1
|
Vashist A, Manickam P, Raymond AD, Arias AY, Kolishetti N, Vashist A, Arias E, Nair M. Recent Advances in Nanotherapeutics for Neurological Disorders. ACS APPLIED BIO MATERIALS 2023. [PMID: 37368486 PMCID: PMC10354745 DOI: 10.1021/acsabm.3c00254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Neurological disorders remain a significant health and economic burden worldwide. Addressing the challenges imposed by existing drugs, associated side- effects, and immune responses in neurodegenerative diseases is essential for developing better therapies. The immune activation in a diseased state has complex treatment protocols and results in hurdles for clinical translation. There is an immense need for the development of multifunctional nanotherapeutics with various properties to address the different limitations and immune interactions exhibited by the existing therapeutics. Nanotechnology has proven its potential to improve therapeutic delivery and enhance efficacy. Promising advancements have been made in developing nanotherapies that can be combined with CRISPR/Cas9 or siRNA for a targeted approach with unique potential for clinical translation. Engineering natural exosomes derived from mesenchymal stem cells (MSCs), dendritic cells (DCs), or macrophages to both deliver therapeutics and modulate the immune responses to tumors or in neurodegenerative disease (ND) can allow for targeted personalized therapeutic approaches. In the present review, we summarize and overview the recent advances in nanotherapeutics in addressing the existing treatment limitations and neuroimmune interactions for developing ND therapies and provide insights into the upcoming advancements in nanotechnology-based nanocarriers.
Collapse
Affiliation(s)
- Arti Vashist
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), CSIR-CECRI Campus, Karaikudi, 630 003 Tamil Nadu, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002 Uttar Pradesh, India
| | - Andrea D Raymond
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Adriana Yndart Arias
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Nagesh Kolishetti
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Atul Vashist
- Department of Infection & Immunology, Translational Health Science and Technology, Faridabad, 121001 Haryana, India
| | - Emanuel Arias
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
2
|
Pontrello CG, McWhirt JM, Glabe CG, Brewer GJ. Age-Related Oxidative Redox and Metabolic Changes Precede Intraneuronal Amyloid-β Accumulation and Plaque Deposition in a Transgenic Alzheimer's Disease Mouse Model. J Alzheimers Dis 2022; 90:1501-1521. [PMID: 36278355 PMCID: PMC9789488 DOI: 10.3233/jad-220824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Many identified mechanisms could be upstream of the prominent amyloid-β (Aβ) plaques in Alzheimer's disease (AD). OBJECTIVE To profile the progression of pathology in AD. METHODS We monitored metabolic signaling, redox stress, intraneuronal amyloid-β (iAβ) accumulation, and extracellular plaque deposition in the brains of 3xTg-AD mice across the lifespan. RESULTS Intracellular accumulation of aggregated Aβ in the CA1 pyramidal cells at 9 months preceded extracellular plaques that first presented in the CA1 at 16 months of age. In biochemical assays, brain glutathione (GSH) declined with age in both 3xTg-AD and non-transgenic controls, but the decline was accelerated in 3xTg-AD brains from 2 to 4 months. The decline in GSH correlated exponentially with the rise in iAβ. Integrated metabolic signaling as the ratio of phospho-Akt (pAkt) to total Akt (tAkt) in the PI3kinase and mTOR pathway declined at 6, 9, and 12 months, before rising at 16 and 20 months. These pAkt/tAkt ratios correlated with both iAβ and GSH levels in a U-shaped relationship. Selective vulnerability of age-related AD-genotype-specific pAkt changes was greatest in the CA1 pyramidal cell layer. To demonstrate redox causation, iAβ accumulation was lowered in cultured middle-age adult 3xTg-AD neurons by treatment of the oxidized redox state in the neurons with exogenous cysteine. CONCLUSION The order of pathologic progression in the 3xTg-AD mouse was loss of GSH (oxidative redox shift) followed by a pAkt/tAkt metabolic shift in CA1, iAβ accumulation in CA1, and extracellular Aβ deposition. Upstream targets may prove strategically more effective for therapy before irreversible changes.
Collapse
Affiliation(s)
- Crystal G. Pontrello
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA,
Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Joshua M. McWhirt
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Charles G. Glabe
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA,
Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA,
MIND Institute, University of California Irvine, Irvine, CA, USA
| | - Gregory J. Brewer
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA,
Center for Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA,
MIND Institute, University of California Irvine, Irvine, CA, USA,Correspondence to: Gregory J. Brewer, Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA. Tel.: +1 217 502 4511; E-mail:
| |
Collapse
|
3
|
Prokop S, Lee VMY, Trojanowski JQ. Neuroimmune interactions in Alzheimer's disease-New frontier with old challenges? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:183-201. [PMID: 31699314 PMCID: PMC6939624 DOI: 10.1016/bs.pmbts.2019.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The perceived role of the immune system in neurodegenerative diseases has undergone drastic changes over time. Initially considered as a passive bystander, then condemned as a mediator of neurodegeneration and now established as an important player in the pathogenetic cascade, neuroimmune interactions have come a long way to arrive center stage in Alzheimer's disease research. Despite major breakthroughs in recent years, basic questions remain unanswered as conflicting data describe immune overactivation, inadequate response or exhaustion of the immune system in neurodegenerative diseases. Furthermore, difficulties in translating in vitro and in vivo studies in model systems to the complex human disease condition with multiple overlapping pathologies and the long disease duration in patients suffering from neurodegenerative diseases have hampered progress. Development of novel, advanced model systems, as well as new technologies to interrogate existing disease models and valuable collections of human tissue samples, including brain tissue in parallel with improved imaging and biomarker technologies are guiding the way to better understand the role of the immune system in Alzheimer's disease with hopes for more effective interventions in the future.
Collapse
Affiliation(s)
- Stefan Prokop
- Department of Pathology, University of Florida, Gainesville, FL, United States; Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States; Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States; McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, AD Center Core (ADCC), Center for Neurodegenerative Disease Research, University of Pennsylvania (PENN), School of Medicine, Philadelphia, PA, United States
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, AD Center Core (ADCC), Center for Neurodegenerative Disease Research, University of Pennsylvania (PENN), School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
4
|
Martínez-Mármol R, Mohannak N, Qian L, Wang T, Gormal RS, Ruitenberg MJ, Vanhaesebroeck B, Coulson EJ, Meunier FA. p110δ PI3-Kinase Inhibition Perturbs APP and TNFα Trafficking, Reduces Plaque Burden, Dampens Neuroinflammation, and Prevents Cognitive Decline in an Alzheimer's Disease Mouse Model. J Neurosci 2019; 39:7976-7991. [PMID: 31363064 PMCID: PMC6774409 DOI: 10.1523/jneurosci.0674-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/26/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is associated with the cleavage of the amyloid precursor protein (APP) to produce the toxic amyloid-β (Aβ) peptide. Accumulation of Aβ, together with the concomitant inflammatory response, ultimately leads to neuronal death and cognitive decline. Despite AD progression being underpinned by both neuronal and immunological components, therapeutic strategies based on dual targeting of these systems remains unexplored. Here, we report that inactivation of the p110δ isoform of phosphoinositide 3-kinase (PI3K) reduces anterograde axonal trafficking of APP in hippocampal neurons and dampens secretion of the inflammatory cytokine tumor necrosis factor-alpha by microglial cells in the familial AD APPswe/PS1ΔE9 (APP/PS1) mouse model. Moreover, APP/PS1 mice with kinase-inactive PI3Kδ (δD910A) had reduced Aβ peptides levels and plaques in the brain and an abrogated inflammatory response compared with APP/PS1 littermates. Mechanistic investigations reveal that PI3Kδ inhibition decreases the axonal transport of APP by eliciting the formation of highly elongated tubular-shaped APP-containing carriers, reducing the levels of secreted Aβ peptide. Importantly, APP/PS1/δD910A mice exhibited no spatial learning or memory deficits. Our data highlight inhibition of PI3Kδ as a new approach to protect against AD pathology due to its dual action of dampening microglial-dependent neuroinflammation and reducing plaque burden by inhibition of neuronal APP trafficking and processing.SIGNIFICANCE STATEMENT During Alzheimer's disease (AD), the accumulation of the toxic amyloid-β (Aβ) peptide in plaques is associated with a chronic excessive inflammatory response. Uncovering new drug targets that simultaneously reduce both Aβ plaque load and neuroinflammation holds therapeutic promise. Using a combination of genetic and pharmacological approaches, we found that the p110δ isoform of phosphoinositide 3-kinase (PI3K) is involved in anterograde trafficking of the amyloid precursor protein in neurons and in the secretion of tumor necrosis factor-alpha from microglial cells. Genetic inactivation of PI3Kδ reduces Aβ plaque deposition and abrogates the inflammatory response, resulting in a complete rescue of the life span and spatial memory performance. We conclude that inhibiting PI3Kδ represents a novel therapeutic approach to ameliorate AD pathology by dampening plaque accumulation and microglial-dependent neuroinflammation.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Nika Mohannak
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Lei Qian
