CoA into glutamate, glutamine, and aspartate. Likewise, mitochondrial metabolism in astrocytes was increased. Changes in thalamus were restricted to increased concentration and labeling of glutamine. Changes in the hippocampus were similar to those in the cortex. This increase in glutamate-glutamine metabolism in cortical neurons and astrocytes accompanied by a decreased gamma aminobyturic acid level may lead to impaired thalamic filter function. Hence, reduced sensory input to cortex could allow the occurrence of spike-and-wave discharges in the thalamocortical loop. Increased glutamatergic output from the cortex to hippocampus may be the underlying cause of improved learning in GAERS.
Collapse
Affiliation(s)
- Torun M Melø
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | |
Collapse
|
14
|
Joshi M, Jeoung N, Obayashi M, Hattab E, Brocken E, Liechty E, Kubek M, Vattem K, Wek R, Harris R. Impaired growth and neurological abnormalities in branched-chain alpha-keto acid dehydrogenase kinase-deficient mice. Biochem J 2006; 400:153-62. [PMID: 16875466 PMCID: PMC1635446 DOI: 10.1042/bj20060869] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The BCKDH (branched-chain alpha-keto acid dehydrogenase complex) catalyses the rate-limiting step in the oxidation of BCAAs (branched-chain amino acids). Activity of the complex is regulated by a specific kinase, BDK (BCKDH kinase), which causes inactivation, and a phosphatase, BDP (BCKDH phosphatase), which causes activation. In the present study, the effect of the disruption of the BDK gene on growth and development of mice was investigated. BCKDH activity was much greater in most tissues of BDK-/- mice. This occurred in part because the E1 component of the complex cannot be phosphorylated due to the absence of BDK and also because greater than normal amounts of the E1 component were present in tissues of BDK-/- mice. Lack of control of BCKDH activity resulted in markedly lower blood and tissue levels of the BCAAs in BDK-/- mice. At 12 weeks of age, BDK-/- mice were 15% smaller than wild-type mice and their fur lacked normal lustre. Brain, muscle and adipose tissue weights were reduced, whereas weights of the liver and kidney were greater. Neurological abnormalities were apparent by hind limb flexion throughout life and epileptic seizures after 6-7 months of age. Inhibition of protein synthesis in the brain due to hyperphosphorylation of eIF2alpha (eukaryotic translation initiation factor 2alpha) might contribute to the neurological abnormalities seen in BDK-/- mice. BDK-/- mice show significant improvement in growth and appearance when fed a high protein diet, suggesting that higher amounts of dietary BCAA can partially compensate for increased oxidation in BDK-/- mice. Disruption of the BDK gene establishes that regulation of BCKDH by phosphorylation is critically important for the regulation of oxidative disposal of BCAAs. The phenotype of the BDK-/- mice demonstrates the importance of tight regulation of oxidative disposal of BCAAs for normal growth and neurological function.
Collapse
Affiliation(s)
- Mandar A. Joshi
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Nam Ho Jeoung
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Mariko Obayashi
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Eyas M. Hattab
- †Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Eric G. Brocken
- †Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Edward A. Liechty
- ‡Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Michael J. Kubek
- §Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Krishna M. Vattem
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Ronald C. Wek
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
| | - Robert A. Harris
- *Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Affiliation(s)
- Jon-Paul A Manning
- Department of Pharmacology, Division of Neuroscience, Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
16
|
Mac M, Nałecz KA. Expression of monocarboxylic acid transporters (MCT) in brain cells. Implication for branched chain alpha-ketoacids transport in neurons. Neurochem Int 2003; 43:305-9. [PMID: 12742073 DOI: 10.1016/s0197-0186(03)00016-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The alpha-ketoisocaproic acid (KIC) is a short branched-chain monocarboxylate, which accumulates in neural cells. It plays an important role in maintaining nitrogen balance in the brain, a process of a great importance for shuttling of glutamine and glutamate between astrocytes and neurons. Higher accumulation of KIC in isolated cerebral cortex neurons at lower external pH, as well as sensitivity of this process to alpha-cyano-4-hydroxycinnamate indicate an involvement of a transporter, belonging to the family of monocarboxylate transporters (MCT).The expression of MCT1 and MCT2 isoforms in the brain cells was studied using reverse transcriptase-polymerase chain reaction (RT-PCR) method. The mRNA coding MCT1 was detected in astrocytes, brain endothelial cells, tumour cells (neuroblastoma and glioma) and in cortex neurons of newborn rats, but not in adult ones. MCT2, which is less abundant isoform than MCT1, was expressed in astrocytes, in brain endothelial cells and at low level in newborn rats' neurons, being absent in neurons from adult brain.The observed sensitivity of KIC accumulation towards SH-groups reagents did not fit to the known characteristics of MCT1 and MCT2. Therefore, the change of MCT expression during brain development, as well as lack of MCT1 and MCT2 in neurons of adults, point to another MCT isoform being involved in alpha-ketoisocaproic acid accumulation. This could be either one of other known MCT isoforms or a new member of family MCT, specific towards branched chain alpha-ketoacids.
