1
|
Lafzi A, Yeşilyurt F, Demirci T, Hacımüftüoğlu A, Şişman T. Acute and subacute toxic effects of CUMYL-4CN-BINACA on male albino rats. Forensic Toxicol 2024; 42:125-141. [PMID: 38102417 DOI: 10.1007/s11419-023-00676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE There is very little information about the toxicological and pathological effects of synthetic cannabinoids, which have cannabis-like properties. This study was carried out to histopathologically, hematologically, and biochemically determine the toxic effects of acute and subacute exposure to a novel synthetic cannabinoid 1-(4-cyanobutyl)-N-(2-phenylpropan-2-yl)indazole-3-carboxamide in internal organs of adult male rats. METHODS The cannabinoid was injected intraperitoneally at three doses (0.5, 1.0, and 2.0 mg/kg, body weight). The cannabinoid was administered to acute groups for 2 days and to subacute groups for 14 days. Observations were made for 14 days and various changes such as mortality, injury, and illness were recorded daily. Hematological and biochemical changes were evaluated and histopathological analyses in lung, liver, and kidney tissues were also performed. RESULTS No mortality was observed. It was observed that there were fluctuations in hematological and serum biochemical parameters. Among the oxidative stress parameters, significant decreases in superoxide dismutase, catalase levels and significant increases in lipid peroxidation levels were determined. Serious pathological changes such as necrosis, vacuolation, congestion, and fibrosis were observed in the internal organs in a dose-dependent and time-dependent manner. It was also found that the synthetic cannabinoid triggered apoptosis in the organs. The results demonstrated that the most affected organ by the cannabinoid was the kidney. CONCLUSION This study showed for the first time that CUMYL-4CN-BINACA adversely affects healthy male albino rats. It can be estimated that the abuse of the cannabinoid may harm human health in the same way.
Collapse
Affiliation(s)
- Ayşe Lafzi
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240, Erzurum, Turkey
| | - Fatma Yeşilyurt
- Department of Medical Pharmacology, Medicine Faculty, Atatürk University, 25240, Erzurum, Turkey
| | - Tuba Demirci
- Department of Histology and Embryology, Medicine Faculty, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medicine Faculty, Atatürk University, 25240, Erzurum, Turkey
| | - Turgay Şişman
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240, Erzurum, Turkey.
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
2
|
Lafzi A, Demirci T, Yüce N, Annaç E, Çiçek M, Şişman T. A study on the possible neurotoxic effects of CUMYL-4CN-BINACA in Sprague Dawley rats. Leg Med (Tokyo) 2024; 67:102389. [PMID: 38185093 DOI: 10.1016/j.legalmed.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Substances such as Δ9-tetrahydrocannabinol (THC) and cannabidiol cross the blood-brain barrier. Detecting the damage of these substances in the brain provides important data in drug abuse studies. The aim of the study is to define the neurotoxicity of a novel synthetic cannabinoid (CUMYL-4CN-BINACA) in the Sprague-Dawley rats. Histopathological, immunohistochemical, behavioral, and biochemical examinations were performed to determine the acute and subacute toxicity of the cannabinoid. Three cannabinoid doses were administered for 2 days in the acute exposure groups and 14 days in the subacute exposure groups. Observations were made for 14 days and various changes such as mortality, injury, and illness were recorded daily. No mortality was determined. Serious pathological changes such as neurodegeneration, focal plague formation, vacuolation, edema, congestion, and fibrosis were observed in the cerebral cortex and hippocampus of the brain in a dose-dependent manner. Brain tissue caspase-3 activity showed that the cannabinoid triggered apoptosis in the rat brain. The detected cellular oxidative stress (higher lipid peroxidation and lower antioxidant enzyme activity) also supported neurotoxicity. Significant behavioral abnormalities were also observed in the acute groups, while no behavioral changes were detected in the subacute groups. This study showed for the first time that CUMYL-4CN-BINACA adversely affects the rat brain. It can be estimated that the abuse of the cannabinoid may harm human health in the same way.
Collapse
Affiliation(s)
- Ayşe Lafzi
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey.
| | - Tuba Demirci
- Department of Histology and Embryology, Medicine Faculty, Atatürk University, 25240 Erzurum, Turkey.
| | - Neslihan Yüce
- Department of Medical Biochemistry, Medicine Faculty, Atatürk University, 25240 Erzurum, Turkey.
| | - Ebru Annaç
- Department of Histology and Embryology, Medicine Faculty, Adıyaman University, 02040 Adıyaman, Turkey.
| | - Mustafa Çiçek
- Department of Medical Biology and Genetics, Medicine Faculty, Kahramanmaraş Sütçü İmam University, 46050 Kahramanmaraş, Turkey.
| | - Turgay Şişman
- Department of Criminalistics, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey; Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, 25240 Erzurum, Turkey.