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia, and
| | - Tong Wang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia, and
| | - Bart Vanhaesebroeck
- Cell Signalling, University College London Cancer Institute, London WC1E 6DD, United Kingdom
| | - Elizabeth J Coulson
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane 4072, Australia, and
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,
| |
Collapse
|
5
|
Makhathini KB, Abboussi O, Mabandla MV, Daniels WMU. The effects of repetitive stress on tat protein-induced pro-inflammatory cytokine release and steroid receptor expression in the hippocampus of rats. Metab Brain Dis 2018; 33:1743-1753. [PMID: 29987524 DOI: 10.1007/s11011-018-0283-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) affects the central nervous system (CNS) that may lead to the development of HIV-associated neuropathologies. Tat protein is one of the viral proteins that have been linked to the neurotoxic effects of HIV. Since many individuals living with HIV often experience significant adverse circumstances, the present study investigated whether exposure to stressful conditions would exacerbate harmful effects of tat protein on brain function. Tat protein (10 μg/10 μl) was injected bilaterally into the dorsal hippocampus of the animal using stereotaxic techniques. The control group received an injection of saline (10 μl). Some control and tat protein-treated animals were subjected to restrain stress for 6 h per day for 28 days and compared to a non-stress group. All animals underwent two behavioural tests, the open field test (OFT) and the novel object recognition test (NORT) to assess their mood state and cognitive function respectively. The release of pro-inflammatory cytokines (TNF-α and IL-1β) and the expression of mineralocorticoid (MR) and glucocorticoid (GR) receptors were also measured to see whether the impact of the repetitive stress on Tat protein-induced behavioural effects was mediated by elements of the immune system and the HPA axis. Rats treated with tat protein showed the following behavioural changes when compared to control animals: there was a significant decrease in time spent in the center of the open field during the OFT, a significant reduction in time spent with the novel object during the NORT, but no change in locomotor activity. Real-time PCR data showed that the expression levels of GR and MR mRNA were significantly reduced, while Western blot analysis showed that the protein expression levels of TNF-α and IL-1β were significantly increased. The present findings indicated that injection of tat protein into the hippocampus of rats not subjected to stress may lead to anxiety-like behaviour and deficits in learning and memory. Tat-treated animals subjected to stress evoked only a modest effect on their behaviour and neurochemistry, while stress alone led to behavioural and neurochemical changes similar to tat protein.
Collapse
Affiliation(s)
- Khayelihle B Makhathini
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, University Drive, Westville, Durban, 4000, South Africa.
| | - Oualid Abboussi
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, University Drive, Westville, Durban, 4000, South Africa
| | - Musa V Mabandla
- Department of Human Physiology, College of Health Sciences, University of KwaZulu-Natal, University Drive, Westville, Durban, 4000, South Africa
| | - William M U Daniels
- School of Phyisiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Poli D, Wheeler BC, DeMarse TB, Brewer GJ. Pattern separation and completion of distinct axonal inputs transmitted via micro-tunnels between co-cultured hippocampal dentate, CA3, CA1 and entorhinal cortex networks. J Neural Eng 2018; 15:046009. [PMID: 29623900 DOI: 10.1088/1741-2552/aabc20] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Functions ascribed to the hippocampal sub-regions for encoding episodic memories include the separation of activity patterns propagated from the entorhinal cortex (EC) into the dentate gyrus (DG) and pattern completion in CA3 region. Since a direct assessment of these functions is lacking at the level of specific axonal inputs, our goal is to directly measure the separation and completion of distinct axonal inputs in engineered pairs of hippocampal sub-regional circuits. APPROACH We co-cultured EC-DG, DG-CA3, CA3-CA1 or CA1-EC neurons in a two-chamber PDMS device over a micro-electrode array (MEA60), inter-connected via distinct axons that grow through the micro-tunnels between the compartments. Taking advantage of the axonal accessibility, we quantified pattern separation and completion of the evoked activity transmitted through the tunnels from source into target well. Since pattern separation can be inferred when inputs are more correlated than outputs, we first compared the correlations among axonal inputs with those of target somata outputs. We then compared, in an analog approach, the distributions of correlation distances between rate patterns of the axonal inputs inside the tunnels with those of the somata outputs evoked in the target well. Finally, in a digital approach, we measured the spatial population distances between binary patterns of the same axonal inputs and somata outputs. MAIN RESULTS We found the strongest separation of the propagated axonal inputs when EC was axonally connected to DG, with a decline in separation to CA3 and to CA1 for both rate and digital approaches. Furthermore, the digital approach showed stronger pattern completion in CA3, then CA1 and EC. SIGNIFICANCE To the best of our knowledge, these are the first direct measures of pattern separation and completion for axonal transmission to the somata target outputs at the rate and digital population levels in each of four stages of the EC-DG-CA3-CA1 circuit.
Collapse
Affiliation(s)
- Daniele Poli
- Department of Biomedical Engineering, University of California, Irvine, CA, United States of America. Research Center 'Enrico Piaggio', University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
7
|
Liu S, Wu H, Xue G, Ma X, Wu J, Qin Y, Hou Y. Metabolic alteration of neuroactive steroids and protective effect of progesterone in Alzheimer's disease-like rats. Neural Regen Res 2014; 8:2800-10. [PMID: 25206601 PMCID: PMC4146013 DOI: 10.3969/j.issn.1673-5374.2013.30.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
A correlation between metabolic alterations of neuroactive steroids and Alzheimer's disease remains unknown. In the present study, amyloid beta (Aβ) 25–35 (Aβ25–35) injected into the bilateral hippocampus CA1 region significantly reduced learning and memory. At the biochemical level, hippocampal levels of pregnenolone were significantly reduced with Aβ25–35 treatment. Furthermore, progesterone was considerably decreased in the prefrontal cortex and hippocampus, and 17β-estradiol was significantly elevated. To our knowledge, this is the first report showing that Aβ25–35, a main etiological factor of Alzheimer's disease, can alter the level and metabolism of neuroactive steroids in the prefrontal cortex and hippocampus, which are brain regions significantly involved in learning and memory. Aβ25–35 exposure also increased the expression of inflammatory mediators, tumor necrosis factor-α and interleukin-1β. However, subcutaneous injection of progesterone reversed the upregulation of tumor necrosis factor-α and interleukin-1β in a dose-dependent manner. Concomitant with improved cognitive abilities, progesterone blocked Aβ-mediated inflammation and increased the survival rate of hippocampal pyramidal cells. We thus hypothesize that Aβ-mediated cognitive deficits may occur via changes in neuroactive steroids. Moreover, our findings provide a possible therapeutic strategy for Alzheimer's disease via neuroactive steroids, particularly progesterone.
Collapse
Affiliation(s)
- Sha Liu
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Gai Xue
- Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| | - Xin Ma
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Jie Wu
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Yabin Qin
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Yanning Hou
- Hebei Medical University, Shijiazhuang 050017, Hebei Province, China ; Department of Pharmacy, Bethune International Peace Hospital of Chinese PLA, Shijiazhuang 050082, Hebei Province, China
| |
Collapse
|
8
|
Morimoto K, Horio J, Satoh H, Sue L, Beach T, Arita S, Tooyama I, Konishi Y. Expression profiles of cytokines in the brains of Alzheimer's disease (AD) patients compared to the brains of non-demented patients with and without increasing AD pathology. J Alzheimers Dis 2012; 25:59-76. [PMID: 21368376 DOI: 10.3233/jad-2011-101815] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neuroinflammation is involved in the pathology of Alzheimer's disease (AD). Our major focus was to clarify whether neuroinflammation plays an important role in AD pathogenesis, particularly prior to the manifestation of overt dementia. We analyzed cytokine expression profiles of the brain, with focus on non-demented patients with increasing AD pathology, referred to as high pathology control (HPC) patients, who provide an intermediate subset between AD and normal control subjects, referred to as low pathology control (LPC) patients. With real-time PCR techniques, we found significant differences in interleukin (IL)-1β, 10, 13, 18, and 33, tumor necrosis factor-α (TNFα) converting enzyme (TACE), and transforming growth factor β1 (TGFβ1) mRNA expression ratios between HPC and AD patients, while no significant differences in the expression ratios of any cytokine tested here were observed between LPC and HPC patients. The cytokine mRNA expression ratios were determined as follows: first, cytokine mRNA levels were normalized to mRNA levels of a housekeeping gene, peptidyl-prolyl isomerase A (PPIA), which showed the most stable expression among ten housekeeping genes tested here; then, the normalized data of cytokine levels in the temporal cortex were divided by those in the cerebellum, which is resistant to AD pathology. Subsequently, the expression ratios of the temporal cortex to cerebellum were compared among LPC, HPC, and AD patient groups. Our results indicate that cytokines are more mobilized and implicated in the later AD stage when a significant cognitive decline occurs and develops than in the developmental course of AD pathology prior to the manifestation of overt dementia.
