1
|
Aghlmandi A, Nikshad A, Safaralizadeh R, Warkiani ME, Aghebati-Maleki L, Yousefi M. Microfluidics as efficient technology for the isolation and characterization of stem cells. EXCLI JOURNAL 2021; 20:426-443. [PMID: 33746671 PMCID: PMC7975637 DOI: 10.17179/excli2020-3028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 01/09/2023]
Abstract
The recent years have been passed with significant progressions in the utilization of microfluidic technologies for cellular investigations. The aim of microfluidics is to mimic small-scale body environment with features like optical transparency. Microfluidics can screen and monitor different cell types during culture and study cell function in response to stimuli in a fully controlled environment. No matter how the microfluidic environment is similar to in vivo environment, it is not possible to fully investigate stem cells behavior in response to stimuli during cell proliferation and differentiation. Researchers have used stem cells in different fields from fundamental researches to clinical applications. Many cells in the body possess particular functions, but stem cells do not have a specific task and can turn into almost any type of cells. Stem cells are undifferentiated cells with the ability of changing into specific cells that can be essential for the body. Researchers and physicians are interested in stem cells to use them in testing the function of the body's systems and solving their complications. This review discusses the recent advances in utilizing microfluidic techniques for the analysis of stem cells, and mentions the advantages and disadvantages of using microfluidic technology for stem cell research.
Collapse
Affiliation(s)
- Afsoon Aghlmandi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Aylin Nikshad
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Majid Ebrahimi Warkiani
- The School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
2
|
Petit A, Sanders AD, Kennedy TE, Tetzlaff W, Glattfelder KJ, Dalley RA, Puchalski RB, Jones AR, Roskams AJ. Adult spinal cord radial glia display a unique progenitor phenotype. PLoS One 2011; 6:e24538. [PMID: 21931744 PMCID: PMC3171483 DOI: 10.1371/journal.pone.0024538] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/12/2011] [Indexed: 11/18/2022] Open
Abstract
Radial glia (RG) are primarily embryonic neuroglial progenitors that express Brain Lipid Binding Protein (Blbp a.k.a. Fabp7) and Glial Fibrillary Acidic Protein (Gfap). We used these transcripts to demarcate the distribution of spinal cord radial glia (SCRG) and screen for SCRG gene expression in the Allen Spinal Cord Atlas (ASCA). We reveal that neonatal and adult SCRG are anchored in a non-ventricular niche at the spinal cord (SC) pial boundary, and express a “signature” subset of 122 genes, many of which are shared with “classic” neural stem cells (NSCs) of the subventricular zone (SVZ) and SC central canal (CC). A core expressed gene set shared between SCRG and progenitors of the SVZ and CC is particularly enriched in genes associated with human disease. Visualizing SCRG in a Fabp7-EGFP reporter mouse reveals an extensive population of SCRG that extend processes around the SC boundary and inwardly (through) the SC white matter (WM), whose abundance increases in a gradient from cervical to lumbar SC. Confocal analysis of multiple NSC-enriched proteins reveals that postnatal SCRG are a discrete and heterogeneous potential progenitor population that become activated by multiple SC lesions, and that CC progenitors are also more heterogeneous than previously appreciated. Gene ontology analysis highlights potentially unique regulatory pathways that may be further manipulated in SCRG to enhance repair in the context of injury and SC disease.
