1
|
Nyisztor Z, Denes V, Kovacs-Valasek A, Hideg O, Berta G, Gabriel R. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP1-38) Exerts Both Pro and Anti-Apoptotic Effects on Postnatal Retinal Development in Rat. Neuroscience 2018; 385:59-66. [PMID: 29906550 DOI: 10.1016/j.neuroscience.2018.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
PACAP1-38, a ubiquitous and multifunctional regulator has been in the focus of neurotoxicity research due to its impressive neuroprotective potential. Although the literature extensively demonstrated its repressive effect on the apoptotic machinery in neurodegenerative models, there is a striking absence of analysis on its role in normal development. We performed quantitative analyses on caspase activity in developing retina upon 100, 50, 25 or 1 pmol intravitreal PACAP1-38 injection from postnatal day 1 (P1) through P7 in Wistar rats. Retinas were harvested at 6, 12, 18, 24 or 48 h post-injection. Apoptotic activity was revealed using fluorescent caspase 3/7 enzyme assay, western blots and TUNEL assay. Unexpectedly, we found that 100 pmol PACAP1-38 increased the activity of caspase 3/7 at P1 and P5 whereas it had no effect at P7. At P3, as a biphasic effect, PACAP1-38 repressed active caspase 3/7 at 18 h post-injection while increased their activity in 24 h post-injection. Amounts, smaller than 100 pmol, could not inhibit apoptosis whereas 50, 25 or 1 pmol PACAP1-38 could evoke significant elevation in caspase 3/7 activity. TUNEL-positive cells appeared in the proximal part of inner nuclear as well as ganglion cell layers in response to PACAP1-38 treatment. The fundamental novelty of these results is that PACAP1-38 induces apoptosis during early postnatal retinogenesis. The dose as well as stage-dependent response suggests that PACAP1-38 has a Janus face in apoptosis regulation. It not only inhibits development-related apoptosis, but as a long-term effect, facilitates it.
Collapse
Affiliation(s)
- Zsolt Nyisztor
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.
| | - Andrea Kovacs-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Orsolya Hideg
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Institute of Medical Biology, School of Medicine, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
Mayer M, Kaiser N, Layer PG, Frohns F. Cell Cycle Regulation and Apoptotic Responses of the Embryonic Chick Retina by Ionizing Radiation. PLoS One 2016; 11:e0155093. [PMID: 27163610 PMCID: PMC4862647 DOI: 10.1371/journal.pone.0155093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/25/2016] [Indexed: 11/25/2022] Open
Abstract
Ionizing radiation (IR) exerts deleterious effects on the developing brain, since proliferative neuronal progenitor cells are highly sensitive to IR-induced DNA damage. Assuming a radiation response that is comparable to mammals, the chick embryo would represent a lower vertebrate model system that allows analysis of the mechanisms underlying this sensitivity, thereby contributing to the reduction, refinement and replacement of animal experiments. Thus, this study aimed to elucidate the radiation response of the embryonic chick retina in three selected embryonic stages. Our studies reveal a lack in the radiation-induced activation of a G1/S checkpoint, but rapid abrogation of G2/M progression after IR in retinal progenitors throughout development. Unlike cell cycle control, radiation-induced apoptosis (RIA) showed strong variations between its extent, dose dependency and temporal occurrence. Whereas the general sensitivity towards RIA declined with ongoing differentiation, its dose dependency constantly increased with age. For all embryonic stages RIA occurred during comparable periods after irradiation, but in older animals its maximum shifted towards earlier post-irradiation time points. In summary, our results are in good agreement with data from the developing rodent retina, strengthening the suitability of the chick embryo for the analysis of the radiation response in the developing central nervous system.
