1
|
Shimada M, Omae Y, Kakita A, Gabdulkhaev R, Hitomi Y, Miyagawa T, Honda M, Fujimoto A, Tokunaga K. Identification of region-specific gene isoforms in the human brain using long-read transcriptome sequencing. SCIENCE ADVANCES 2024; 10:eadj5279. [PMID: 38266094 PMCID: PMC10807796 DOI: 10.1126/sciadv.adj5279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
In neurological and neuropsychiatric diseases, different brain regions are affected, and differences in gene expression patterns could potentially explain this mechanism. However, limited studies have precisely explored gene expression in different regions of the human brain. In this study, we performed long-read RNA sequencing on three different brain regions of the same individuals: the cerebellum, hypothalamus, and temporal cortex. Despite stringent filtering criteria excluding isoforms predicted to be artifacts, over half of the isoforms expressed in multiple samples across multiple regions were found to be unregistered in the GENCODE reference. We then especially focused on genes with different major isoforms in each brain region, even with similar overall expression levels, and identified that many of such genes including GAS7 might have distinct roles in dendritic spine and neuronal formation in each region. We also found that DNA methylation might, in part, drive different isoform expressions in different regions. These findings highlight the significance of analyzing isoforms expressed in disease-relevant sites.
Collapse
Affiliation(s)
- Mihoko Shimada
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yosuke Omae
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ramil Gabdulkhaev
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuki Hitomi
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Taku Miyagawa
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Makoto Honda
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Japan Somnology Center and Seiwa Hospital, Institute of Neuropsychiatry, Tokyo, Japan
| | - Akihiro Fujimoto
- Department of Human Genetics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project (Toyama), National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| |
Collapse
|
2
|
Tran HN, Nguyen QH, Jeong JE, Loi DL, Nam YH, Kang TH, Yoon J, Baek K, Jeong Y. The embryonic patterning gene Dbx1 governs the survival of the auditory midbrain via Tcf7l2-Ap2δ transcriptional cascade. Cell Death Differ 2023; 30:1563-1574. [PMID: 37081114 PMCID: PMC10244374 DOI: 10.1038/s41418-023-01165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
At the top of the midbrain is the inferior colliculus (IC), which functions as the major hub for processing auditory information. Despite the functional significance of neurons in the IC, our understanding of their formation is limited. In this study, we identify the embryonic patterning gene Dbx1 as a key molecular player that governs genetic programs for IC survival. We find that Dbx1 plays a critical role in preventing apoptotic cell death in postnatal IC by transcriptionally repressing c-Jun and pro-apoptotic BH3 only factors. Furthermore, by employing combined approaches, we uncover that Tcf7l2 functions downstream of Dbx1. Loss of Tcf7l2 function causes IC phenotypes with striking similarity to those of Dbx1 mutant mice, which include defective embryonic maturation and postnatal deletion of the IC. Finally, we demonstrate that the Dbx1-Tcf7l2 cascade functions upstream of Ap-2δ, which is essential for IC development and survival. Together, these results unravel a novel molecular mechanism for IC maintenance, which is indispensable for normal brain development.
Collapse
Affiliation(s)
- Hong-Nhung Tran
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Quy-Hoai Nguyen
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Ji-Eun Jeong
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Duc-Linh Loi
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Youn Hee Nam
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Jaeseung Yoon
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Kwanghee Baek
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea
| | - Yongsu Jeong
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi, Republic of Korea.
| |
Collapse
|
3
|
Yadav M, Bhardwaj A, Yadav A, Dada R, Tanwar M. Molecular genetics of primary open-angle glaucoma. Indian J Ophthalmol 2023; 71:1739-1756. [PMID: 37203025 PMCID: PMC10391438 DOI: 10.4103/ijo.ijo_2570_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Glaucoma is a series of linked optic diseases resulting in progressive vision loss and total blindness due to the acquired loss of retinal ganglion cells. This harm to the optic nerve results in visual impairment and, ultimately, total blindness if left untreated. Primary open-angle glaucoma (POAG) is the most frequent variety within the large family of glaucoma. It is a multifaceted and heterogeneous condition with several environmental and genetic variables aiding in its etiology. By 2040, there will be 111.8 million glaucoma patients globally, with Asia and Africa accounting for the vast majority. The goal of this review is to elaborate on the role of genes (nuclear and mitochondrial) as well as their variants in the pathogenesis of POAG. PubMed and Google Scholar databases were searched online for papers until September 2022. Prevalence and inheritance patterns vary significantly across different ethnic and geographic populations. Numerous causative genetic loci may exist; however, only a few have been recognized and characterized. Further investigation into the genetic etiology of POAG is expected to uncover novel and intriguing causal genes, allowing for a more precise pathogenesis pattern of the disease.