Collapse
Affiliation(s)
- Kaori Morimoto
- Faculty of Medicine, Graduate School of Medical Sciences, Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Naudé PJW, Nyakas C, Eiden LE, Ait-Ali D, van der Heide R, Engelborghs S, Luiten PGM, De Deyn PP, den Boer JA, Eisel ULM. Lipocalin 2: novel component of proinflammatory signaling in Alzheimer's disease. FASEB J 2012; 26:2811-23. [PMID: 22441986 DOI: 10.1096/fj.11-202457] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease (AD) is associated with an altered immune response, resulting in chronic increased inflammatory cytokine production with a prominent role of TNF-α. TNF-α signals are mediated by two receptors: TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Signaling through TNFR2 is associated with neuroprotection, whereas signaling through TNFR1 is generally proinflammatory and proapoptotic. Here, we have identified a TNF-α-induced proinflammatory agent, lipocalin 2 (Lcn2) via gene array in murine primary cortical neurons. Further investigation showed that Lcn2 protein production and secretion were activated solely upon TNFR1 stimulation when primary murine neurons, astrocytes, and microglia were treated with TNFR1 and TNFR2 agonistic antibodies. Lcn2 was found to be significantly decreased in CSF of human patients with mild cognitive impairment and AD and increased in brain regions associated with AD pathology in human postmortem brain tissue. Mechanistic studies in cultures of primary cortical neurons showed that Lcn2 sensitizes nerve cells to β-amyloid toxicity. Moreover, Lcn2 silences a TNFR2-mediated protective neuronal signaling cascade in neurons, pivotal for TNF-α-mediated neuroprotection. The present study introduces Lcn2 as a molecular actor in neuroinflammation in early clinical stages of AD.
Collapse
Affiliation(s)
- Petrus J W Naudé
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cheng X, Yang L, He P, Li R, Shen Y. Differential activation of tumor necrosis factor receptors distinguishes between brains from Alzheimer's disease and non-demented patients. J Alzheimers Dis 2010; 19:621-30. [PMID: 20110607 DOI: 10.3233/jad-2010-1253] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We reported that tumor necrosis factor receptor I (TNFRI) is required for neuronal death induced by amyloid-beta protein in the Alzheimer's disease (AD) brain. However, whether TNF receptor subtypes are expressed and activated differentially in AD brains compared to non-demented brains remains unclear. Our studies on Western blot and ELISA measurements demonstrated that TNFRI levels are increased whereas TNFRII levels are decreased in AD brains compared to non-demented brains (p <0.05). Immunohistochemical results demonstrated that both TNFRI and TNFRII are expressed in neurons in AD and non-demented brains. However, in situ hybridization studies showed little change in the mRNA levels of either type of TNF receptor in the neurons of AD brains compared to non-demented brains. To examine whether different levels of TNF receptors in AD brains are correlated with the alteration of functional binding of TNF receptors, by using 125I-TNF-alpha binding technique, we found that, in AD brains, 125I-TNF-alpha binding affinity to TNFRI is increased, whereas binding affinity to TNFRII is decreased (p < 0.01). These studies reveal a novel observation of abnormal TNF receptor activation in AD brains. Differential TNF receptor protein levels and binding affinities suggest distinct pathogenic mechanisms of neurodegeneration in the AD brain.
Collapse
Affiliation(s)
- Xin Cheng
- Haldeman Laboratory of Molecular and Cellular Neurobiology, Sun Health Research Institute, Sun City, AZ, USA
| | | | | | | | | |
Collapse
|
11
|
Kohman RA, Crowell B, Urbach-Ross D, Kusnecov AW. Influence of age on behavioral, immune and endocrine responses to the T-cell superantigen staphylococcal enterotoxin A. Eur J Neurosci 2009; 30:1329-38. [PMID: 19788578 DOI: 10.1111/j.1460-9568.2009.06921.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aged subjects are more vulnerable to administration of the endotoxin lipopolysaccharide, but research on age-associated sensitivity to other immune stimulants has been limited. The current study examined the effects of administering the superantigen, staphylococcal enterotoxin A (SEA), to young (4-month-old) and aged (20-month-old) male C57BL/6J mice on consumption of a novel liquid, cytokine production, corticosterone levels, and expression of central mRNA levels of cytokines and corticotropin-releasing hormone. SEA produced exaggerated hypophagia in aged mice, as they showed decreased consumption that persisted for 24 h. SEA increased hypothalamic mRNA levels of interleukin-1beta in the aged, but not the young, mice 2 h after administration. No differences in cytokine expression were observed 24 h after SEA. Both age groups showed increased plasma corticosterone levels 2 h after SEA administration. However, 24 h after SEA exposure the aged, but not the young, mice showed an augmented corticosterone response to the consumption test. Collectively, these data show that aging may exacerbate the behavioral and neuroinflammatory response to superantigen exposure. Further, the present study suggests that immune activation may result in delayed alterations in stress-induced corticosterone production in aged subjects.
Collapse
Affiliation(s)
- Rachel A Kohman
- Department of Pharmacy and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
12
|
Patel JR, Brewer GJ. Age-related changes to tumor necrosis factor receptors affect neuron survival in the presence of beta-amyloid. J Neurosci Res 2008; 86:2303-13. [PMID: 18418902 DOI: 10.1002/jnr.21663] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Inflammation including local accumulations of tumor necrosis factor alpha (TNF-alpha) is a part of Alzheimer's disease pathology and may exacerbate age-related neurodegeneration. Most studies on TNF-alpha and TNF neuronal receptors are conducted by using embryonic neurons. Few studies consider age-related deficits that may occur in neurons. Age-related changes in susceptibility to TNF-alpha through TNF receptor 1 (TNFR1) and receptor 2 (TNFR2) expression could increase susceptibility to beta-amyloid (1-42, Abeta42). Evidence is conflicting about which receptor mediates survival and/or apoptosis. We determined how aging affects receptor expression in cultured adult rat cortical neurons. Old neurons were more susceptible to Abeta42 toxicity than middle-aged neurons, and the addition of TNF-alpha was neuroprotective in middle-aged neurons, but exacerbated the toxicity from Abeta42 in old neurons. These pathologic and protective responses in old and middle-aged neurons, respectively, correlated with higher starting TNFR1 and TNFR2 mRNA levels in old vs. middle-aged neurons. Middle-aged neurons treated with TNF-alpha plus Abeta42 did not show an increase in either TNFR1 or TNFR2 mRNA, but old neurons showed an up-regulation in TNFR2 mRNA and not TNFR1 mRNA. Despite these mRNA changes, surface immunoreactivity of both TNFR1 and TNFR2 increased with the dose of TNF-alpha in middle-aged neurons. However, middle-aged neurons treated with TNF-alpha plus Abeta42 showed an up-regulation in both TNFR1 and TNFR2 surface expression, whereas old neurons failed to up-regulate surface expression of either receptor. These findings support the hypothesis that age-related changes in TNF-alpha surface receptor expression contribute to the neuronal loss associated with inflammation in Alzheimer's disease.
Collapse
Affiliation(s)
- Jigisha R Patel
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University, School of Medicine, Springfield, Illinois 62702, USA
| | | |
Collapse
|
13
|
Patel JR, Brewer GJ. Age-related differences in NFkappaB translocation and Bcl-2/Bax ratio caused by TNFalpha and Abeta42 promote survival in middle-age neurons and death in old neurons. Exp Neurol 2008; 213:93-100. [PMID: 18625500 DOI: 10.1016/j.expneurol.2008.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 04/02/2008] [Accepted: 05/02/2008] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease is associated with an age-related accumulation of Abeta and inflammation. The inflammatory mediator, TNFalpha activates a signaling cascade involving NFkappaB translocation to the nucleus and a beneficial or detrimental transcriptional response, depending on the age of the neurons and the type of stress applied. Relative to treatment with Abeta42 alone, previously we found that TNFalpha plus Abeta42, applied to old rat neurons (24 month) is toxic, while the same treatment of middle-age neurons (10 month) is protective. In contrast to improved survival of middle-age rat cortical neurons, neurons from old rats are killed by TNFalpha plus Abeta42 despite greater p50 nuclear translocation. In middle-age neurons, blocking TNFR1 does not affect NFkappaB translocation, whereas blocking TNFR2 results in an increase in NFkappaB translocation. For old neurons, blocking either receptor, does not change NFkappaB translocation, but improves cell survival. To account for these effects on cell viability in response to TNF+Abeta, measures of the Bcl-2/Bax ratio positively correlate with survival. In the setting of old neurons, these results suggest that overactivated nuclear translocation of NFkappaB and lower Bcl-2 levels promote death that is reduced by inhibition of either TNFR1 or R2.