Collapse
Affiliation(s)
- Margot Mayer
- Developmental Biology and Neurogenetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Nicole Kaiser
- Developmental Biology and Neurogenetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Paul G Layer
- Developmental Biology and Neurogenetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Florian Frohns
- Developmental Biology and Neurogenetics, Darmstadt University of Technology, Darmstadt, Germany
| |
Collapse
|
3
|
Inefficient Double-Strand Break Repair in Murine Rod Photoreceptors with Inverted Heterochromatin Organization. Curr Biol 2014; 24:1080-90. [DOI: 10.1016/j.cub.2014.03.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 01/26/2023]
|
4
|
Molnar T, Barabas P, Birnbaumer L, Punzo C, Kefalov V, Križaj D. Store-operated channels regulate intracellular calcium in mammalian rods. J Physiol 2012; 590:3465-81. [PMID: 22674725 DOI: 10.1113/jphysiol.2012.234641] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Exposure to daylight closes cyclic nucleotide-gated (CNG) and voltage-operated Ca(2+) -permeable channels in mammalian rods. The consequent lowering of the cytosolic calcium concentration ([Ca(2+)](i)), if protracted, can contribute to light-induced damage and apoptosis in these cells. We here report that mouse rods are protected against prolonged lowering of [Ca(2+)](i) by store-operated Ca(2+) entry (SOCE). Ca(2+) stores were depleted in Ca(2+)-free saline supplemented with the endoplasmic reticulum (ER) sequestration blocker cyclopiazonic acid. Store depletion elicited [Ca(2+)](i) signals that exceeded baseline [Ca(2+)](i) by 5.9 ± 0.7-fold and were antagonized by an inhibitory cocktail containing 2-APB, SKF 96365 and Gd(3+). Cation influx through SOCE channels was sufficient to elicit a secondary activation of L-type voltage-operated Ca2+ entry. We also found that TRPC1, the type 1 canonical mammalian homologue of the Drosophila photoreceptor TRP channel, is predominantly expressed within the outer nuclear layer of the retina. Rod loss in Pde6b(rdl) (rd1), Chx10/Kip1(-/-rdl) and Elovl4(TG2) dystrophic models was associated with ∼70% reduction in Trpc1 mRNA content whereas Trpc1 mRNA levels in rodless cone-full Nrl(-/-) retinas were decreased by ∼50%. Genetic ablation of TRPC1 channels, however, had no effect on SOCE, the sensitivity of the rod phototransduction cascade or synaptic transmission at rod and cone synapses. Thus, we localized two new mechanisms, SOCE and TRPC1, to mammalian rods and characterized the contribution of SOCE to Ca(2+) homeostasis. By preventing the cytosolic [Ca(2+)](i) from dropping too low under sustained saturating light conditions, these signalling pathways may protect Ca(2+)-dependent mechanisms within the ER and the cytosol without affecting normal rod function.
Collapse
Affiliation(s)
- Tünde Molnar
- Department of Ophthalmology & Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | | | | | |
Collapse
|
5
|
Rod photoreceptor cell death is induced by okadaic acid through activation of PKC and L-type voltage-dependent Ca2+ channels and prevented by IGF-1. Neurochem Int 2010; 57:128-35. [DOI: 10.1016/j.neuint.2010.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 04/14/2010] [Accepted: 04/29/2010] [Indexed: 02/02/2023]
|
6
|
Do calcium channel blockers rescue dying photoreceptors in the Pde6b ( rd1 ) mouse? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 664:491-9. [PMID: 20238051 DOI: 10.1007/978-1-4419-1399-9_56] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a genetically heterogeneous set of blinding diseases that affects more than a million people worldwide. In humans, ~5-8% of recessive and dominant RP cases are caused by nonsense mutations in the Pde6b gene coding for the ss-subunit of the rod photoreceptor cGMP phosphodiesterase 6 (PDE6-ss). The study of the disease has been greatly aided by the Pde6b ( rd1 ) (rd1) mouse model of RP carrying a null PDE6ss allele. Degenerating rd1 rods were found to experience a pathological increase in intracellular calcium concentration ('Ca overload') when they enter the apoptotic process at postnatal day 10. A 1999 study suggested that the Ca(2+) channel antagonist D-cis diltiazem delays the kinetics of rd1 rod degeneration, conferring partial rescue of scotopic vision. Subsequent reports were mixed: whereas several studies failed to replicate the original results, others appeared to confirm the neuroprotective effects of Ca(2+) channel antagonists such as diltiazem, nilvadipine and verapamil. We discuss the discrepancies between the results of different groups and suggest plausible causes for the discordant results. We also discuss potential involvement of recently identified Ca(2+)-dependent mechanisms that include protective calcium ATPase mechanisms, ryanodine and IP3 calcium stores, and store operated channels in Pde6b ( rd1 ) neurodegeneration.