Collapse
Affiliation(s)
- Audrey Petit
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashley D. Sanders
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy E. Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Wolfram Tetzlaff
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Katie J. Glattfelder
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Rachel A. Dalley
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Ralph B. Puchalski
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - Allan R. Jones
- Allen Institute for Brain Science, Seattle, Washington, United States of America
| | - A. Jane Roskams
- Department of Zoology, Life Sciences Institute and International Collaboration On Repair Discoveries (iCORD), University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
3
|
Yang H, Ling W, Vitale A, Olivera C, Min Y, You S. ErbB2 activation contributes to de-differentiation of astrocytes into radial glial cells following induction of scratch-insulted astrocyte conditioned medium. Neurochem Int 2011; 59:1010-8. [PMID: 21924310 DOI: 10.1016/j.neuint.2011.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/19/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
Abstract
Radial glial cells play a significant role in the repair of spinal cord injuries as they exert critical role in the neurogenesis and act as a scaffold for neuronal migration. Our previous study showed that mature astrocytes of spinal cord can undergo a de-differentiation process and further transform into pluripotential neural precursors; the occurrence of these complex events arise directly from the induction of diffusible factors released from scratch-insulted astrocytes. However, it is unclear whether astrocytes can also undergo rejuvenation to revert to a radial glial progenitor phenotype after the induction of scratch-insulted astrocytes conditioned medium (ACM). Furthermore, the mechanism of astrocyte de-differentiation to the progenitor cells is still unclear. Here we demonstrate that upon treating mature astrocytes with ACM for 10 days, the astrocytes exhibit progressive morphological and functional conversion to radial glial cells. These changes include the appearance of radial glial progenitor cells, changes in the immunophenotypical profiles, characterized by the co-expression of nestin, paired homeobox protein (Pax6) and RC2 as well as enhanced capability of multipotential differentiation. Concomitantly, ErbB2 protein level was progressively up-regulated. Thereby these results provide a potential mechanism by which ACM could induce mature astrocytes to regain the profile of radial glial progenitors due to activating the ErbB2 signaling pathways.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | | | |
Collapse
|
4
|
Wu HW, Lin CC, Lee GB. Stem cells in microfluidics. BIOMICROFLUIDICS 2011; 5:13401. [PMID: 21522491 PMCID: PMC3082338 DOI: 10.1063/1.3528299] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/29/2010] [Indexed: 05/02/2023]
Abstract
Microfluidic techniques have been recently developed for cell-based assays. In microfluidic systems, the objective is for these microenvironments to mimic in vivo surroundings. With advantageous characteristics such as optical transparency and the capability for automating protocols, different types of cells can be cultured, screened, and monitored in real time to systematically investigate their morphology and functions under well-controlled microenvironments in response to various stimuli. Recently, the study of stem cells using microfluidic platforms has attracted considerable interest. Even though stem cells have been studied extensively using bench-top systems, an understanding of their behavior in in vivo-like microenvironments which stimulate cell proliferation and differentiation is still lacking. In this paper, recent cell studies using microfluidic systems are first introduced. The various miniature systems for cell culture, sorting and isolation, and stimulation are then systematically reviewed. The main focus of this review is on papers published in recent years studying stem cells by using microfluidic technology. This review aims to provide experts in microfluidics an overview of various microfluidic systems for stem cell research.
Collapse
Affiliation(s)
- Huei-Wen Wu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
5
|
Wakeman DR, Hofmann MR, Redmond DE, Teng YD, Snyder EY. Long-term multilayer adherent network (MAN) expansion, maintenance, and characterization, chemical and genetic manipulation, and transplantation of human fetal forebrain neural stem cells. ACTA ACUST UNITED AC 2009; Chapter 2:Unit2D.3. [PMID: 19455542 DOI: 10.1002/9780470151808.sc02d03s9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human neural stem/precursor cells (hNSC/hNPC) have been targeted for application in a variety of research models and as prospective candidates for cell-based therapeutic modalities in central nervous system (CNS) disorders. To this end, the successful derivation, expansion, and sustained maintenance of undifferentiated hNSC/hNPC in vitro, as artificial expandable neurogenic micro-niches, promises a diversity of applications as well as future potential for a variety of experimental paradigms modeling early human neurogenesis, neuronal migration, and neurogenetic disorders, and could also serve as a platform for small-molecule drug screening in the CNS. Furthermore, hNPC transplants provide an alternative substrate for cellular regeneration and restoration of damaged tissue in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Human somatic neural stem/progenitor cells (NSC/NPC) have been derived from a variety of cadaveric sources and proven engraftable in a cytoarchitecturally appropriate manner into the developing and adult rodent and monkey brain while maintaining both functional and migratory capabilities in pathological models of disease. In the following unit, we describe a new procedure that we have successfully employed to maintain operationally defined human somatic NSC/NPC from developing fetal, pre-term post-natal, and adult cadaveric forebrain. Specifically, we outline the detailed methodology for in vitro expansion, long-term maintenance, manipulation, and transplantation of these multipotent precursors.