Collapse
Affiliation(s)
- Jigisha R Patel
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University, School of Medicine, Springfield, IL, USA
| | | |
Collapse
|
14
|
Rodriguez M, Zoecklein L, Papke L, Gamez J, Denic A, Macura S, Howe C. Tumor necrosis factor alpha is reparative via TNFR2 [corrected] in the hippocampus and via TNFR1 [corrected] in the striatum after virus-induced encephalitis. Brain Pathol 2008; 19:12-26. [PMID: 18422761 DOI: 10.1111/j.1750-3639.2008.00151.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Differentiating between injurious and reparative factors facilitates appropriate therapeutic intervention. We evaluated the role of tumor necrosis factor alpha (TNFalpha) in parenchymal brain pathology resolution following virus-induced encephalitis from a picornavirus, Theiler's murine encephalomyelitis virus (TMEV). We infected the following animals with TMEV for 7 to 270 days: B6/129 TNF(-/-) mice (without TNFalpha expression), B6/129 TNFR1(-/-) mice (without TNFalpha receptor 1 expression), and B6/129 TNFR2(-/-) mice (without TNFalpha receptor 2 expression). Normal TNFalpha-expressing controls were TMEV-infected B6, 129/J, B6/129F1 and B6/129F2 mice. Whereas all strains developed inflammation and neuronal injury in the hippocampus and striatum 7 to 21 days postinfection (dpi), the control mice resolved the pathology by 45 to 90 dpi. However, parenchymal hippocampal and striatal injury persisted in B6/129 TNF(-/-) mice following infection. Treating virus-infected mice with active recombinant mouse TNFalpha resulted in less hippocampal and striatal pathology, whereas TNFalpha-neutralizing treatment worsened pathology. T1 "black holes" appeared on MRI during early infection in the hippocampus and striatum in all mice but persisted only in TNF(-/-) mice. TNFR2 [corrected] mediated hippocampal pathology resolution whereas TNFR1 [corrected] mediated striatal healing. These findings indicate the role of TNFalpha in resolution of sublethal hippocampal and striatal injury.
Collapse
Affiliation(s)
- Moses Rodriguez
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Amyloid β-peptide activates nuclear factor-κB through an N-methyl-D-aspartate signaling pathway in cultured cerebellar cells. J Neurosci Res 2008; 86:845-60. [DOI: 10.1002/jnr.21548] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Sawada H, Hishida R, Hirata Y, Ono K, Suzuki H, Muramatsu SI, Nakano I, Nagatsu T, Sawada M. Activated microglia affect the nigro-striatal dopamine neurons differently in neonatal and aged mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci Res 2007; 85:1752-61. [PMID: 17469135 DOI: 10.1002/jnr.21241] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microglia play an important role in the inflammatory process that occurs in Parkinson's disease (PD). Activated microglia produce cytokines and neurotrophins and may have neurotoxic or neurotrophic effects. Because microglia are most proliferative and easily activated during the neonatal period, we examined the effects of neonatal microglia activated with lipopolysaccharide (LPS) on the nigro-striatal dopamine neurons in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), in comparison with activated microglia from the aged mice. By MPTP administration to neonatal mice, the number of dopamine neurons in the substantia nigra (SN) was decreased significantly, whereas that in the mice treated with LPS and MPTP was recovered to normal, along with significant microglial activation. Tyrosine hydroxylase (TH) activity, the levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), and the levels of pro-inflammatory cytokines IL-1beta and IL-6 in the midbrain were elevated in the neonates treated with LPS and MPTP. On the contrary, although the number of dopamine neurons in the 60-week-old mice treated with MPTP was also decreased significantly, the microglial activation by LPS treatment caused a further decrease in their number. These results suggest that the activated microglia in neonatal mice are different from those in aged mice, with the former having neurotrophic potential toward the dopamine neurons in the SN, in contrast to the neurotoxic effect of the latter.
Collapse
Affiliation(s)
- Hirohide Sawada
- School of Medicine, Fujita Health University, Toyoake, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Here we present a protocol for extraction and culture of neurons from adult rat or mouse CNS. The method proscribes an optimized protease digestion of slices, control of osmolarity and pH outside the incubator with Hibernate and density gradient separation of neurons from debris. This protocol produces yields of millions of cortical, hippocampal neurons or neurosphere progenitors from each brain. The entire process of neuron isolation and culture takes less than 4 h. With suitable growth factors, adult neuron regeneration of axons and dendrites in culture proceeds over 1-3 weeks to allow controlled studies in pharmacology, electrophysiology, development, regeneration and neurotoxicology. Adult neurospheres can be collected in 1 week as a source of neuroprogenitors ethically preferred over embryonic or fetal sources. This protocol emphasizes two differences between neuron differentiation and neurosphere proliferation: adhesion dependence and the differentiating power of retinyl acetate.
Collapse
Affiliation(s)
- Gregory J Brewer
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626, USA.
| | | |
Collapse
|
18
|
Abstract
Despite a relatively long history, general knowledge is not widespread that adult neurons can be maintained in cell culture for fairly extended periods of time. Within the central nervous system, this capacity seems to be particularly well developed in the retina, although it is still not clear whether this property is due to physical reasons (spatial configuration, simple connections) or to more fundamental differences (molecular composition, physiological function). Irrespective of the reasons, in vitro model systems are useful for investigating physiological and pathological processes occurring in mature retina. The authors argue that the numerous molecular changes undergone during maturation (modifications in ion channels and receptors, apoptotic pathways and growth factor effects) should be taken into account when using in vitro approaches to study processes involved in photoreceptor and ganglion cell degeneration, and hence that more classical methods relying on embryonic or newborn tissue should be interpreted with caution. A number of examples are given where the use of adult retinal neuronal culture may be especially informative: neurite regeneration, neuroprotection assays and pathogenic mechanisms; and areas of further research that should be explored: cell transplantation.
Collapse
Affiliation(s)
- Carl Romano
- Retina Discovery, Alcon Laboratories Inc., 6201 South Freeway, Fort Worth, TX 76134-2099, USA
| | | |
Collapse
|
19
|
Abstract
Currently, there are no disease-modifying therapies available for Alzheimer's disease (AD). Acetylcholinesterase inhibitors and memantine are licensed for AD and have moderate symptomatic benefits. Epidemiological studies have suggested that NSAIDs, estrogen, HMG-CoA reductase inhibitors (statins) or tocopherol (vitamin E) can prevent AD. However, prospective, randomised studies have not convincingly been able to demonstrate clinical efficacy. Major progress in molecular medicine suggests further drug targets. The metabolism of the amyloid-precursor protein and the aggregation of its Abeta fragment are the focus of current studies. Abeta peptides are produced by the enzymes beta- and gamma-secretase. Inhibition of gamma-secretase has been shown to reduce Abeta production. However, gamma-secretase activity is also involved in other vital physiological pathways. Involvement of gamma-secretase in cell differentiation may preclude complete blockade of gamma-secretase for prolonged times in vivo. Inhibition of beta-secretase seems to be devoid of serious adverse effects according to studies with knockout animals. However, targeting beta-secretase is hampered by the lack of suitable inhibitors to date. Other approaches focus on enzymes that cut inside the Abeta sequence such as alpha-secretase and neprilysin. Stimulation of the expression or activity of alpha-secretase or neprilysin has been shown to enhance Abeta degradation. Furthermore, inhibitors of Abeta aggregation have been described and clinical trials have been initiated. Peroxisome proliferator activated receptor-gamma agonists and selected NSAIDs may be suitable to modulate both Abeta production and inflammatory activation. On the basis of autopsy reports, active immunisation against Abeta in humans seems to have proven its ability to clear amyloid deposits from the brain. However, a first clinical trial with active vaccination against the full length Abeta peptide has been halted because of adverse effects. Further trials with vaccination or passive transfer of antibodies are planned.