Collapse
|
7
|
Szikra T, Barabas P, Bartoletti TM, Huang W, Akopian A, Thoreson WB, Krizaj D. Calcium homeostasis and cone signaling are regulated by interactions between calcium stores and plasma membrane ion channels. PLoS One 2009; 4:e6723. [PMID: 19696927 PMCID: PMC2725299 DOI: 10.1371/journal.pone.0006723] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/27/2009] [Indexed: 12/13/2022] Open
Abstract
Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse.
Collapse
Affiliation(s)
- Tamas Szikra
- Department of Ophthalmology, University of California San Francisco (UCSF) School of Medicine, San Francisco, California, United States of America
| | - Peter Barabas
- Department of Ophthalmology & Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Theodore M. Bartoletti
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Wei Huang
- Department of Ophthalmology & Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Abram Akopian
- Department of Ophthalmology, New York University Medical Center, New York, New York, United States of America
| | - Wallace B. Thoreson
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Pharmacology & Experimental Neurosciences Univ. of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - David Krizaj
- Department of Ophthalmology & Visual Sciences, Moran Eye Center, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
8
|
Adão-Novaes J, Guterres CDCB, da Silva AGLS, Campello-Costa P, Linden R, Sholl-Franco A. Interleukin-4 blocks thapsigargin-induced cell death in rat rod photoreceptors: involvement of cAMP/PKA pathway. J Neurosci Res 2009; 87:2167-74. [PMID: 19235892 DOI: 10.1002/jnr.22026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although the photoreceptors cell death is the main cause of some retinopathies diseases, the mechanisms involved in this process are poorly understood. The neuroprotective effects of interleukin-4 (IL-4) have been shown in several tissues, including retina. We demonstrate that treatment of rat retinal explants with IL-4 completely inhibited the thapsigargin-induced rod photoreceptor cell death after 24 hr in culture. We also showed that IL-4 receptor alpha subunit (IL-4Ralpha) is abundantly present in retina. Colocalization of IL-4Ralpha and rhodopsin indicate a direct effect of this cytokine in rod photoreceptor cells. Moreover, IL-4 increased the intracellular levels of cAMP in 7.4-fold, indicating that the neuroprotective effect of this cytokine was completely blocked by RpcAMP, an inhibitor of protein kinase (PKA). Our data demonstrate, for the first time, the neuroprotective effect of IL-4 through cAMP/PKA pathway in thapsigargin-induced photoreceptor cell death.
Collapse
Affiliation(s)
- Juliana Adão-Novaes
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Szikra T, Cusato K, Thoreson WB, Barabas P, Bartoletti TM, Krizaj D. Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors. J Physiol 2008; 586:4859-75. [PMID: 18755743 DOI: 10.1113/jphysiol.2008.160051] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca(2+)](i) in rod inner segments and synaptic terminals. Sustained Ca(2+) entry into rod cytosol is augmented by store depletion, blocked by La(3+) and Gd(3+) and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca(2+) influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1-43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca(2+) entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca(2+) signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca(2+) homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1.
Collapse
Affiliation(s)
- Tamas Szikra
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
10
|
Arruda-Carvalho M, Njaine B, Silveira MS, Linden R, Chiarini LB. Hop/STI1 modulates retinal proliferation and cell death independent of PrPC. Biochem Biophys Res Commun 2007; 361:474-80. [PMID: 17651690 DOI: 10.1016/j.bbrc.2007.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 07/10/2007] [Indexed: 01/05/2023]
Abstract
Hop/STI1 is a co-chaperone adaptor protein for Hsp70/Hsp90 complexes. Hop/STI1 is found extracellularly and modulates cell death and differentiation through interaction with the prion protein (PrP(C)). Here, we investigated the expression of hop/STI1 and its role upon cell proliferation and cell death in the developing retina. Hop/STI1 is more expressed in developing rat retina than in the mature tissue. Hop/STI1 blocks retinal cell death in the neuroblastic layer (NBL) in a PrP(C) dependent manner, but failed to protect ganglion cells against axotomy-induced cell death. An antibody raised against hop/STI1 (alpha-STI1) blocked both ganglion cell and NBL cell death independent of PrP(C). cAMP/PKA, ERK, PI3K and PKC signaling pathways were not involved in these effects. Hop/STI1 treatment reduced proliferation, while alpha-STI1 increased proliferation in the developing retina, both independent of PrP(C). We conclude that hop/STI1 can modulate both proliferation and cell death in the developing retina independent of PrP(C).