| |
Collapse
|
3
|
Pinky PD, Majrashi M, Fujihashi A, Bloemer J, Govindarajulu M, Ramesh S, Reed MN, Moore T, Suppiramaniam V, Dhanasekaran M. Effects of prenatal synthetic cannabinoid exposure on the cerebellum of adolescent rat offspring. Heliyon 2021; 7:e06730. [PMID: 33912711 PMCID: PMC8066425 DOI: 10.1016/j.heliyon.2021.e06730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Cannabis is the most commonly used illicit drug worldwide. Recently, cannabis use among young pregnant women has greatly increased. However, prenatal cannabinoid exposure leads to long-lasting cognitive, motor, and behavioral deficits in the offspring and alterations in neural circuitry through various mechanisms. Although these effects have been studied in the hippocampus, the effects of prenatal cannabinoid exposure on the cerebellum are not well elucidated. The cerebellum plays an important role in balance and motor control, as well as cognitive functions such as attention, language, and procedural memories. The aim of this study was to investigate the effects of prenatal cannabinoid exposure on the cerebellum of adolescent offspring. Pregnant rats were treated with synthetic cannabinoid agonist WIN55,212-2, and the offspring were evaluated for various cerebellar markers of oxidative stress, mitochondrial function, and apoptosis. Additionally, signaling proteins associated with glutamate dependent synaptic plasticity were examined. Administration of WIN55,212-2 during pregnancy altered markers of oxidative stress by significantly reducing oxidative stress and nitrite content. Mitochondrial Complex I and Complex IV activities were also enhanced following prenatal cannabinoid exposure. With regard to apoptosis, pP38 levels were significantly increased, and proapoptotic factor caspase-3 activity, pERK, and pJNK levels were significantly decreased. CB1R and GluA1 levels remained unchanged; however, GluN2A was significantly reduced. There was a significant decrease in MAO activity although tyrosine hydroxylase activity was unaltered. Our study indicates that the effects of prenatal cannabinoid exposure on the cerebellum are unique compared to other brain regions by enhancing mitochondrial function and promoting neuronal survival. Further studies are required to evaluate the mechanisms by which prenatal cannabinoid exposure alters cerebellar processes and the impact of these alterations on behavior.
Collapse
Affiliation(s)
- Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Mohammed Majrashi
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Miranda N. Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Timothy Moore
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
- Center for Neuroscience Initiatives, Auburn University, Auburn, AL, USA
| |
Collapse
|
4
|
Fonseca BM, Teixeira NA, Correia-da-Silva G. Cannabinoids as Modulators of Cell Death: Clinical Applications and Future Directions. Rev Physiol Biochem Pharmacol 2017; 173:63-88. [PMID: 28425013 DOI: 10.1007/112_2017_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocannabinoids are bioactive lipids that modulate various physiological processes through G-protein-coupled receptors (CB1 and CB2) and other putative targets. By sharing the activation of the same receptors, some phytocannabinoids and a multitude of synthetic cannabinoids mimic the effects of endocannabinoids. In recent years, a growing interest has been dedicated to the study of cannabinoids properties for their analgesic, antioxidant, anti-inflammatory and neuroprotective effects. In addition to these well-recognized effects, various studies suggest that cannabinoids may affect cell survival, cell proliferation or cell death. These observations indicate that cannabinoids may play an important role in the regulation of cellular homeostasis and, thus, may contribute to tissue remodelling and cancer treatment. For a long time, the study of cannabinoid receptor signalling has been focused on the classical adenylyl cyclase/cyclic AMP/protein kinase A (PKA) pathway. However, this pathway does not totally explain the wide array of biological responses to cannabinoids. In addition, the diversity of receptors and signalling pathways that endocannabinoids modulate offers an interesting opportunity for the development of specific molecules to disturb selectively the endogenous system. Moreover, emerging evidences suggest that cannabinoids ability to limit cell proliferation and to induce tumour-selective cell death may offer a novel strategy in cancer treatment. This review describes the main properties of cannabinoids in cell death and attempts to clarify the different pathways triggered by these compounds that may help to understand the complexity of respective molecular mechanisms and explore the potential clinical benefit of cannabinoids use in cancer therapies.
Collapse
Affiliation(s)
- B M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal.
| | - N A Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Pozzoli G, De Simone ML, Cantalupo E, Cenciarelli C, Lisi L, Boninsegna A, Dello Russo C, Sgambato A, Navarra P. The activation of type 1 corticotropin releasing factor receptor (CRF-R1) inhibits proliferation and promotes differentiation of neuroblastoma cells in vitro via p27(Kip1) protein up-regulation and c-Myc mRNA down-regulation. Mol Cell Endocrinol 2015; 412:205-15. [PMID: 25960164 DOI: 10.1016/j.mce.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 12/23/2022]
Abstract
Our group has previously shown that corticotropin releasing factor (CRF) inhibits proliferation of human endocrine-related cancer cell lines via the activation of CRF type-1 receptors (CRF-R1). Tumors originating from the nervous system also express CRF receptors but their role on neoplastic cell proliferation was poorly investigated. Here we investigated the effect of CRF receptor stimulation on nervous system-derived cancer cells, using the SK-N-SH (N) human neuroblastoma cell line as an experimental model. We found that SK-N-SH (N) cells express functionally active CRF-R1, whose activation by CRF and the cognate peptide urocortin (UCN) is associated to reduced cell proliferation and motility, as well as neuronal-like differentiation. UCN did not interfere with cell viability and cell-cycle arrest. Those effects seem to be mediated by a mechanism involving the activation of cAMP/PKA/CREB pathway and the subsequent downstream increase in p27(Kip1) and underphosphorylated retinoblastoma protein levels, as well as reduced c-Myc mRNA accumulation.