Collapse
Affiliation(s)
- Michael Hüll
- Department of Psychiatry and Psychotherapy, University of Freiburg, Hauptstrasse 5, D-79108 Freiburg, Germany.
| | | | | |
Collapse
|
20
|
Ghavami A, Hirst WD, Novak TJ. Selective phosphodiesterase (PDE)-4 inhibitors: a novel approach to treating memory deficit? Drugs R D 2006; 7:63-71. [PMID: 16542053 DOI: 10.2165/00126839-200607020-00001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphodiesterase-4 (PDE4) belongs to an important family of proteins that regulates the intracellular level of cyclic adenosine monophosphate (cAMP). Several lines of evidence indicate that targeting PDE4 with selective inhibitors may offer novel strategies in the treatment of age-related memory impairment and Alzheimer's disease. The rationale for such an approach stems from preclinical studies indicating that PDE4 inhibitors can counteract deficits in long-term memory caused by pharmacological agents, aging or overexpression of mutant forms of human amyloid precursor proteins. In addition to their pro-cognitive and pro-synaptic plasticity properties, PDE4 inhibitors are potent neuroprotective, neuroregenerative and anti-inflammatory agents. Based on the fact that Alzheimer's disease is a progressive neurodegenerative disorder that is characterised by cognitive impairment, and that neuroinflammation is now recognised as a prominent feature in Alzheimer's pathology, we have concluded that targeting PDE4 with selective inhibitors may offer a novel therapy aimed at slowing progression, prevention and, eventually, therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Afshin Ghavami
- Neuroscience Discovery Research, Wyeth Research, Monmouth Junction, New Jersey 08852-2718, USA.
| | | | | |
Collapse
|
21
|
Abstract
Human immunodeficiency virus-1 (HIV-1)-infected and immune-activated macrophages and microglia secrete neurotoxins. Two of these neurotoxins are the pro-inflammatory cytokines tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), which are thought to play a major role in inducing neuronal death. Both TNF-alpha and IL-1beta increase the permeability of the blood-brain barrier, through which subsequently HIV-infected monocytes can enter the brain. They both induce over-stimulation of the NMDA-receptor via several pathways, resulting in a lethal neuronal increase in Ca(2+) levels. Additionally, TNF-alpha co-operates with several other proinflammatory mediators to enhance their toxic effects. Although most research has focused on the neurotoxic effects of TNF-alpha and IL-1beta in HAD, there is also evidence that these cytokines can be neuroprotective. In this paper the effect of TNF-alpha and IL-1beta on neuronal life and death in HAD is discussed.
Collapse
Affiliation(s)
- N A C H Brabers
- Department of Virology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | | |
Collapse
|
22
|
Floden AM, Li S, Combs CK. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci 2006; 25:2566-75. [PMID: 15758166 PMCID: PMC6725188 DOI: 10.1523/jneurosci.4998-04.2005] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although abundant reactive microglia are found associated with beta-amyloid (Abeta) plaques in Alzheimer's disease (AD) brains, their contribution to cell loss remains speculative. A variety of studies have documented the ability of Abeta fibrils to directly stimulate microglia in vitro to assume a neurotoxic phenotype characterized by secretion of a plethora of proinflammatory molecules. Collectively, these data suggest that activated microglia play a direct role in contributing to neuron death in AD rather than simply a role in clearance after plaque deposition. Although it is clear the Abeta-stimulated microglia acutely secrete toxic oxidizing species, the identity of longer-lived neurotoxic agents remains less defined. We used Abeta-stimulated conditioned media from primary mouse microglia to identify more stable neurotoxic secretions. The NMDA receptor antagonists memantine and 2-amino-5-phosphopetanoic acid as well as soluble tumor necrosis factor alpha (TNFalpha) receptor protect neurons from microglial-conditioned media-dependent death, implicating the excitatory neurotransmitter glutamate and the proinflammatory cytokine TNFalpha as effectors of microglial-stimulated death. Neuron death occurs in an oxidative damage-dependent manner, requiring activity of inducible nitric oxide synthase. Toxicity results from coincident stimulation of the TNFalpha and NMDA receptors, because stimulations of either alone are insufficient to initiate cell death. These findings suggest the hypothesis that AD brains provide the appropriate microglial-mediated inflammatory environment for TNFalpha and glutamate to synergistically stimulate toxic activation of their respective signaling pathways in neurons as a contributing mechanism of cell death.
Collapse
Affiliation(s)
- Angela M Floden
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA
| | | | | |
Collapse
|
23
|
Zhang TY, Ding X, Daynes RA. The Expression of 11β-Hydroxysteroid Dehydrogenase Type I by Lymphocytes Provides a Novel Means for Intracrine Regulation of Glucocorticoid Activities. THE JOURNAL OF IMMUNOLOGY 2005; 174:879-89. [PMID: 15634910 DOI: 10.4049/jimmunol.174.2.879] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The 11beta-hydroxysteroid dehydrogenase (11beta-HSD) enzymes control the interconversion of active glucocorticoids (GCS) and their inactive 11-keto metabolites, a process commonly referred to as the cortisone/cortisol shuttle. Although the prereceptor metabolism of GCS by 11beta-HSD is well documented in a variety of cells and tissues, it has not yet been carefully investigated in the major cell types of the immune system. In this study, we demonstrate that 11beta-HSD1 transcripts, protein, and enzyme activities are actively expressed in murine CD4(+), CD8(+), and B220(+) lymphocytes, as well as CD11c(+) dendritic cells. Only reductase activity was observed in living cells, evidenced by the restricted conversion of cortisone to cortisol. Activation of CD4(+) T cells increased their 11beta-HSD1 activity, as did their polarization into Th1 or Th2 cells. CD4(+) T cells isolated from aged donors (>16 mo) had increased 11beta-HSD1 protein and an elevated capacity to convert cortisone to cortisol. The GCS generated in murine CD4(+) T cells from their inactive 11-keto metabolites could activate the GCS receptor, demonstrated by an up-regulation of IL-7Ralpha and GCS-induced leucine zipper gene expression. The presence of a functional 11beta-HSD1 provides lymphocytes with a novel intracrine regulatory mechanism that could influence such processes as lymphocyte development, effector function, and susceptibility to apoptosis. Thus, the presence of 11beta-HSD1 provides an additional means to facilitate GCS influences over lymphocyte activities, uncoupled from the plasma concentration of GCS.
Collapse
MESH Headings
- 11-beta-Hydroxysteroid Dehydrogenase Type 1/biosynthesis
- 11-beta-Hydroxysteroid Dehydrogenase Type 1/deficiency
- 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics
- Aging/immunology
- Aging/metabolism
- Animals
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Line
- Cells, Cultured
- Female
- Glucocorticoids/biosynthesis
- Glucocorticoids/metabolism
- Ligands
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oxidoreductases/metabolism
- RNA, Messenger/biosynthesis
- Receptors, Antigen, T-Cell/physiology
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/physiology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Th1 Cells/enzymology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Tian Y Zhang
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
24
|
Baker AE, Brautigam VM, Watters JJ. Estrogen modulates microglial inflammatory mediator production via interactions with estrogen receptor beta. Endocrinology 2004; 145:5021-32. [PMID: 15256495 DOI: 10.1210/en.2004-0619] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens are well known to exert antiinflammatory effects outside the central nervous system (CNS). They have also been shown to exert neuroprotective effects in the CNS after several types of injury, including neurodegeneration. However, the molecular mechanisms by which these effects occur remain unclear. Because microglial hyperactivation and their production of neurotoxins is associated with many types of brain injury for which estrogens are beneficial, we sought to investigate the ability of estrogen to modulate microglial function. Furthermore, because little is known regarding the role of each of the two known estrogen receptors (ERs) in microglia, our studies were designed to test the hypothesis that 17beta-estradiol (E(2)) exerts antiinflammatory effects in microglia, specifically via interactions with ERbeta. We tested this hypothesis using the murine microglial cell line BV-2, which naturally expresses only ERbeta. Our results indicate that not only does E(2) decrease lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, it also reduces the expression of cyclooxygenase-2, a target for estrogen that has not previously been reported for ERbeta. We also observed that LPS-stimulated TNFalpha mRNA was increased by estrogen. E(2) exerts these effects within 30 min compared with typical estrogen transcriptional responses. Tamoxifen and ICI 182,780 differentially blocked the inhibitory effects of E(2) on LPS-stimulated iNOS and cyclooxygenase-2. In addition, we show that E(2) alters LPS-stimulated MAPK pathway activation, supporting the idea that alterations in the MAPKs may be a potential mechanism by which ERbeta mediates decreased microglial activation.