Collapse
Affiliation(s)
- Magdalena Mac
- Nencki Institute of Experimental Biology, Department of Molecular and Cellular Neurobiology, 3 Pasteur Street, 02-093 Warszawa, Poland
| | | |
Collapse
|
17
|
Dufour F, Koning E, Nehlig A. Basal levels of metabolic activity are elevated in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): measurement of regional activity of cytochrome oxidase and lactate dehydrogenase by histochemistry. Exp Neurol 2003; 182:346-52. [PMID: 12895445 DOI: 10.1016/s0014-4886(03)00052-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are considered an isomorphic, predictive, and homologous model of human generalized absence epilepsy. It is characterized by the expression of spike-and-wave discharges in the thalamus and cortex. In this strain, basal regional rates of cerebral glucose utilization measured by the quantitative autoradiographic [(14)C]2-deoxyglucose technique display a widespread consistent increase compared to a selected strain of genetically nonepileptic rats (NE). In order to verify whether these high rates of glucose metabolism are paralleled by elevated activities of the enzymes of the glycolytic and tricarboxylic acid cycle pathways, we measured by histochemistry the regional activity of the two key enzymes of glucose metabolism, lactate dehydrogenase (LDH) for the anaerobic pathway and cytochrome oxidase (CO) for the aerobic pathway coupled to oxidative phosphorylation. CO and LDH activities were significantly higher in GAERS than in NE rats in 24 and 28 of the 30 brain regions studied, respectively. The differences in CO and LDH activity between both strains were widespread, affected all brain systems studied, and ranged from 12 to 63%. The data of the present study confirm the generalized increase in cerebral glucose metabolism in GAERS, occurring both at the glycolytic and at the oxidative step. However, they still do not allow us to understand why the ubiquitous mutation(s) generates spike-and-wave discharges only in the thalamocortical circuit.
Collapse
Affiliation(s)
- Franck Dufour
- INSERM U398, Université Louis Pasteur, Strasbourg, France
| | | | | |
Collapse
|
18
|
Errante LD, Petroff OAC. Acute effects of gabapentin and pregabalin on rat forebrain cellular GABA, glutamate, and glutamine concentrations. Seizure 2003; 12:300-6. [PMID: 12810343 DOI: 10.1016/s1059-1311(02)00295-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The effects of antiepileptic drugs, gabapentin, pregabalin and vigabatrin, on brain gamma-aminobutyric acid (GABA), glutamate and glutamine concentrations were studied in Long Evans rats using proton magnetic resonance spectroscopy (MRS) of perchloric acid extracts. Cellular glutamate concentrations significantly decreased by 7% (P<0.05) 2 hours after intraperitoneal injection of 100mg/kg gabapentin and 4% (P<0.05) with 1000 mg/kg. No differences were observed in cellular GABA and cellular glutamine concentrations in rats treated with gabapentin. Pregabalin, an analogue of gabapentin, significantly decreased cellular glutamate concentrations by 4% (P<0.05), while no effect was observed on cellular GABA or glutamine concentrations in the healthy rat forebrain. Vigabatrin, used as a positive control to increase GABA levels, produced a 50% increase in cellular GABA compared to saline treated rats (P<0.003). Although, gabapentin and pregabalin are anticonvulsants designed to mimic GABA, these drugs do not raise cellular GABA levels acutely but modestly decreased cellular glutamate levels in our healthy rat forebrain model.