Collapse
Affiliation(s)
- Dustin R Wakeman
- University of California at San Diego, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
6
|
Servili A, Bufalino MR, Nishikawa R, de Melo IS, Muñoz-Cueto JA, Lee LE. Establishment of long term cultures of neural stem cells from adult sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:245-54. [DOI: 10.1016/j.cbpa.2008.10.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 10/10/2008] [Accepted: 10/14/2008] [Indexed: 12/31/2022]
|
7
|
|
8
|
Dev KK, Mullershausen F, Mattes H, Kuhn RR, Bilbe G, Hoyer D, Mir A. Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol Ther 2007; 117:77-93. [PMID: 17961662 DOI: 10.1016/j.pharmthera.2007.08.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune, neurological disability with unknown etiology. The current therapies available for MS work by an immunomodulatory action, preventing T-cell- and macrophage-mediated destruction of brain-resident oligodendrocytes and axonal loss. Recently, FTY720 (fingolimod) was shown to significantly reduce relapse rates in MS patients and is currently in Phase III clinical trials. This drug attenuates trafficking of harmful T cells entering the brain by regulating sphingosine-1-phosphate (S1P) receptors. Here, we outline the direct roles that S1P receptors play in the central nervous system (CNS) and discuss additional modalities by which FTY720 may provide direct neuroprotection in MS.
Collapse
Affiliation(s)
- Kumlesh K Dev
- Department of Anatomy and Neuroscience, University College Cork, Windle Building, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
9
|
Peković S, Filipović R, Subasić S, Lavrnja I, Stojkov D, Nedeljković N, Rakić L, Stojiljković M. Downregulation of glial scarring after brain injury: the effect of purine nucleoside analogue ribavirin. Ann N Y Acad Sci 2006; 1048:296-310. [PMID: 16154942 DOI: 10.1196/annals.1342.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The weak regenerative capacity of self-repair after injury to the adult brain is caused by the formation of glial scar due to reactive astrogliosis. In the present study the beginning of reactive astrogliosis in the adult, as shown immunocytochemically by upregulation of glial fibrillary acidic protein (GFAP) and vimentin, was seen two days after the left sensorimotor cortex lesion, being maximal during the first two weeks and declining by 30 days after the lesion. This was accompanied by intensive glial scarring. Conversely, after the neonatal lesion a lack of gliotic scar was seen until 30 days postsurgery, although the pattern of GFAP and vimentin expression during recovery period was the same. The aim of the study was to define an appropriate therapeutic intervention that could modulate astrocyte proliferation and diminish glial scar formation after adult brain lesion. For this purpose the effects of an antiproliferative agent, the purine nucleoside analogue ribavirin was examined. It was shown that daily injection of ribavirin for 5 and 10 days considerably decreased the number of reactive astrocytes, while slight GFAP labeling was restricted to the lesion site. Obtained results show that ribavirin treatment downregulates the process of reactive astrogliosis after adult brain injury, and thus may be a useful approach for improving neurological recovery from brain damage.
Collapse
Affiliation(s)
- Sanja Peković
- Department of Neurobiology and Immunology, S. Stanković Institute for Biological Research, Belgrade, Serbia and Montenegro.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Thom M, Martinian L, Sisodiya SM, Cross JH, Williams G, Stoeber K, Harkness W, Harding BN. Mcm2 labelling of balloon cells in focal cortical dysplasia. Neuropathol Appl Neurobiol 2006; 31:580-8. [PMID: 16281906 DOI: 10.1111/j.1365-2990.2005.00651.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Balloon cells (BC) are the prominent and defining cellular component of type IIB Focal Cortical Dysplasia (FCD), a common cause of focal epilepsy in patients undergoing surgical treatment. BC are considered immature cells of uncommitted cellular differentiation having immunophenotypical characteristics of both neurones and glia. They are often located in the lower cortical layers and white matter underlying the dysplastic cortex, suggesting migratory arrest during development. We investigated the proliferative potential of BC in 15 cases of FCD from patients with a wide range of ages using immunohistochemistry for Mcm2 (mini chromosome maintenance protein) and Ki67. In the majority of cases, BC showed Mcm2 nuclear positivity. In addition, cells with intermediate neuronal-glial characteristics were labelled whilst the dysmorphic or hypertrophic pyramidal neuronal components of FCD were not. Ki67 labelled only occasional BC. These findings support the view that BC cells represent a pool of less differentiated glial cells with proliferative capacity which may have potential for delayed neuronal differentiation. Furthermore, as Mcm2 specifically identifies BC populations, this marker may be of diagnostic value in the subtyping of FCD lesions in patients with epilepsy.