Collapse
Affiliation(s)
- Ann E Baker
- Department of Comparative Biosciences, 2015 Linden Drive, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
25
|
Lee EO, Shin YJ, Chong YH. Mechanisms involved in prostaglandin E2-mediated neuroprotection against TNF-α: possible involvement of multiple signal transduction and β-catenin/T-cell factor. J Neuroimmunol 2004; 155:21-31. [PMID: 15342193 DOI: 10.1016/j.jneuroim.2004.05.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/05/2004] [Accepted: 05/27/2004] [Indexed: 11/20/2022]
Abstract
Cerebrospinal fluid prostaglandin E2 (PGE2) and tumor necrosis factor-alpha (TNF-alpha) levels are elevated in patients with Alzheimer's disease (AD), which suggests that they are involved in neurodegeneration. We previously reported that TNF-alpha derived from human macrophages, in response to beta-amyloid or amyloidogenic C-terminal peptide, is a main mediator of inflammatory neurotoxicity. In a continuation of this work, the present study investigated the direct effect of PGE2, one of the major prostaglandins produced in the brain, on cell viability in SH-SY5Y neuronal cells treated with TNF-alpha. PGE2 did not promote neurotoxicity, but rather had a strong protective effect against TNF-alpha by ameliorating TNF-alpha-induced apoptosis and also by rescuing the intracellular level of beta-catenin, a key transducer of the Wnt signaling pathway. PGE2-mediated stabilization of beta-catenin was accompanied by T-cell factor/lymphoid enhancer factor (Tcf/Lef)-mediated transcriptional activation, which was followed by an increase in the cyclinD1 level. Pharmacological studies provided further evidence supporting the notion that PGE2-mediated neuroprotection against TNF-alpha involves the stimulation of Tcf/Lef signaling through EP1-, EP2-, and EP4-mediated increases of beta-catenin in SH-SY5Y cells. In addition, this PGE2 effect appears to be dependent on the activation of protein kinase A, phosphatidylinositol 3-kinase, phospholipase C, and to a lesser extent protein kinase C. Thus, the molecular mechanism governing the inhibitory effect of PGE2 against TNF-alpha may involve the activation and cross talk of multiple signal transduction and play an important role in regulating the survival of neurons during the neurotoxic inflammatory response associated with neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Eun Ok Lee
- Department of Microbiology, College of Medicine, Division of Molecular Biology and Neuroscience, Ewha Medical Research Institute, Ewha Womans University, 911-1, Mok-6-dong, Yangcheonku, Seoul, 158-710, South Korea
| | | | | |
Collapse
|
26
|
Wenk GL, McGann-Gramling K, Hauss-Wegrzyniak B. The presence of the APP(swe) mutation in mice does not increase the vulnerability of cholinergic basal forebrain neurons to neuroinflammation. Neuroscience 2004; 125:769-76. [PMID: 15099690 DOI: 10.1016/j.neuroscience.2004.01.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2004] [Indexed: 10/26/2022]
Abstract
Neuroinflammation, and elevated levels of inflammatory proteins, such as tumor necrosis factor-alpha, and the deposition of beta-amyloid may interact to contribute to the pathogenesis of Alzheimer's disease. We reproduced a component of the neuroinflammatory state within the basal forebrain cholinergic system, a region that is vulnerable to degeneration in Alzheimer's disease, of transgenic Tg2576 mice that express the Swedish double mutation of the human amyloid precursor protein (APPswe). We have previously shown that basal forebrain cholinergic neurons are selectively vulnerable to the consequences of neuroinflammation. In the current study, tumor necrosis factor-alpha was infused into the basal forebrain region of APPswe and nontransgenic control mice for 20 days with the expectation that the presence of the transgene would enhance the loss of cholinergic neurons. Chronic infusion of tumor necrosis factor-alpha significantly decreased cortical choline acetyltransferase activity, reduced the number of choline acetyltransferase-immunoreactive cells and increased the number of activated astrocytes and microglia within the basal forebrain. The presence of the APPswe gene did not enhance the vulnerability of forebrain cholinergic neurons to the chronic neuroinflammation. Furthermore, combined treatment of these mice with memantine demonstrated that the neurotoxic effects of tumor necrosis factor-alpha upon cholinergic cells did not require the activation of the N-methyl-d-aspartate receptors. In contrast, we have previously shown that memantine was able to provide neuroprotection to cholinergic forebrain neurons from the consequences of exposure to the inflammogen lipopolysaccharide. These results provide insight into the mechanism by which neuroinflammation may selectively target specific neural systems during the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- G L Wenk
- Division of Neural Systems, Memory and Aging, University of Arizona, 350 Life Sciences North Building, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
27
|
Lugaresi A, Di Iorio A, Iarlori C, Reale M, De Luca G, Sparvieri E, Michetti A, Conti P, Gambi D, Abate G, Paganelli R. IL-4 in vitro production is upregulated in Alzheimer's disease patients treated with acetylcholinesterase inhibitors. Exp Gerontol 2004; 39:653-7. [PMID: 15050302 DOI: 10.1016/j.exger.2003.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 07/26/2003] [Accepted: 08/12/2003] [Indexed: 10/26/2022]
Abstract
Cytokines appear to be involved in the pathogenesis of Alzheimer's Disease (AD). Their modulation by treatment has been investigated only in a few studies. The aim of our study was to evaluate the effect of acetylcholinesterase inhibitors (AChEI) on Interleukin-4 (IL-4) production in AD patients. IL-4 levels were measured by ELISA on peripheral blood mononuclear cell cultures in the presence or absence of Concanavalin A or Phytohaemagglutinin. Linear regression analysis shows that patients who have been treated, have higher levels of IL-4 independently from age, gender and comorbidity. The increased production of IL-4 in AChEI treated patients might represent an additional mechanism through which AChEI act on AD progression.
Collapse
Affiliation(s)
- Alessandra Lugaresi
- Department of Oncology and Neurosciences, Section of Neurology, University G. D'Annunzio Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wenk GL, McGann K, Hauss-Wegrzyniak B, Rosi S. The toxicity of tumor necrosis factor-alpha upon cholinergic neurons within the nucleus basalis and the role of norepinephrine in the regulation of inflammation: implications for Alzheimer's disease. Neuroscience 2004; 121:719-29. [PMID: 14568031 DOI: 10.1016/s0306-4522(03)00545-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Inflammation and reduced forebrain norepinephrine are features of Alzheimer's disease that may interact to contribute to the degeneration of specific neural systems. We reproduced these conditions within the basal forebrain cholinergic system, a region that is vulnerable to degeneration in Alzheimer's disease. Tumor necrosis factor-alpha was infused into the basal forebrain of young mice pretreated with a norepinephrine neuronal toxin, N-(2-chloroethyl)-N-ethyl-2 bromobenzylamine (DSP4), with the expectation that the loss of noradrenergic input would enhance the loss of cholinergic neurons. The results indicate that chronic infusion of tumor necrosis factor-alpha alone significantly decreased cortical choline acetyltransferase activity and increased the number of activated microglia and astrocytes within the basal forebrain. The loss of forebrain norepinephrine following systemic treatment with DSP4 did not alter the level of cortical choline acetyltransferase activity or activate microglia but significantly activated astrocytes within the basal forebrain. Infusion of tumor necrosis factor-alpha into DSP4-pretreated mice also reduced cortical choline acetyltransferase activity on the side of the infusion; however, the decline was not significantly greater than that produced by the infusion of tumor necrosis factor-alpha alone. The neurodegeneration seen may be indirect since a double-immunofluorescence investigation did not find evidence for the co-existence of tumor necrosis factor-alpha type I receptors on choline acetyltransferase-positive cells in the basal forebrain. The results suggest that noradrenergic cell loss in Alzheimer's disease does not augment the consequences of the chronic neuroinflammation and does not enhance neurodegeneration of forebrain cholinergic neurons.