Collapse
Affiliation(s)
- Laura D Errante
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06520-8018, USA
| | | |
Collapse
|
19
|
Nehlig A, Boehrer A. Effects of remacemide in two models of genetically determined generalized epilepsy, the GAERS and the audiogenic Wistar AS. Epilepsy Res 2003; 52:253-61. [PMID: 12536058 DOI: 10.1016/s0920-1211(02)00236-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The antiepileptic effects of remacemide were assessed in two models of genetically determined generalized epilepsy. The model of non-convulsive epilepsy used was a model of absence seizures, the GAERS (genetic absence epilepsy rats from Strasbourg), and the model of convulsive seizures was an audiogenic rat model, the Wistar AS. In the eight GAERS studied, the three doses of remacemide (20, 40, and 80 mg/kg) dose-dependently reduced the expression of spike-and-wave discharges (SWDs) that had almost totally disappeared at the highest dose used, 80 mg/kg. However, at the latter dose, the effect of remacemide may be partly due to a change in the vigilance level of the animals. In the Wistar AS, the dose of 20 mg/kg prolonged by twofold the latencies to wild running and tonic seizures, and prevented their expression in one rat out of the eight studied. At 40 mg/kg, the expression of wild running and tonic seizures was inhibited in seven and maintained in one of the eight rats studied. The present results support the effects of remacemide in tonic/clonic seizure, which was the first target of the drug, and confirm the effect of the anticonvulsant on absence seizures.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 398, Faculty of Medicine, 11 rue Humann, 67085 Cedex, Strasbourg, France.
| | | |
Collapse
|
20
|
Rigoulot MA, Boehrer A, Nehlig A. Effects of topiramate in two models of genetically determined generalized epilepsy, the GAERS and the Audiogenic Wistar AS. Epilepsia 2003; 44:14-9. [PMID: 12581224 DOI: 10.1046/j.1528-1157.2003.32902.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE The antiepileptic effects of topiramate (TPM) were assessed in two models of genetically determined generalized epilepsy. The model of nonconvulsive epilepsy used was a model of absence seizures, the GAERS (Genetic Absence Epilepsy Rat from Strasbourg); and the model of convulsive seizures was an audiogenic rat model, the Wistar Audiogenic Sensitive (AS) rat. METHODS GAERS were equipped with four cortical electrodes over the frontoparietal cortex, and the duration of spike-and-wave discharges (SWDs) on the EEG was recorded for periods of 20 to 120 or 300 min. In Wistar AS, the occurrence of, latency to, and duration of one or two wild running episodes and tonic seizures were recorded. RESULTS In the 16 GAERS studied, TPM (10, 30, and 60 mg/kg) dose-dependently reduced the expression of SWD that almost totally disappeared at the two highest doses between 40 and 120 min. SWD duration returned to control levels by 180 and 280 min after the injection of 30 and 60 mg/kg TPM, respectively. In Wistar AS, 10 mg/kg TPM induced the occurrence of a second running episode not present in control rats, indicative of a decrease in sensitivity of the rats to the stimulus and increased by 330% the latency to the tonic seizure that still occurred in the eight rats studied. At 30 and 60 mg/kg, the latency to wild running increased by 140%; the second running episode was suppressed in six and seven rats, respectively, whereas the tonic seizure occurred only in one of the eight rats studied at these two doses. CONCLUSIONS These results support the broad spectrum of antiepileptic activity of TPM, confirming its efficacy in primary generalized seizures of both tonic-clonic and of the absence type.
Collapse
MESH Headings
- Animals
- Anticonvulsants/pharmacology
- Cerebral Cortex/drug effects
- Cerebral Cortex/physiopathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Electroencephalography/drug effects
- Epilepsy, Absence/genetics
- Epilepsy, Absence/physiopathology
- Epilepsy, Generalized/genetics
- Epilepsy, Generalized/physiopathology
- Epilepsy, Reflex/genetics
- Epilepsy, Reflex/physiopathology
- Epilepsy, Tonic-Clonic/genetics
- Epilepsy, Tonic-Clonic/physiopathology
- Evoked Potentials/drug effects
- Fructose/analogs & derivatives
- Fructose/pharmacology
- Rats
- Rats, Wistar
- Topiramate
Collapse
|