Collapse
Affiliation(s)
- Manoj Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Aarti Bhardwaj
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Anshu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| | - Rima Dada
- Department of Anatomy, AIIMS, New Delhi, India
| | - Mukesh Tanwar
- Department of Genetics, Maharshi Dayanand University, Rohtak, Harayana, India
| |
Collapse
|
4
|
Kumar U. Co-immunolocalization of Disc1 and Gas7 protein in adult mice brain. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: The aim of the present study was to check the potential interaction of two neurodevelopmental proteins, Disc1 and Gas7, in the adult mice brain. Methods: Twenty-four male Swiss albino mice were used for the study. The mice were 12 weeks old in the beginning of the experiment. Immunohistochemistry and co-immunofluorescence were performed on the coronal sections of mice brain and immunoblotting and co-immunoprecipitation were done on the whole brain lysate. Results: Data from immunohistochemistry and co-immunofluorescence indicate the occurrence and co-localization of Disc1 and Gas7 proteins in soma and projections of the brain cells. Immunostaining was observed in cerebral cortex, hypothalamus, midbrain, pons, medulla oblongata and CA3 of hippocampus of the brain. The data from Immunoblotting and co-immunoprecipitation validates the presence and interaction of Disc1 and Gas7 protein in whole brain lysate. Conclusion: Data indicates the potential interaction of Disc1 and Gas7 protein in adult brain. The study highlights the need for further research on Disc1–Gas7 protein interaction in brain development and neuro-disorders.
Collapse
Affiliation(s)
- Udaya Kumar
- Unit of Biochemistry, Department of Zoology, University of Madras, Chennai, Tamil Nadu, India
- Department of Neurology, University of California Los Angeles, Los Angeles, California, U.S.A
| |
Collapse
|
5
|
Menard MJ. Loss of Gas7 Is a Key Metastatic Switch in Neuroblastoma. Cancer Res 2021; 81:2815-2816. [PMID: 34087781 DOI: 10.1158/0008-5472.can-21-0783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
Metastatic spread to distant tissues and organs is responsible for most cancer-related mortalities. Changes in the invasiveness ability of metastatic tumor cells often come with significantly altered gene expression profiles compared with primary tumor cells. Identifying the main actors involved in the metastatic switch of tumor cells is key to proposed new therapeutic approaches. In this issue, the loss of growth-arrest specific 7 is described as one of the main events driving metastatic spread in neuroblastoma.See related article by Dong et al., p. 2995.
Collapse
Affiliation(s)
- Marie J Menard
- Department of Neurology, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
6
|
SOX10-regulated promoter use defines isoform-specific gene expression in Schwann cells. BMC Genomics 2020; 21:549. [PMID: 32770939 PMCID: PMC7430845 DOI: 10.1186/s12864-020-06963-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
Background Multicellular organisms adopt various strategies to tailor gene expression to cellular contexts including the employment of multiple promoters (and the associated transcription start sites (TSSs)) at a single locus that encodes distinct gene isoforms. Schwann cells—the myelinating cells of the peripheral nervous system (PNS)—exhibit a specialized gene expression profile directed by the transcription factor SOX10, which is essential for PNS myelination. SOX10 regulates promoter elements associated with unique TSSs and gene isoforms at several target loci, implicating SOX10-mediated, isoform-specific gene expression in Schwann cell function. Here, we report on genome-wide efforts to identify SOX10-regulated promoters and TSSs in Schwann cells to prioritize genes and isoforms for further study. Results We performed global TSS analyses and mined previously reported ChIP-seq datasets to assess the activity of SOX10-bound promoters in three models: (i) an adult mammalian nerve; (ii) differentiating primary Schwann cells, and (iii) cultured Schwann cells with ablated SOX10 function. We explored specific characteristics of SOX10-dependent TSSs, which provides confidence in defining them as SOX10 targets. Finally, we performed functional studies to validate our findings at four previously unreported SOX10 target loci: ARPC1A, CHN2, DDR1, and GAS7. These findings suggest roles for the associated SOX10-regulated gene products in PNS myelination. Conclusions In sum, we provide comprehensive computational and functional assessments of SOX10-regulated TSS use in Schwann cells. The data presented in this study will stimulate functional studies on the specific mRNA and protein isoforms that SOX10 regulates, which will improve our understanding of myelination in the peripheral nerve.
Collapse
|
7
|
Bhupana JN, Huang BT, Liou GG, Calkins MJ, Lin-Chao S. Gas7 knockout affects PINK1 expression and mitochondrial dynamics in mouse cortical neurons. FASEB Bioadv 2020; 2:166-181. [PMID: 32161906 PMCID: PMC7059628 DOI: 10.1096/fba.2019-00091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/21/2019] [Accepted: 12/31/2019] [Indexed: 11/11/2022] Open
Abstract
Dynamic fission and fusion events regulate mitochondrial shape, distribution, and rejuvenation, and proper control of these processes is essential for neuronal homeostasis. Here, we report that Gas7, a known cytoskeleton regulator, controls mitochondrial dynamics within neurons of the central nervous system. In this study, we generated an improved Gas7-knockout mouse and evaluated its mitochondrial phenotype. We first identified Gas7 in mitochondrial fractions from wild-type brain tissue, and observed Gas7 colocalization with mitochondria in primary cortical neurons. In Gas7-deficient brain tissue and neuronal cultures mitochondria were elongated with perinuclear clustering. These morphological abnormalities were associated with increased levels mitochondrial fusion proteins and increased PKA-dependent phosphorylation of Drp-1 in brain tissues, suggesting an imbalance of mitochondrial fusion and fission. Moreover, expression of mitochondrial quality control kinase, PINK1, and PINK1-specific phosphorylation of Mfn-2 (S442), Parkin (S65), and ubiquitin (S65) were all reduced in the knockout cells. Ectopic expression of Gas7 restored mitochondrial morphology and distribution, as well as PINK1 expression in Gas7-null cortical neurons. Collectively, our results introduce a novel role of mouse Gas7 in determining the dynamics, morphology, and intracellular distribution of neuronal mitochondria, which are expected to be required for normal neuronal function.