Collapse
Affiliation(s)
- M Thom
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chung BG, Flanagan LA, Rhee SW, Schwartz PH, Lee AP, Monuki ES, Jeon NL. Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. LAB ON A CHIP 2005; 5:401-6. [PMID: 15791337 DOI: 10.1039/b417651k] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper describes a gradient-generating microfluidic platform for optimizing proliferation and differentiation of neural stem cells (NSCs) in culture. Microfluidic technology has great potential to improve stem cell (SC) cultures, whose promise in cell-based therapies is limited by the inability to precisely control their behavior in culture. Compared to traditional culture tools, microfluidic platforms should provide much greater control over cell microenvironment and rapid optimization of media composition using relatively small numbers of cells. Our platform exposes cells to a concentration gradient of growth factors under continuous flow, thus minimizing autocrine and paracrine signaling. Human NSCs (hNSCs) from the developing cerebral cortex were cultured for more than 1 week in the microfluidic device while constantly exposed to a continuous gradient of a growth factor (GF) mixture containing epidermal growth factor (EGF), fibroblast growth factor 2 (FGF2) and platelet-derived growth factor (PDGF). Proliferation and differentiation of NSCs into astrocytes were monitored by time-lapse microscopy and immunocytochemistry. The NSCs remained healthy throughout the entire culture period, and importantly, proliferated and differentiated in a graded and proportional fashion that varied directly with GF concentration. These concentration-dependent cellular responses were quantitatively similar to those measured in control chambers built into the device and in parallel cultures using traditional 6-well plates. This gradient-generating microfluidic platform should be useful for a wide range of basic and applied studies on cultured cells, including SCs.
Collapse
Affiliation(s)
- Bong Geun Chung
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, CA 92697-2715, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Ulfig N, Briese M. Evidence for the presence of the sphingosine-1-phosphate receptor Edg-8 in human radial glial fibers. Acta Histochem 2004; 106:373-8. [PMID: 15530552 DOI: 10.1016/j.acthis.2004.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 07/20/2004] [Accepted: 08/01/2004] [Indexed: 02/02/2023]
Abstract
The distribution pattern of Edg-8 immunostaining in the human developing brain has been investigated with special reference to radial glial fibers. At 24 weeks of gestation, fragments of radial glial fibers are Edg-8-positive within the cortical plate and subplate of allocortical areas. These Edg-8-positive fragments often appear enlarged as varicosities and some of them terminate at blood vessels. Between 28 and 30 weeks of gestation, all iso- and allocortical areas contain Edg-8-immunolabelled radial glial fibers revealing curvature next to sulci. After 32 weeks of gestation, radial glial fibers gradually disappear; instead Edg-8-positive transitional stages between radial glia and astrocytes were found. The findings indicate that sphingosine-1-phosphate may play a regulatory role in the transformation of radial glial cells into astrocytes and may affect proliferative activity of these cells.
Collapse
Affiliation(s)
- Norbert Ulfig
- Department of Anatomy, Neuroembryonic Research Laboratory, University of Rostock, Gertrudenstrasse 9, D-18055 Rostock, Germany.