Collapse
Affiliation(s)
- Maithe Arruda-Carvalho
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biofísica da UFRJ, Centro de Ciências da Saúde, bloco G, G2-019 Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
11
|
Szikra T, Krizaj D. Intracellular organelles and calcium homeostasis in rods and cones. Vis Neurosci 2007; 24:733-43. [PMID: 17986362 PMCID: PMC3038346 DOI: 10.1017/s0952523807070587] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 07/17/2007] [Indexed: 11/05/2022]
Abstract
The role of intracellular organelles in Ca2+ homeostasis was studied in salamander rod and cone photoreceptors under conditions that simulate photoreceptor activation by darkness and light. Sustained depolarization evoked a Ca2+ gradient between the cell body and ellipsoid regions of the inner segment (IS). The standing pattern of calcium fluxes was created by interactions between the plasma membrane, endoplasmic reticulum (ER), and mitochondria. Pharmacological experiments suggested that mitochondria modulate both baseline [Ca2+]i in hyperpolarized cells as well as kinetics of Ca2+ entry via L type Ca2+ channels in cell bodies and ellipsoids of depolarized rods and cones. Inhibition of mitochondrial Ca2+ sequestration by antimycin/oligomycin caused a three-fold reduction in the amount of Ca2+ accumulated into intracellular organelles in both cell bodies and ellipsoids. A further 50% decrease in intracellular Ca2+ content within cell bodies, but not ellipsoids, was observed after suppression of SERCA-mediated Ca2+ uptake into the ER. Inhibition of Ca2+ sequestration into the endoplasmic reticulum by thapsigargin or cyclopiazonic acid decreased the magnitude and kinetics of depolarization-evoked Ca2+ signals in cell bodies of rods and cones and decreased the amount of Ca2+ accumulated into internal stores. These results suggest that steady-state [Ca2+]i in photoreceptors is regulated in a region-specific manner, with the ER contribution predominant in the cell body and mitochondrial buffering [Ca2+] the ellipsoid. Local [Ca2+]i levels are set by interactions between the plasma membrane Ca2+ channels and transporters, ER and mitochondria. Mitochondria are likely to play an essential role in temporal and spatial buffering of photoreceptor Ca2+.
Collapse
Affiliation(s)
- Tamas Szikra
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, California, USA
| | | |
Collapse
|
12
|
Lassen N, Pappa A, Black WJ, Jester JV, Day BJ, Min E, Vasiliou V. Antioxidant function of corneal ALDH3A1 in cultured stromal fibroblasts. Free Radic Biol Med 2006; 41:1459-69. [PMID: 17023273 DOI: 10.1016/j.freeradbiomed.2006.08.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 06/29/2006] [Accepted: 08/08/2006] [Indexed: 11/30/2022]
Abstract
Aldehyde dehydrogenase 3A1 (ALDH3A1) is highly expressed in epithelial cells and stromal keratocytes of mammalian cornea and is believed to play an important role in cellular defense. To explore a potential protective role against oxidative damage, a rabbit corneal fibroblastic cell line (TRK43) was stably transfected with the human ALDH3A1 and subjected to oxidative stress induced by H(2)O(2), mitomycin C (MMC), or etoposide (VP-16). ALDH3A1-transfected cells were more resistant to H(2)O(2,) MMC, and VP-16 compared to the vector-transfected cells. All treatments induced apoptosis only in vector-transfected cells, which was associated with increased levels of 4-hydroxy-2-nonenal (4-HNE)-adducted proteins. Treatment with H(2)O(2) resulted in a rise in reduced glutathione (GSH) levels in all groups but was more pronounced in the ALDH3A1-expressing cells. Treatment with the DNA-damaging agents led to GSH depletion in control groups, although the depletion was significantly less in ALDH3A1-expressing cells. Increased carbonylation of ALDH3A1 but not significant decline in enzymatic activity was observed after all treatments. In conclusion, our results suggest that ALDH3A1 may act to protect corneal cells against cellular oxidative damage by metabolizing toxic lipid peroxidation products (e.g., 4-HNE), maintaining cellular GSH levels and redox balance, and operating as an antioxidant.