Collapse
Affiliation(s)
- Jagannatham Naidu Bhupana
- Molecular Cell Biology Taiwan International Graduate Program Institute of Molecular Biology Academia Sinica and Graduate Institute of Life Sciences National Defense Medical Center Taipei Taiwan.,Institute of Molecular Biology Academia Sinica Taipei Taiwan
| | - Bo-Tsang Huang
- Institute of Molecular Biology Academia Sinica Taipei Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular Biology Academia Sinica Taipei Taiwan
| | - Marcus J Calkins
- Institute of Cellular and Organismic Biology Academia Sinica Taipei Taiwan
| | - Sue Lin-Chao
- Molecular Cell Biology Taiwan International Graduate Program Institute of Molecular Biology Academia Sinica and Graduate Institute of Life Sciences National Defense Medical Center Taipei Taiwan.,Institute of Molecular Biology Academia Sinica Taipei Taiwan
| |
Collapse
|
8
|
Meyer MA. Neuronal localization of GAS7 within human brain tissue: Implications for schizophrenia research. Neurol Int 2018; 10:7563. [PMID: 30687465 PMCID: PMC6322045 DOI: 10.4081/ni.2018.7563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/03/2018] [Indexed: 11/25/2022] Open
Abstract
In view of recent data on the linkage of Gas7 protein to schizophrenia, and in view of its role in neurite outgrowth, histochemical localization of the Gas7 protein was studied in normal human brain tissue using an online tissue atlas. Selective localization to neurons in the cerebral cortex was found with moderate levels in the hippocampus and caudate, but fairly low levels were noted within the human cerebellum and was limited to small granule cells as well as the neuropil of the cerebellar molecular layers. Despite this low intensity histochemical localization in the cerebellum, molecular data indicate a substantially large number of RNA transcripts in the cerebellum that exceeded the cerebral cortex as determined by sequencing studies.
Collapse
|
9
|
Chang JW, Kuo WH, Lin CM, Chen WL, Chan SH, Chiu MF, Chang IS, Jiang SS, Tsai FY, Chen CH, Huang PH, Chang KJ, Lin KT, Lin SC, Wang MY, Uen YH, Tu CW, Hou MF, Tsai SF, Shen CY, Tung SL, Wang LH. Wild-type p53 upregulates an early onset breast cancer-associated gene GAS7 to suppress metastasis via GAS7-CYFIP1-mediated signaling pathway. Oncogene 2018; 37:4137-4150. [PMID: 29706651 PMCID: PMC6062498 DOI: 10.1038/s41388-018-0253-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/07/2018] [Accepted: 03/14/2018] [Indexed: 01/13/2023]
Abstract
The early onset breast cancer patients (age ≤ 40) often display higher incidence of axillary lymph node metastasis, and poorer five-year survival than the late-onset patients. To identify the genes and molecules associated with poor prognosis of early onset breast cancer, we examined gene expression profiles from paired breast normal/tumor tissues, and coupled with Gene Ontology and public data base analysis. Our data showed that the expression of GAS7b gene was lower in the early onset breast cancer patients as compared to the elder patients. We found that GAS7 was associated with CYFIP1 and WAVE2 complex to suppress breast cancer metastasis via blocking CYFIP1 and Rac1 protein interaction, actin polymerization, and β1-integrin/FAK/Src signaling. We further demonstrated that p53 directly regulated GAS7 gene expression, which was inversely correlated with p53 mutations in breast cancer specimens. Our study uncover a novel regulatory mechanism of p53 in early onset breast cancer progression through GAS7-CYFIP1-mediated signaling pathways.