| | | |
Collapse
|
13
|
Malaterre J, Strambi C, Aouane A, Strambi A, Rougon G, Cayre M. A novel role for polyamines in adult neurogenesis in rodent brain. Eur J Neurosci 2004; 20:317-30. [PMID: 15233741 DOI: 10.1111/j.1460-9568.2004.03498.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although neurogenesis in the adult is known to be regulated by various internal cues such as hormones, growth factors and cell-adherence molecules, downstream elements underlying their action at the cellular level still remain unclear. We previously showed in an insect model that polyamines (putrescine, spermidine and spermine) play specific roles in adult brain neurogenesis. Here, we demonstrate their involvement in the regulation of secondary neurogenesis in the rodent brain. Using neurosphere assays, we show that putrescine addition stimulates neural progenitor proliferation. Furthermore, in vivo depletion of putrescine by specific and irreversible inhibition of ornithine decarboxylase, the first key enzyme of the polyamine synthesis pathway, induces a consistent decrease in neural progenitor cell proliferation in the two neurogenic areas, the dentate gyrus and the subventricular zone. The present study reveals common mechanisms underlying birth of new neurons in vertebrate and invertebrate species.
Collapse
Affiliation(s)
- Jordane Malaterre
- CNRS, Laboratoire NMDA, Parc Scientifique de Luminy, Case 907, 13288 Marseille cedex 9, France
| | | | | | | | | | | |
Collapse
|
14
|
Li H, Berlin Y, Hart RP, Grumet M. Microtubules are critical for radial glial morphology: possible regulation by MAPs and MARKs. Glia 2003; 44:37-46. [PMID: 12951655 DOI: 10.1002/glia.10267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radial glia are a polarized cell type that in most neural regions appear only transiently during development. They have long been recognized as glia or glial progenitors that support neuronal migration. Recent evidence indicates that radial glia also give rise to neurons and appear to be a major population of dividing precursor cells in the embryonic cortical ventricular zone. Radial glia extend long processes from the ventricular zone to the pial surface that provide guides for neuronal migration. We reasoned that the unique morphology of radial glia is due to the composition and organization of their cytoskeleton. In this present study, we have used C6-R, a radial glial-like cell line and isolated perinatal cerebellar radial glia to ask what are the critical cytoskeletal elements in radial glial cells and how they are regulated. Treatments with nocodazole and cytochalasin D showed that microtubules, but not microfilaments, are critical for the polarized morphology of radial glia. In addition, quantitative real-time PCR indicated that certain mRNAs specific for microtubule-associated proteins (MAPs) are selectively expressed in radial glia. These results together with the known ability of microtubule affinity-regulating kinases to regulate microtubule organization suggest that microtubules and MAPs are critical for the morphology of radial glia.
Collapse
Affiliation(s)
- Hedong Li
- Department of Cell Biology and Neuroscience and WM Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Neural progenitors of the vertebrate CNS are defined by generic cellular characteristics, including their pseudoepithelial morphology and their ability to divide and differentiate. SOXB1 transcription factors, including the three closely related genes Sox1, Sox2, and Sox3, universally mark neural progenitor and stem cells throughout the vertebrate CNS. We show here that constitutive expression of SOX2 inhibits neuronal differentiation and results in the maintenance of progenitor characteristics. Conversely, inhibition of SOX2 signaling results in the delamination of neural progenitor cells from the ventricular zone and exit from cell cycle, which is associated with a loss of progenitor markers and the onset of early neuronal differentiation markers. The phenotype elicited by inhibition of SOX2 signaling can be rescued by coexpression of SOX1, providing evidence for redundant SOXB1 function in CNS progenitors. Taken together, these data indicate that SOXB1 signaling is both necessary and sufficient to maintain panneural properties of neural progenitor cells.
Collapse
Affiliation(s)
- Victoria Graham
- Neuroscience Center, Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Neurogenesis continues into adulthood in two distinct regions, the subventricular zone of the forebrain and the subgranular zone of the dentate gyrus. Transplantation experiments have suggested that the two neurogenic regions have a special microenvironment to support the proliferation and differentiation of stem or progenitor cells. As the candidates of the microenvironment, three elements have so far been proposed: (i) astrocytes; (ii) polysialyl neural cell adhesion molecule (PSA-NCAM)-expressing immature neurons; and (iii) blood vessels. In the early developmental process of neurogenesis, newly born cells make clusters within the neurogenic regions and the clusters are found to interact structurally with astrocytes, polysialic acid-expressing immature cells, endothelium and extravascular basal laminae of blood vessels. Furthermore, recent reports have shown that astrocytes support the proliferation and differentiation of stem cells in vitro. These results suggest that these microenvironmental elements contribute to the cell proliferation and differentiation of stem or progenitor cells. However, it remains to be determined how the microenvironmental elements support adult neurogenesis functionally and coordinate with each other.