Collapse
Affiliation(s)
- Natalie Lassen
- Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Campos CBL, Bédard PA, Linden R. Requirement of p38 stress-activated MAP kinase for cell death in the developing retina depends on the stage of cell differentiation. Neurochem Int 2006; 49:494-9. [PMID: 16782232 DOI: 10.1016/j.neuint.2006.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 03/21/2006] [Indexed: 11/26/2022]
Abstract
The p38 members of the mitogen-activated protein kinase (MAPK) superfamily are activated by both environmental stress and endogenous signals, and may have either permissive or inhibitory roles upon both cell proliferation and cell death in the retina. We have previously shown that anisomycin, a protein synthesis inhibitor, and 2-aminopurine, a specific inhibitor of the double stranded-RNA dependent protein kinase, block apoptosis of ganglion cells induced by axotomy, and induce apoptosis of cells in the neuroblastic layer in developing rat retina. Using a specific inhibitor, we found that p38-stress activated MAP kinase is required for the death of post-mitotic cells induced by anisomycin, but not for the death of proliferating cells induced by 2-aminopurine, nor of axon-damaged retinal ganglion cells. We also show that p38 activation occurs either upstream of or parallel to the requirement for cyclic AMP to block apoptosis of post-mitotic cells, since the cyclic AMP-producing agent forskolin did not prevent p38 phosphorylation induced by anisomycin. Finally, the lack of immunostaining for phospho-p38 in apoptotic profiles suggests that p38 activation does not kill retinal cells directly, but more likely through the mediation of neighboring cells.
Collapse
Affiliation(s)
- Claudia B L Campos
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, CCS, Bloco G, Cidade Universitária, Rio de Janeiro, RJ 21949-900, Brazil
| | | | | |
Collapse
|
14
|
Szikra T, Krizaj D. The dynamic range and domain-specific signals of intracellular calcium in photoreceptors. Neuroscience 2006; 141:143-55. [PMID: 16682126 PMCID: PMC1987384 DOI: 10.1016/j.neuroscience.2006.03.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Vertebrate photoreceptors consist of strictly delimited subcellular domains: the outer segment, ellipsoid, cell body and synaptic terminal, each hosting crucial cellular functions, including phototransduction, oxidative metabolism, gene expression and transmitter release. We used optical imaging to explore the spatiotemporal dynamics of Ca(2+) signaling in non-outer segment regions of rods and cones. Sustained depolarization, designed to emulate photoreceptor activation in the darkness, evoked a standing Ca(2+) gradient in tiger salamander photoreceptors with spatially-averaged intracellular Ca(2+) concentration within synaptic terminals of approximately 2 microM and lower (approximately 750 nM) intracellular calcium concentration in the ellipsoid. Measurements from axotomized cell bodies and isolated ellipsoids showed that Ca(2+) enters the two compartments via both local L-type Ca(2+) channels and diffusion. The results from optical imaging studies were supported by immunostaining analysis. L-type voltage-operated Ca(2+) channels and plasma membrane Ca(2+) ATPases were highly expressed in synaptic terminals with progressively lower expression levels in the cell body and ellipsoid. These results show photoreceptor Ca(2+) homeostasis is controlled in a region-specific manner by direct Ca(2+) entry and diffusion as well as Ca(2+) extrusion. Moreover, quantitative measurement of intracellular calcium concentration levels in different photoreceptor compartments indicates that the dynamic range of Ca(2+) signaling in photoreceptors is approximately 40-fold, from approximately 50 nM in the light to approximately 2 microM in darkness.
Collapse
Affiliation(s)
- T Szikra
- Department of Ophthalmology, UCSF School of Medicine, 10 Koret Way, San Francisco, CA 94143-0730, USA
| | | |
Collapse
|
15
|
Silveira MS, Linden R. Neuroprotection by cAMP: Another brick in the wall. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 557:164-76. [PMID: 16955710 DOI: 10.1007/0-387-30128-3_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Programmed cell death occurs in the nervous system both in normal development as well as in pathologic conditions, and is a key issue related to both brain repair and neurodegenerative diseases. Modulation of cell death in the nervous system may involve neurotrophic factors and other peptides, neurotransmitters and neuromodulators, that activate various signal transduction pathways, which in turn interact with the cell death execution machinery. Here we discuss the role of the second messenger cyclic adenosine 3'5'-monophosphate (cAMP) in cell death, and summarize current evidence that cAMP is a nodal point of neuroprotective signaling pathways.