Collapse
Affiliation(s)
- Jer-Wei Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Mei Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Wen-Ling Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Shih-Hsuan Chan
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan.,Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Meng-Fan Chiu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Hsin Huang
- Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - King-Jen Chang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Taiwan Adventist Hospital, Taipei, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Chieh Lin
- College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Huei Uen
- Department of Surgery, Asia University Hospital, Taichung, Taiwan
| | - Chi-Wen Tu
- Department of General Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung, Taiwan.,Division of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shiao-Lin Tung
- Department of Hematology and Oncology, Ton-Yen General Hospital, Hsinchu, Taiwan
| | - Lu-Hai Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan. .,College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Wang MH, Chang B, Sun R, Hu I, Xia X, Wu WKK, Chong KC, Zee BCY. Stratified polygenic risk prediction model with application to CAGI bipolar disorder sequencing data. Hum Mutat 2017; 38:1235-1239. [PMID: 28419606 DOI: 10.1002/humu.23229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 01/31/2023]
Abstract
Genetic data consists of a wide range of marker types, including common, low-frequency, and rare variants. Multiple genetic markers and their interactions play central roles in the heritability of complex disease. In this study, we propose an algorithm that uses a stratified variable selection design by genetic architectures and interaction effects, achieved by a dataset-adaptive W-test. The polygenic sets in all strata were integrated to form a classification rule. The algorithm was applied to the Critical Assessment of Genome Interpretation 4 bipolar challenge sequencing data. The prediction accuracy was 60% using genetic markers on an independent test set. We found that epistasis among common genetic variants contributed most substantially to prediction precision. However, the sample size was not large enough to draw conclusions for the lack of predictability of low-frequency variants and their epistasis.
Collapse
Affiliation(s)
- Maggie Haitian Wang
- Division of Biostatistics and Centre for Clinical Research and Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China.,CUHK Shenzhen Research Institute, Shenzhen, China
| | - Billy Chang
- Division of Biostatistics and Centre for Clinical Research and Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Sun
- Division of Biostatistics and Centre for Clinical Research and Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China.,CUHK Shenzhen Research Institute, Shenzhen, China
| | - Inchi Hu
- ISOM Department and Biomedical Engineering Division, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Xiaoxuan Xia
- Division of Biostatistics and Centre for Clinical Research and Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William Ka Kei Wu
- Department of Anaethesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Chun Chong
- Division of Biostatistics and Centre for Clinical Research and Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China.,CUHK Shenzhen Research Institute, Shenzhen, China
| | - Benny Chung-Ying Zee
- Division of Biostatistics and Centre for Clinical Research and Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China.,CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
11
|
Hung FC, Shih HY, Cheng YC, Chao CCK. Growth-Arrest-Specific 7 Gene Regulates Neural Crest Formation and Craniofacial Development in Zebrafish. Stem Cells Dev 2015; 24:2943-51. [PMID: 26414806 DOI: 10.1089/scd.2015.0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growth-arrest-specific 7 (Gas7) is preferentially expressed in the nervous system and plays an important role during neuritogenesis in vertebrates. We recently demonstrated that gas7 is highly expressed in zebrafish neurons, where it regulates neural development. The possibility that gas7 may also regulate the development of other tissues remains to be examined. In this study, we investigate the role of Gas7 in the development of craniofacial tissues. Knockdown of gas7 using morpholino oligomers produced abnormal phenotypes in neural crest (NC) cells and their derivatives. NC-derived cartilage maturation was altered in Gas7 morphants as revealed by aberrant sox9b and dlx2 expression, a phenotype that could be rescued by coinjection of gas7 mRNA. While rhombomere morphology remained normal in Gas7 morphants, we observed reduced expression of the prechondrogenic genes sox9b and dlx2 in cells populating the posterior pharyngeal arches, but the fundamental structure of pharyngeal arches was preserved. In addition, NC cell sublineages that migrate to form neurons, glial cells, and melanocytes were altered in Gas7 morphants as revealed by aberrant expression of neurod, foxd3, and mitfa, respectively. Development of NC progenitors was also examined in Gas7 morphants at 12 hpf, and we observed that the reduction of cell precursors in Gas7 morphants was due to increased apoptosis level. These results indicate that the formation of NC progenitors and derivatives depends on Gas7 expression. Our observations also suggest that Gas7 regulates the formation of NC derivatives constituting the internal tissues of pharyngeal arches, without affecting the fundamental structure of mesodermal-derived pharyngeal arches.
Collapse
Affiliation(s)
- Feng-Chun Hung
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China
| | - Hung-Yu Shih
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China .,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taiwan, Republic of China
| | - Yi-Chuan Cheng
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China .,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taiwan, Republic of China .,3 Chang Gung Memorial Hospital , Taiwan, Republic of China
| | - Chuck C-K Chao
- 1 Department of Biochemistry and Molecular Biology, Chang Gung University , Taiwan, Republic of China .,2 Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taiwan, Republic of China .,3 Chang Gung Memorial Hospital , Taiwan, Republic of China
| |
Collapse
|
12
|
Rambow F, Job B, Petit V, Gesbert F, Delmas V, Seberg H, Meurice G, Van Otterloo E, Dessen P, Robert C, Gautheret D, Cornell RA, Sarasin A, Larue L. New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis. Cell Rep 2015; 13:840-853. [PMID: 26489459 PMCID: PMC5970542 DOI: 10.1016/j.celrep.2015.09.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/30/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
Molecular signatures specific to particular tumor types are required to design treatments for resistant tumors. However, it remains unclear whether tumors and corresponding cell lines used for drug development share such signatures. We developed similarity core analysis (SCA), a universal and unsupervised computational framework for extracting core molecular features common to tumors and cell lines. We applied SCA to mRNA/miRNA expression data from various sources, comparing melanoma cell lines and metastases. The signature obtained was associated with phenotypic characteristics in vitro, and the core genes CAPN3 and TRIM63 were implicated in melanoma cell migration/invasion. About 90% of the melanoma signature genes belong to an intrinsic network of transcription factors governing neural development (TFAP2A, DLX2, ALX1, MITF, PAX3, SOX10, LEF1, and GAS7) and miRNAs (211-5p, 221-3p, and 10a-5p). The SCA signature effectively discriminated between two subpopulations of melanoma patients differing in overall survival, and classified MEKi/BRAFi-resistant and -sensitive melanoma cell lines.