Collapse
Affiliation(s)
- G L Wenk
- Arizona Research Laboratories, Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | |
Collapse
|
29
|
Birkenmeier G, Müller R, Huse K, Forberg J, Gläser C, Hedrich H, Nicklisch S, Reichenbach A. Human alpha2-macroglobulin: genotype-phenotype relation. Exp Neurol 2004; 184:153-61. [PMID: 14637088 DOI: 10.1016/s0014-4886(03)00110-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pentanucleotide deletion polymorphism in the gene of alpha2-macrolgobulin (alpha2-M) is suggested to be associated with late-onset Alzheimer's disease (AD), though controversial results have been reported. The underlying assumption is that the intronic pentanucleotide deletion may affect the biological function and quantity of the inhibitor and thus contribute to the AD pathology. In the present study we have analyzed the distribution of the deletion polymorphism within a group of 227 healthy Caucasians. In parallel studies, we determined the plasma concentrations of total and transformed alpha2-M. A strong correlation of the total concentration of alpha2-M with age was ascertained (r(s) = -0.54, P < 0.001). However, no significant correlation between age and the genotypes (P = 0.68) was detected, and no statistically significant effect of the genotype on the concentrations of total and transformed alpha2-M was found (P = 0.49 and 0.96, respectively). A significant correlation was observed between total and transformed alpha2-M in the genotype groups Ins/Ins (r(s) = 0.56, P < 0.001) and Ins/Del (r(s) = 0.35, P < 0.004). Furthermore, in the entire data set, a significantly elevated concentration of total alpha2-M was found in females as compared to males (P = 0.003). There was a slight but nonsignificant difference in the genotype distributions between males and females (P = 0.14). To test the proposed existence of genotype-specific alterations of functional properties of alpha2-M, we isolated alpha2-M from the plasma of carriers with different genetic background and analyzed the alpha2-M subunit structure as well as the binding of the inhibitor to growth factors/cytokines, to amyloid-beta and to the receptor. The experiments failed to reveal any genotype-specific functional alterations of the alpha2-M. The absence of abnormalities in alpha2-M mRNA and protein suggests that the alpha2-M deletion polymorphism is probably not associated with functional deficiencies important in AD pathology. However, it can be speculated that the observed general age-related alpha2-M deficiency may lead to accelerated accumulation of amyloid-beta, which might be relevant to AD pathology.
Collapse
Affiliation(s)
- G Birkenmeier
- Institute for Biochemistry, University of Leipzig, Liebigstrasse 16, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Keswani SC, Polley M, Pardo CA, Griffin JW, McArthur JC, Hoke A. Schwann cell chemokine receptors mediate HIV-1 gp120 toxicity to sensory neurons. Ann Neurol 2003; 54:287-96. [PMID: 12953261 DOI: 10.1002/ana.10645] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human immunodeficiency virus (HIV)-associated sensory neuropathy (HIV-SN) is the most common neurological complication of HIV infection. Currently, the pathogenesis of HIV-SN is unknown. Because there is no convincing evidence of neuronal infection, HIV neurotoxicity is likely to be effected either by secreted viral proteins such as the envelope glycoprotein gp120 or by neurotoxic cytokines released from infected/activated glial cells. We describe a model of gp120 toxicity to primary sensory neurons, in which gp120 induces neuritic degeneration and neuronal apoptosis. We show that Schwann cells, the cells that ensheath peripheral nerve axons, and which traditionally have been viewed as having a passive, supporting role, mediate this neurotoxicity. Ligation of the chemokine receptor CXCR4 on Schwann cells by gp120 resulted in the release of RANTES, which induced dorsal root ganglion neurons to produce tumor necrosis factor-alpha and subsequent TNFR1-mediated neurotoxicity in an autocrine fashion. This newly described Schwann cell-neuron interaction may be pathogenically relevant not only in HIV-SN but also in other peripheral neuropathies.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chemokine CCL5/biosynthesis
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Cytochrome c Group/biosynthesis
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Ganglia, Spinal/metabolism
- HIV Envelope Protein gp120/toxicity
- HIV-1
- Immunohistochemistry
- In Situ Nick-End Labeling
- Models, Animal
- Nerve Degeneration/metabolism
- Nerve Degeneration/pathology
- Nerve Degeneration/virology
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Peripheral Nervous System Diseases/virology
- Rats
- Rats, Sprague-Dawley
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Schwann Cells/metabolism
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Sanjay C Keswani
- Department of Neurology, The Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
31
|
Shelke RRJ, Leeuwenburgh C. Lifelong caloric restriction increases expression of apoptosis repressor with a caspase recruitment domain (ARC) in the brain. FASEB J 2003; 17:494-6. [PMID: 12514107 DOI: 10.1096/fj.02-0803fje] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Aging may increase apoptotic events and the susceptibility of the central nervous system to apoptosis. Calorie restriction has been shown to have neuroprotective effects, but the mechanisms in vivo are unknown. We investigated apoptosis and apoptotic regulatory proteins in the brain frontal cortex of 12-month-old ad libitum fed, 26-month-old ad libitum fed, and 26-month-old calorie-restricted (CR) male Fischer 344 rats (CR = 40% restricted compared to ad libitum). We found that specific DNA fragmentation indicative of apoptosis was increased with age (+124%) in the cortices of the brain and that calorie restriction attenuated this increase significantly (-36%). We determined levels of ARC (apoptosis repressor with a caspase recruitment domain), which inhibits caspase-2 activity and also attenuates cytochrome c release from the mitochondria. We found a significant age-associated decline in ARC level, which was attenuated in the brains of the CR rats. In accordance with the changes in ARC expression observed, calorie restriction attenuated the increases in cytosolic cytochrome c and caspase-2 activity with age and suppressed the age-associated rise in cleaved caspase-9 and cleaved caspase-3. However, neither age nor calorie restriction had any effect on caspase-3 and caspase-9 activities. This data provides evidence for an increased incidence of apoptosis in rat brain with age and evidence that calorie restriction has the ability to attenuate this. Furthermore, our data suggest that calorie restriction provides neuroprotection through ARC by suppressing cytochrome c release and caspase-2 activity.
Collapse
Affiliation(s)
- Rajani R J Shelke
- University of Florida, Biochemistry of Aging Laboratory, College of Health and Human Performance, Gainesville 32611, USA
| | | |
Collapse
|
32
|
Kast RE. Feedback between glial tumor necrosis factor-alpha and gp120 from HIV-infected cells helps maintain infection and destroy neurons. Neuroimmunomodulation 2002; 10:85-92. [PMID: 12372982 DOI: 10.1159/000065184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An envelope glycoprotein, gp20, of the human immunodeficiency virus (HIV) interacts with host systems to promote HIV replication. gp120 is also involved in tissue-destructive positive feedback cycles that contribute to HIV-related but non-lymphocytic-, non-immunodeficiency-related tissue-destructive morbidity. Exposure to gp120 results in tumor necrosis factor-alpha (TNF) upregulation, particularly in cells of monocyte lineage. The resultant increased TNF in the microenvironment of the TNF-producing monocyte lineage cells results in increased occupancy of TNF receptors on nearby lymphocytes, monocytes or glia in which HIV does replicate. Such TNF binding increases HIV replication. Increased replication results in increased gp120 available to bind to monocyte lineage cells, further increasing or maintaining those cells' TNF production in the face of other TNF suppressive forces. A trophic environment (TNF) for HIV replication is thereby maintained. gp120 raises cAMP levels. Increased cAMP is inherently TNF-suppressive. This is a moderating negative feedback element embedded within the larger positive feedback cycle. HIV does not effectively replicate in neurons yet many HIV infections show significant neuron loss. gp120 stimulates glia to synthesize TNF. Increased TNF stimulates HIV to replicate in the cells present in which HIV is able to replicate. TNF also damages nearby neurons. The resultant increased gp120 would further stimulate glia, and the stimulated glia's TNF would damage local neurons. Damaged neurons make factors that activate glia to upregulate TNF synthesis. These feedback cycles centering on gp120 and TNF contribute to HIV pathophysiology, neuron loss and maintenance of infection.
Collapse
Affiliation(s)
- Richard E Kast
- Department of Psychiatry, University of Vermont, Burlington, VT 05401, USA.
| |
Collapse
|
33
|
Abstract
Neuroinflammation is now recognized as a prominent feature in Alzheimer's pathology and a potential target for therapy aimed at treatment and prevention of disease. This review provides a synopsis of current information about cellular and molecular mediators involved in Alzheimer's neuroinflammation as well as interactions between these mediators that influence pathology. Anti-inflammatory therapies, particularly nonsteroidal anti-inflammatory drugs, are considered from experimental and clinical perspectives and potential mechanisms underlying their apparent benefits are discussed. Finally, possible protective effects of the inflammatory response in Alzheimer's are described. Taken all together, evidence presented in this review suggests a scheme for Alzheimer's pathogenesis, with neuroinflammation playing a crucial role influencing and linking beta-amyloid deposition to neuronal damage and clinical disease.