Collapse
Affiliation(s)
- Mariana S Silveira
- Laboratório de Neurogênese, Instituto de Biofísca da UFRJ, Rio de Janeiro, Brazil
| | | |
Collapse
|
16
|
Krizaj D. Serca isoform expression in the mammalian retina. Exp Eye Res 2005; 81:690-9. [PMID: 15967430 PMCID: PMC2921800 DOI: 10.1016/j.exer.2005.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/24/2005] [Accepted: 04/18/2005] [Indexed: 11/26/2022]
Abstract
The sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA) is a key intracellular calcium transporter, which regulates cellular calcium concentration [Ca2+] by transporting Ca2+ ions from the cytosol into the endoplasmic reticulum. SERCA-mediated Ca2+ sequestration controls proper folding of newly synthesized proteins within the ER as well as the timing and spatial patterning of depolarization-evoked Ca2+ responses in the cytoplasm. To understand the spatial and temporal properties of Ca2+ homeostasis in retinal neurons better, I studied expression and distribution of all three SERCA isoforms in the mouse retina using isoform-specific antibodies. No immunostaining was observed with the SERCA1 antibody. SERCA2 was expressed in photoreceptor inner segments, amacrine and ganglion cells of the mouse retina. Similar SERCA2 localization was observed in adult rat, macaque and ground squirrel retinas. Analysis of distribution of SERCA2 immunofluorescence in the developing mouse retina revealed prominent SERCA2 signals throughout postnatal development. The N89 antibodys used to identify the SERCA3 isoforms labelled cone outer segments, inner segments of photoreceptors and cell processes in the inner nuclear layer of the mouse retina. These results imply that the SERCA2 isoform controls Ca2+ sequestration into the endoplasmic reticulum in most classes of retinal neuron. A potential role for SERCA3 in cone function is suggested.
Collapse
Affiliation(s)
- David Krizaj
- Dept. of Ophthalmology, Beckman Vision Center, UCSF School of Medicine, Rm. K-140, 10 Kirkham St., San Francisco, CA 94143-0730, USA.
| |
Collapse
|
17
|
Linden R, Martins RAP, Silveira MS. Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina. Prog Retin Eye Res 2004; 24:457-91. [PMID: 15845345 DOI: 10.1016/j.preteyeres.2004.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has long been known that a barrage of signals from neighboring and connecting cells, as well as components of the extracellular matrix, control cell survival. Given the extensive repertoire of retinal neurotransmitters, neuromodulators and neurotrophic factors, and the exhuberant interconnectivity of retinal interneurons, it is likely that various classes of released neuroactive substances may be involved in the control of sensitivity to retinal cell death. The aim of this article is to review evidence that neurotransmitters and neuropeptides control the sensitivity to programmed cell death in the developing retina. Whereas the best understood mechanism of execution of cell death is that of caspase-mediated apoptosis, current evidence shows that not only there are many parallel pathways to apoptotic cell death, but non-apoptotic programs of execution of cell death are also available, and may be triggered either in isolation or combined with apoptosis. The experimental data show that many upstream signaling pathways can modulate cell death, including those dependent on the second messengers cAMP-PKA, calcium and nitric oxide. Evidence for anterograde neurotrophic control is provided by a variety of models of the central nervous system, and the data reviewed here indicate that an early function of certain neurotransmitters, such as glutamate and dopamine, as well as neuropeptides such as pituitary adenylyl cyclase-activating polypeptide and vasoactive intestinal peptide is the trophic support of cell populations in the developing retina. This may have implications both regarding the mechanisms of retinal organogenesis, as well as pathological conditions leading to retinal dystrophies and to dysfunctional cellular behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Centro de Ciencias da Saude, Instituto de Biofísica da UFRJ, Cidade Universitária, bloco G, Rio de Janeiro 21949-900, Brazil.
| | | | | |
Collapse
|