Collapse
Affiliation(s)
- Florian Rambow
- Institut Curie, Normal and Pathological Development of Melanocytes, 91405 Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France; INSERM U1021, 91405 Orsay, France; Equipe Labellisée - Ligue Nationale contre le Cancer, 91405 Orsay, France
| | - Bastien Job
- Plateforme de Bioinformatique, UMS AMMICA, Gustave-Roussy, 94805 Villejuif, France
| | - Valérie Petit
- Institut Curie, Normal and Pathological Development of Melanocytes, 91405 Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France; INSERM U1021, 91405 Orsay, France; Equipe Labellisée - Ligue Nationale contre le Cancer, 91405 Orsay, France
| | - Franck Gesbert
- Institut Curie, Normal and Pathological Development of Melanocytes, 91405 Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France; INSERM U1021, 91405 Orsay, France; Equipe Labellisée - Ligue Nationale contre le Cancer, 91405 Orsay, France
| | - Véronique Delmas
- Institut Curie, Normal and Pathological Development of Melanocytes, 91405 Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France; INSERM U1021, 91405 Orsay, France; Equipe Labellisée - Ligue Nationale contre le Cancer, 91405 Orsay, France
| | - Hannah Seberg
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Guillaume Meurice
- Plateforme de Bioinformatique, UMS AMMICA, Gustave-Roussy, 94805 Villejuif, France
| | - Eric Van Otterloo
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Philippe Dessen
- Plateforme de Bioinformatique, UMS AMMICA, Gustave-Roussy, 94805 Villejuif, France
| | | | - Daniel Gautheret
- Plateforme de Bioinformatique, UMS AMMICA, Gustave-Roussy, 94805 Villejuif, France
| | - Robert A Cornell
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Alain Sarasin
- Centre National de la Recherche Scientifique (CNRS) UMR8200, Gustave-Roussy and University Paris-Sud, 94805 Villejuif, France
| | - Lionel Larue
- Institut Curie, Normal and Pathological Development of Melanocytes, 91405 Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR3347, 91405 Orsay, France; INSERM U1021, 91405 Orsay, France; Equipe Labellisée - Ligue Nationale contre le Cancer, 91405 Orsay, France.
| |
Collapse
|
13
|
Tsang KM, Croen LA, Torres AR, Kharrazi M, Delorenze GN, Windham GC, Yoshida CK, Zerbo O, Weiss LA. A genome-wide survey of transgenerational genetic effects in autism. PLoS One 2013; 8:e76978. [PMID: 24204716 PMCID: PMC3811986 DOI: 10.1371/journal.pone.0076978] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/28/2013] [Indexed: 12/15/2022] Open
Abstract
Effects of parental genotype or parent-offspring genetic interaction are well established in model organisms for a variety of traits. However, these transgenerational genetic models are rarely studied in humans. We have utilized an autism case-control study with 735 mother-child pairs to perform genome-wide screening for maternal genetic effects and maternal-offspring genetic interaction. We used simple models of single locus parent-child interaction and identified suggestive results (P<10−4) that cannot be explained by main effects, but no genome-wide significant signals. Some of these maternal and maternal-child associations were in or adjacent to autism candidate genes including: PCDH9, FOXP1, GABRB3, NRXN1, RELN, MACROD2, FHIT, RORA, CNTN4, CNTNAP2, FAM135B, LAMA1, NFIA, NLGN4X, RAPGEF4, and SDK1. We attempted validation of potential autism association under maternal-specific models using maternal-paternal comparison in family-based GWAS datasets. Our results suggest that further study of parental genetic effects and parent-child interaction in autism is warranted.