Collapse
Affiliation(s)
- Tatsunori Seki
- Department of Anatomy, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
17
|
Abstract
Radial glial cells play important roles in neural development. They provide support and guidance for neuronal migration and give rise to neurons and glia. In vitro, neurons, astrocytes, and oligodendrocytes can be generated from neural and embryonic stem cells, but the generation of radial glial cells from these stem cells has not yet been reported. Since the differentiation of radial glial cells is indispensable during brain development, we hypothesize that stem cells also generate radial glial cells during in vitro neural differentiation. To test this hypothesis, we utilized five different clones of mouse embryonic (ES) and embryonal carcinoma (EC) stem cell lines to investigate the differentiation of radial glial cells during in vitro neural differentiation. Here, we demonstrate that radial glia-like cells can be generated from ES/EC cell lines. These ES/EC cell-derived radial glia-like cells are similar in morphology to radial glial cells in vivo, i.e., they are bipolar with an unbranched long process and a short process. They also express several cytoskeletal markers, such as nestin, RC2, and/or GFAP, that are characteristics of radial glial cells in vivo. The processes of these in vitro generated radial glia-like cells are organized into parallel arrays that resemble the radial glial scaffolds in neocortical development. Since radial glia-like cells were observed in all five clones of ES/EC cells tested, we suggest that the differentiation of radial glial cells may be a common pathway during in vitro neural differentiation of ES cells. This novel in vitro model system should facilitate the investigation of regulation of radial glial cell differentiation and its biological function.
Collapse
Affiliation(s)
- Sean S Liour
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | |
Collapse
|
18
|
Abstract
The ability of an animal to carry out its normal behavioral repertoire requires generation of an enormous diversity of neurons and glia. The relative simplicity of the spinal cord makes this an especially attractive part of the nervous system for addressing questions about the development of vertebrate neural specification and function. The last decade has witnessed an explosion in our understanding of spinal cord development and the functional interactions among spinal cord neurons and glia. Cellular, genetic, molecular, physiological and behavioral studies in zebrafish have all been important in providing insights into questions that remained unanswered by studies from other vertebrate model organisms. This is the case because many zebrafish spinal neurons can be individually identified and followed over time in living embryos and larvae. In this review, we discuss what is currently known about the cellular, genetic and molecular mechanisms involved in specifying distinct cell types in the zebrafish spinal cord and how these cells establish the functional circuitry that mediates particular behaviors. We start by describing the early signals and morphogenetic movements that form the nervous system, and in particular, the spinal cord. We then provide an overview of the cell types within the spinal cord and describe how they are specified and patterned. We begin ventrally with floor plate and proceed dorsally, through motoneurons and oligodendrocytes, interneurons, astrocytes and radial glia, spinal sensory neurons and neural crest. We next describe axon pathfinding of spinal neurons. Finally, we discuss the roles of particular spinal cord neurons in specific behaviors.
Collapse
Affiliation(s)
- Katharine E Lewis
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA.
| | | |
Collapse
|
19
|
Abstract
Neural stem cells (NSCs) are multipotential progenitor cells that have self-renewal activities. A single NSC is capable of generating various kinds of cells within the central nervous system (CNS), including neurons, astrocytes, and oligodendrocytes. Because of these characteristics, there is increasing interest in NSCs and neural progenitor cells from the aspects of both basic developmental biology and therapeutic applications to the damaged brain. This special issue, dedicated to understanding the nature of the NSCs present in the CNS, presents an introduction to several avenues of research that may lead to feasible strategies for manipulating cells in situ to treat the damaged brain. The topics covered by these studies include the extracellular factors and signal transduction cascades involved in the differentiation and maintenance of NSCs, the population dynamics and locations of NSCs in embryonic and adult brains, prospective identification and isolation of NSCs, the induction of NSCs to adopt particular neuronal phenotypes, and their transplantation into the damaged CNS.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|