Collapse
Affiliation(s)
- Amy H Moore
- Department of Neurobiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | | |
Collapse
|
34
|
Chong YH, Shin SA, Lee HJ, Kang JHL, Suh YH. Molecular mechanisms underlying cyclic AMP inhibition of macrophage dependent TNF-alpha production and neurotoxicity in response to amyloidogenic C-terminal fragment of Alzheimer's amyloid precursor protein. J Neuroimmunol 2002; 133:160-74. [PMID: 12446019 DOI: 10.1016/s0165-5728(02)00349-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we characterized the intracellular pathway involved in the macrophage production of tumor necrosis factor-alpha (TNF-alpha) and the molecular mechanisms by which cyclic AMP (cAMP) regulates the neurotoxic inflammatory signaling cascade in response to the 105 amino acid carboxyl-terminal fragment (CT105) of amyloid precursor protein, a candidate of alternative toxic elements in Alzheimer's disease (AD) pathology. CT105 in combination with interferon-gamma (IFN-gamma) elicited a robust and sustained increase of TNF-alpha production due to enhanced TNF-alpha mRNA transcription, mediated via increased nuclear factor-kappaB (NF-kappaB) in human macrophages derived from monocytic THP-1 cells. A mechanistic analysis revealed that the cAMP analog, dibutyryl cyclic AMP (dbcAMP), or the adenyl cyclase activator, forskolin, effectively suppressed the stimulant-induced TNF-alpha production by reducing the nuclear translocation and DNA binding activity of NF-kappaB. The inhibitory mechanisms manifested by dbcAMP included the decreased phosphorylation/degradation of NF-kappaB inhibitor (IkappaB) followed by its increased synthesis/stability. Importantly, this macrophage derived TNF-alpha appears to be a key pathological mediator of the resultant neurotoxicity, which was attenuated by increased cAMP levels during macrophage stimulation with CT105. These findings provide evidence, which supports an important role of CT105 as a potent macrophage stimulator eliciting NF-kappaB-mediated inflammatory signals for excess TNF-alpha production, which in turn ultimately leads to the neurotoxicity. In addition, the detailed inhibitory mechanism of cAMP action implies that an increased cAMP level could be benefit against AD progression.
Collapse
Affiliation(s)
- Young Hae Chong
- Department of Microbiology, College of Medicine, Division of Molecular Biology and Neuroscience, Medical Research Center, Ewha Womans University, 911-1, Mok-6-dong, Yangcheonku, 158-710, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
35
|
Zaman V, Shetty AK. Survival of fetal hippocampal CA3 cell grafts in the middle-aged and aged hippocampus: effect of host age and deafferentation. J Neurosci Res 2002; 70:190-9. [PMID: 12271468 DOI: 10.1002/jnr.10401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The potential application of neural transplantation to many neurodegenerative disorders at early stages of disease progression would involve middle-aged and aged persons. Hence, it is important to examine critically the extent of graft cell survival in both intact and partially deafferented middle-aged and aged brain. We investigated the degree of survival of 5'-bromodeoxyuridine (BrdU)-labeled fetal hippocampal CA3 cells after grafting into both intact hippocampus and partially deafferented hippocampus (i.e., hippocampus contralateral to intracerebroventricular administration of kainic acid) of middle-aged and aged Fischer 344 rats. Absolute cell survival within these grafts was rigorously analyzed using BrdU immunostaining of serial sections and the optical fractionator cell counting method. In the intact hippocampus, graft cell survival was 23% of injected cells for middle-aged rats and 18% for aged rats, which is consistent with the survival of fetal hippocampal cells in the intact young adult hippocampus reported earlier (Shetty and Turner [1995] Neuroscience 67:561-582). A partial deafferentation at the time of grafting significantly enhanced the degree of graft cell survival to 35% of injected cells in the middle-aged hippocampus and 27% in the aged hippocampus. However, the overall graft cell survival after deafferentation was significantly (30%) greater in the middle-aged hippocampus compared with the aged hippocampus. These results reveal that 1) the degree of survival of fetal neural cells in the intact mature brain remains constant with aging and 2) a partial deafferentation of the mature host brain at the time of grafting enhances survival of grafted fetal cells, regardless of the host age. However, the overall extent of graft cell survival after deafferentation depends on the age of the mature brain at the time of deafferentation.
Collapse
Affiliation(s)
- Vandana Zaman
- Medical Research Service, Veterans Affairs Medical Center and Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
36
|
Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS. Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 2002; 83:973-83. [PMID: 12421370 DOI: 10.1046/j.1471-4159.2002.01210.x] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to assess and compare the toxicity of beta-amyloid (Abeta) on primary cortical and mesencephalic neurons cultured with and without microglia in order to determine the mechanism underlying microglia-mediated Abeta-induced neurotoxicity. Incubation of cortical or mesencephalic neuron-enriched and mixed neuron-glia cultures with Abeta(1-42) over the concentration range 0.1-6.0 microm caused concentration-dependent neurotoxicity. High concentrations of Abeta (6.0 microm for cortex and 1.5-2.0 microm for mesencephalon) directly injured neurons in neuron-enriched cultures. In contrast, lower concentrations of Abeta (1.0-3.0 microm for cortex and 0.25-1.0 microm for mesencephalon) caused significant neurotoxicity in mixed neuron-glia cultures, but not in neuron- enriched cultures. Several lines of evidence indicated that microglia mediated the potentiated neurotoxicity of Abeta, including the observations that low concentrations of Abeta activated microglia morphologically in neuron-glia cultures and that addition of microglia to cortical neuron-glia cultures enhanced Abeta-induced neurotoxicity. To search for the mechanism underlying the microglia-mediated effects, several proinflammatory factors were examined in neuron-glia cultures. Low doses of Abeta significantly increased the production of superoxide anions, but not of tumor necrosis factor-alpha, interleukin-1beta or nitric oxide. Catalase and superoxide dismutase significantly protected neurons from Abeta toxicity in the presence of microglia. Inhibition of NADPH oxidase activity by diphenyleneiodonium also prevented Abeta-induced neurotoxicity in neuron-glia mixed cultures. The role of NADPH oxidase-generated superoxide in mediating Abeta-induced neurotoxicity was further substantiated by a study which showed that Abeta caused less of a decrease in dopamine uptake in mesencephalic neuron-glia cultures from NADPH oxidase-deficient mutant mice than in that from wild-type controls. This study demonstrates that one of the mechanisms by which microglia can enhance the neurotoxicity of Abeta is via the production of reactive oxygen species.
Collapse
Affiliation(s)
- Liya Qin
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Saurwein-Teissl M, Lung TL, Marx F, Gschösser C, Asch E, Blasko I, Parson W, Böck G, Schönitzer D, Trannoy E, Grubeck-Loebenstein B. Lack of antibody production following immunization in old age: association with CD8(+)CD28(-) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5893-9. [PMID: 12023394 DOI: 10.4049/jimmunol.168.11.5893] [Citation(s) in RCA: 369] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although it is generally recognized that the function of the immune system declines with age, the nature of the underlying defects is still poorly understood. We now demonstrate the predominance of CD8(+)CD28(-) T cell clonal expansions in elderly persons who fail to produce specific Abs following influenza vaccination. These clones express effector cell markers and are mostly CD45RA(+). When isolated and put into culture, they are unable to proliferate, but produce IFN-gamma (but no IL-5) upon stimulation with anti-CD3 or autoantigen. These autoreactive CD8(+) type 1 effector cells seem to trigger a Th1 polarization, as CD4(+) T cells from elderly persons without in vivo Ab production produce Th1, but only low amounts of Th2 cytokines upon in vitro stimulation with PHA. Therefore, the increased occurrence of CD8(+)CD28(-) clonal expansions may be decisive for the development of immune deficiency in the elderly.
Collapse
Affiliation(s)
- Maria Saurwein-Teissl
- Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Central Institute for Blood Transfusion, University Clinics Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Brain aging, Alzheimer disease and stroke share common elements of deficits in calcium regulation, declines in mitochondrial function, increases in generation of reactive oxygen species (ROS), accumulated damage from ROS and immune system dysfunction. The problem is to distinguish less significant side reactions, such as gray hair, from aspects of aging that contribute to disease. Toward establishing cause and effect relationships, a neuron cell culture system is described that allows comparisons with age under uniform environmental conditions. This neuron culture model indicates that susceptibility to death by apoptosis and consequences of the inflammatory response from beta-amyloid are age-related and an inherent characteristic of the neurons. Further mechanistic investigations are possible. New therapeutic approaches are suggested that combine inhibition of calcium overloads (calcium channel blockers), reduced ROS damage (melatonin, N-acetyl-cysteine), and bolstered mitochondrial function and energy generation (creatine). Together with newly demonstrated capabilities for adult and aged neuron regeneration and multiplication, i.e. plasticity, these approaches offer new hope toward reversing age-related decrements and damage from neurodegenerative disease.
Collapse
Affiliation(s)
- G J Brewer
- Department of Neurology, School of Medicine, Southern Illinois University, Springfield, IL, 62794-9626, USA.
| |
Collapse
|