Collapse
Affiliation(s)
- Kathryn M. Tsang
- Department of Psychiatry and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Anthony R. Torres
- Center for Persons with Disabilities, Utah State University, Logan, Utah, United States of America
| | - Martin Kharrazi
- Genetic Disease Screening Program, California Department of Health Services, Richmond, California, United States of America
| | - Gerald N. Delorenze
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Gayle C. Windham
- Division of Environmental and Occupational Disease Control, California Department of Health Services, Richmond, California, United States of America
| | - Cathleen K. Yoshida
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Ousseny Zerbo
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Lauren A. Weiss
- Department of Psychiatry and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gas7 is required for mesenchymal stem cell-derived bone development. Stem Cells Int 2013; 2013:137010. [PMID: 23840221 PMCID: PMC3690905 DOI: 10.1155/2013/137010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 05/12/2013] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into osteoblasts and lead to bone formation in the body. Osteoblast differentiation and bone development are regulated by a network of molecular signals and transcription factors induced by several proteins, including BMP2, osterix, and Runx2. We recently observed that the growth-arrest-specific 7 gene (Gas7) is upregulated during differentiation of human MSCs into osteoblasts. Downregulation of Gas7 using short-hairpin RNA decreased the expression of Runx2, a master regulator of osteogenesis, and its target genes (alkaline phosphatase, type I collagen, osteocalcin, and osteopontin). In addition, knockdown of Gas7 decreased the mineralization of dexamethasone-treated MSCs in culture. Conversely, ectopic expression of Gas7 induced Runx2-dependent transcriptional activity and gene expression leading to osteoblast differentiation and matrix mineralization. Genetic mutations of the Gas7 gene increased body fat levels and decreased bone density in mice. These results showed that Gas7 plays a role in regulating the pathways which are essential for osteoblast differentiation and bone development. In this review, we summarize the involvement of Gas7 in MSC-based osteogenesis and osteoporosis and describe the possible mechanisms responsible for the maintenance of cellular homeostasis in MSCs and osteoblasts.
Collapse
|
15
|
Hung FC, Cheng YC, Sun NK, Chao CCK. Identification and functional characterization of zebrafish Gas7 gene in early development. J Neurosci Res 2012; 91:51-61. [PMID: 23086717 DOI: 10.1002/jnr.23145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022]
Abstract
Growth arrest-specific 7 (Gas7) is preferentially expressed in the nervous system and plays an important role during neuritogenesis in mammals. However, the structure and function of Gas7 homologs have not been studied in nonmammalian vertebrates used as models. In this report, we identify a Gas7 gene in zebrafish that we termed zfGas7. The transcript of this gene was produced by canonical splicing, and its protein product contained a Fes/CIP4 homology and a coiled-coil domain. In early zebrafish embryos, RT-PCR analyses revealed that zfGas7 was initially expressed at 5.3 hr postfertilization (hpf), followed by an increase of expression at 10 hpf and further accumulation during somitogenesis at 48 hpf. Spatiotemporal analyses further showed that Gas7 mRNA was detected in the brain, somite, and posterior presomitic mesoderm regions during somitogenesis. At 36 hpf, zfGas7 mRNA was detected in the brain and somite but was later found only in neuronal clusters of the brain at 52 hpf. Gas7 knockdown with morpholino antisense oligonucleotides (Gas7MO) reduced the number of HuC-positive neurons in the trigeminal and statoacoustic ganglions and produced deformed phenotypes, such as flattening of the top of the head. Notably, the neuron reduction and deformed phenotypes observed in Gas7MO embryos were partially rescued by ectopic expression of Gas7. Because altered somitogenesis and pigmentation were also found in the morphants, the neuronal phenotypes observed likely are due to a general developmental delay of embryogenesis. These results indicate that Gas7 is expressed in neuronal cells but is not specifically required for neuronal development in vertebrates.
Collapse
Affiliation(s)
- Feng-Chun Hung
- Department of Biochemistry and Molecular Biology, Chang Gung University, Gueishan, Taiwan, Republic of China
| | | | | | | |
Collapse
|
16
|
Common genetic determinants of intraocular pressure and primary open-angle glaucoma. PLoS Genet 2012; 8:e1002611. [PMID: 22570627 PMCID: PMC3342933 DOI: 10.1371/journal.pgen.1002611] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 02/06/2012] [Indexed: 01/11/2023] Open
Abstract
Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p = 1.4×10−8), and with rs7555523, located in TMCO1 at 1q24.1 (p = 1.6×10−8). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p = 2.4×10−2 for rs11656696 and p = 9.1×10−4 for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation. Glaucoma is a major eye disease in the elderly and is the second leading cause of blindness worldwide. The numerous familial glaucoma cases, as well as evidence from epidemiological and twin studies, strongly support a genetic component in developing glaucoma. However, it has proven difficult to identify the specific genes involved. Intraocular pressure (IOP) is the major risk factor for glaucoma and the only target for the current glaucoma therapy. IOP has been shown to be highly heritable. We investigated the role of common genetic variants in IOP by performing a genome-wide association study. Discovery analyses in 11,972 participants and subsequent replication analyses in a further 7,482 participants yielded two common genetic variants that were associated with IOP. The first (rs11656696) is located in GAS7 at chromosome 17, the second (rs7555523) in TMCO1 at chromosome 1. Both variants were associated with glaucoma in a meta-analysis of 4 case-control studies. GAS7 and TMCO1 are expressed in the ocular tissues that are involved in glaucoma. Both genes functionally interact with the known glaucoma disease genes. These data suggest that we have identified two genes involved in IOP regulation and glaucomatous neuropathy.
Collapse
|
17
|
Hung FC, Chang Y, Lin-Chao S, Chao CCK. Gas7 mediates the differentiation of human bone marrow-derived mesenchymal stem cells into functional osteoblasts by enhancing Runx2-dependent gene expression. J Orthop Res 2011; 29:1528-35. [PMID: 21452305 DOI: 10.1002/jor.21425] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/10/2011] [Indexed: 02/04/2023]
Abstract
The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step during bone formation. However, the mechanisms regulating the early stages of osteogenic differentiation are not fully understood. In the present study, we found that growth-arrest specific gene 7b (Gas7b) was up-regulated during dexamethasone-induced differentiation of human MSCs (hMSCs) into osteoblasts. Knockdown of Gas7 using short-hairpin RNA decreased the expression of the osteogenic transcription factor Runx2 and its target genes alkaline phosphatase, type I collagen, osteocalcin (OC), and osteopontin. In addition, knockdown of Gas7 decreased matrix mineralization of dexamethasone-treated hMSCs in vitro. In contrast, ectopic expression of Gas7 isoforms a and b promoted gene expression associated with osteoblast differentiation and matrix mineralization, and also induced the mineralization of hMSCs in vitro. Furthermore, a gene reporter assay designed to monitor OC expression in hMSCs revealed that Runx2-dependent transcriptional activity was enhanced by over-expression of human Gas7 isoforms a and b. These findings reveal that Gas7 regulates the differentiation of hMSCs into osteoblasts by enhancing Runx2-dependent gene expression.
Collapse
Affiliation(s)
- Feng-Chun Hung
- Department of Biochemistry and Molecular Biology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan, Republic of China
| | | | | | | |
Collapse
|
18
|
Ahmed S, Bu W, Lee RTC, Maurer-Stroh S, Goh WI. F-BAR domain proteins: Families and function. Commun Integr Biol 2011; 3:116-21. [PMID: 20585502 DOI: 10.4161/cib.3.2.10808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 11/30/2009] [Indexed: 12/13/2022] Open
Abstract
The F-BAR domain is emerging as an important player in membrane remodeling pathways. F-BAR domain proteins couple membrane remodeling with actin dynamics associated with endocytic pathways and filopodium formation. Here, we provide a comprehensive analysis of F-BAR domain proteins in terms of their evolutionary relationships and protein function. F-BAR domain containing proteins can be categorized into five subfamilies based on their phylogeny which is consistent with the additional protein domains they possess, for example, RhoGAP domains, Cdc42 binding sites, SH3 domains and tyrosine kinase domains. We derive a protein-protein interaction network suggesting that dynamin1/2, N-WASP, Huntingtin, intersectin and Cdc42 are central nodes influencing F-BAR domain protein function.
Collapse
|
19
|
Hung FC, Chao CCK. Knockdown of growth-arrest-specific gene 7b (gas7b) using short-hairpin RNA desensitizes neuroblastoma cells to cisplatin: Implications for preventing apoptosis of neurons. J Neurosci Res 2010; 88:3578-87. [PMID: 20890993 DOI: 10.1002/jnr.22504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/19/2010] [Accepted: 07/29/2010] [Indexed: 11/06/2022]
Abstract
Efficient control of cell survival and cell proliferation is critical for the development of neuron cells. Earlier, we observed that growth arrest-specific gene 7 (Gas7) plays a role in controlling neuritogenesis in mammals. In the present study, we report that the Gas7b isoform is involved in controlling growth arrest and apoptosis of neuroblastoma cells in response to various stimuli. Accordingly, knockdown of Gas7b using small-hairpin RNA (shRNA) was shown to reduce apoptosis induced either by serum starvation or by the antineoplastic agents cisplatin and nocodazole in human neuroblastoma SH-SY5Y cells. Gas7b knockdown also enhanced the ability of the treated cells to form clones in response to cisplatin. On the other hand, forced expression of Gas7a or Gas7b isoform in mouse neuroblastoma Neuro2A cells, which express a defective Gas7 gene, rendered the cells proapoptotic and vulnerable to cisplatin-induced apoptosis. In addition, Neuro2A cells that overexpressed Gas7 showed a reduced ability to form clones. Overexpression of Gas7 produced similar but less extensive effects in nonneuronal HEK293 cells. Taken together, our observations suggest that Gas7b is involved not only in neuritogenesis but also in the regulation of neuronal cell death.
Collapse
Affiliation(s)
- Feng-Chun Hung
- Department of Biochemistry and Molecular Biology, Graduate Institute of Biomedical Sciences, Chang Gung University, Gueishan, Taoyuan, Taiwan, Republic of China.
| | | |
Collapse
|
20
|
You JJ, Lin-Chao S. Gas7 functions with N-WASP to regulate the neurite outgrowth of hippocampal neurons. J Biol Chem 2010; 285:11652-66. [PMID: 20150425 PMCID: PMC3283256 DOI: 10.1074/jbc.m109.051094] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuritogenesis, or neurite outgrowth, is a critical process for neuronal differentiation and maturation in which growth cones are formed from highly dynamic actin structures. Gas7 (growth arrest-specific gene 7), a new member of the PCH (Pombe Cdc15 homology) protein family, is predominantly expressed in neurons and is required for the maturation of primary cultured Purkinje neurons as well as the neuron-like differentiation of PC12 cells upon nerve growth factor stimulation. We report that Gas7 co-localizes and physically interacts with N-WASP, a key regulator of Arp2/3 complex-mediated actin polymerization, in the cortical region of Gas7-transfected Neuro-2a cells and growth cones of hippocampal neurons. The interaction between Gas7 and N-WASP is mediated by WW-Pro domains, which is unique in the PCH protein family, where most interactions are of the SH3-Pro kind. The interaction contributes to the formation of membrane protrusions and processes by recruiting the Arp2/3 complex in a Cdc42-independent manner. Importantly, specific interaction between Gas7 and N-WASP is required for regular neurite outgrowth of hippocampal neurons. The data demonstrate an essential role of Gas7 through its interaction with N-WASP during neuronal maturation/differentiation.
Collapse
Affiliation(s)
- Jhong-Jhe You
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
21
|
Involvement of Gas7 along the ERK1/2 MAP kinase and SOX9 pathway in chondrogenesis of human marrow-derived mesenchymal stem cells. Osteoarthritis Cartilage 2008; 16:1403-12. [PMID: 18455446 DOI: 10.1016/j.joca.2008.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 03/24/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The growth-arrest-specific protein, Gas7, has been shown to be involved in reorganization of the cytoskeleton and for inducing changes in cell shape during cell differentiation. The goals of this study were to investigate the novel role of human Gas7 (hGas7) in chondrogenic differentiation of human mesenchymal stem cells (hMSCs) and to identify the relationship between hGas7, extracellular signal-regulated kinase (ERK1/2) and SOX9 in the chondrogenic pathway. METHODS Bone marrow-derived hMSCs were induced to undergo chondrogenic differentiation with transforming growth factor-beta1 (TGF-beta1) in an aggregate culture system. The expression of hGas7 and SOX9 and phosphorylation of ERK1/2 at multiple time points were investigated. Chondrogenic capacity was evaluated by the size of aggregates, by glycosaminoglycan content, and by type II collagen and proteoglycan deposition after interfering with expression of hGas7, ERK1/2 or SOX9. To delineate the functional role of these genes in chondrogenesis, inhibition of individual gene's expression in hMSCs, by antisense oligonucleotides or interference RNA (siRNA), and the effect on chondrogenic differentiation were also investigated. RESULTS Treatment of hMSCs with TGF-beta1 resulted in a transient up-regulation of hGas7b, one of the hGas7 isoforms (day 3-day 5), a transient phosphorylation of ERK1/2 (0.5-4 h) and an up-regulation of SOX9 (2 h to day 14). Transient expression of hGas7b was also detected in hMSCs by reverse transcription-polymerase chain reaction at day 2 and day 3 following TGF-beta1 treatment. Interference with hGas7b production by hGas7b-specific antisense oligonucleotide or inhibition of p-ERK with PD98059, a specific inhibitor of ERK signaling pathway, or interference with SOX9 production by SOX9 siRNA all caused adverse effects of chondrogenic differentiation of hMSCs. Meanwhile, inhibition of p-ERK or SOX9 both blocked the expression of hGas7b. However, the p-ERK and SOX9 pathway was not affected by inhibition of hGas7b. CONCLUSION These results provide evidence that the transient expression of hGas7b, regulated by activation of ERK1/2 and SOX9 pathway, is essential for chondrogenic differentiation of hMSCs.
Collapse
|
22
|
Tseng RC, Hsieh FJ, Hsu HS, Wang YC. Minimal deletion regions in lung squamous cell carcinoma: Association with abnormality of the DNA double-strand break repair genes and their applications on gene identification and prognostic biomarkers. Lung Cancer 2008; 59:332-9. [DOI: 10.1016/j.lungcan.2007.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/22/2007] [Accepted: 08/26/2007] [Indexed: 10/22/2022]
|
23
|
Henne WM, Kent HM, Ford MGJ, Hegde BG, Daumke O, Butler PJG, Mittal R, Langen R, Evans PR, McMahon HT. Structure and Analysis of FCHo2 F-BAR Domain: A Dimerizing and Membrane Recruitment Module that Effects Membrane Curvature. Structure 2007; 15:839-52. [PMID: 17540576 DOI: 10.1016/j.str.2007.05.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 05/15/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
A spectrum of membrane curvatures exists within cells, and proteins have evolved different modules to detect, create, and maintain these curvatures. Here we present the crystal structure of one such module found within human FCHo2. This F-BAR (extended FCH) module consists of two F-BAR domains, forming an intrinsically curved all-helical antiparallel dimer with a Kd of 2.5 microM. The module binds liposomes via a concave face, deforming them into tubules with variable diameters of up to 130 nm. Pulse EPR studies showed the membrane-bound dimer is the same as the crystal dimer, although the N-terminal helix changed conformation on membrane binding. Mutation of a phenylalanine on this helix partially attenuated narrow tubule formation, and resulted in a gain of curvature sensitivity. This structure shows a distant relationship to curvature-sensing BAR modules, and suggests how similar coiled-coil architectures in the BAR superfamily have evolved to expand the repertoire of membrane-sculpting possibilities.
Collapse
Affiliation(s)
- William Mike Henne
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB1 0QH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|