Collapse
Affiliation(s)
- Giacomo Pozzoli
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy.
| | - Maria Laura De Simone
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
| | - Emilia Cantalupo
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Lucia Lisi
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
| | - Alma Boninsegna
- "Giovanni XXIII" Cancer Research Center - Institute of General Pathology, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
| | - Cinzia Dello Russo
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
| | - Alessandro Sgambato
- "Giovanni XXIII" Cancer Research Center - Institute of General Pathology, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
| | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
6
|
Marcaggi P. Cerebellar Endocannabinoids: Retrograde Signaling from Purkinje Cells. THE CEREBELLUM 2014; 14:341-53. [DOI: 10.1007/s12311-014-0629-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Notaro A, Sabella S, Pellerito O, Di Fiore R, De Blasio A, Vento R, Calvaruso G, Giuliano M. Involvement of PAR-4 in cannabinoid-dependent sensitization of osteosarcoma cells to TRAIL-induced apoptosis. Int J Biol Sci 2014; 10:466-78. [PMID: 24795528 PMCID: PMC4007360 DOI: 10.7150/ijbs.8337] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/27/2014] [Indexed: 11/23/2022] Open
Abstract
The synthetic cannabinoid WIN 55,212-2 is a potent cannabinoid receptor agonist with anticancer potential. Experiments were performed to determine the effects of WIN on proliferation, cell cycle distribution, and programmed cell death in human osteosarcoma MG63 and Saos-2 cells. Results show that WIN induced G2/M cell cycle arrest, which was associated with the induction of the main markers of ER stress (GRP78, CHOP and TRB3). In treated cells we also observed the conversion of the cytosolic form of the autophagosome marker LC3-I into LC3-II (the lipidated form located on the autophagosome membrane) and the enhanced incorporation of monodansylcadaverine and acridine orange, two markers of the autophagic compartments such as autolysosomes. WIN also induced morphological effects in MG63 cells consisting in an increase in cell size and a marked cytoplasmic vacuolization. However, WIN effects were not associated with a canonical apoptotic pathway, as demonstrated by the absence of specific features, and only the addition of TRAIL to WIN-treated cells led to apoptotic death probably mediated by up-regulation of the tumor suppressor factor PAR-4, whose levels increased after WIN treatment, and by the translocation of GRP78 on cell surface.
Collapse
Affiliation(s)
- Antonietta Notaro
- 1. Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Selenia Sabella
- 1. Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Ornella Pellerito
- 2. Laboratory of Cellular and Developmental Genetics, Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, Canada
| | - Riccardo Di Fiore
- 1. Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Anna De Blasio
- 1. Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Renza Vento
- 1. Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Giuseppe Calvaruso
- 1. Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| | - Michela Giuliano
- 1. Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Polyclinic, Palermo, Italy
| |
Collapse
|
8
|
Stauffer B, Wallis KT, Wilson SP, Egertová M, Elphick MR, Lewis DL, Hardy LR. CRIP1a switches cannabinoid receptor agonist/antagonist-mediated protection from glutamate excitotoxicity. Neurosci Lett 2011; 503:224-8. [PMID: 21896317 DOI: 10.1016/j.neulet.2011.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 08/02/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
A shared pathology among many neurological and neurodegenerative disorders is neuronal loss. Cannabinoids have been shown to be neuroprotective in multiple systems. However, both agonists and antagonists of the CB(1) cannabinoid receptor are neuroprotective, but the mechanisms responsible for these actions remain unclear. Recently a CB(1) receptor interacting protein, CRIP1a, was identified and found to alter CB(1) activity. Here we show that in an assay of glutamate neurotoxicity in primary neuronal cortical cultures CRIP1a disrupts agonist-induced neuroprotection and confers antagonist-induced neuroprotection.
Collapse
Affiliation(s)
- Brandon Stauffer
- Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Rivera P, Romero-Zerbo Y, Pavón FJ, Serrano A, López-Ávalos MD, Cifuentes M, Grondona JM, Bermúdez-Silva FJ, Fernández-Llebrez P, de Fonseca FR, Suárez J, Pérez-Martín M. Obesity-dependent cannabinoid modulation of proliferation in adult neurogenic regions. Eur J Neurosci 2011; 33:1577-86. [PMID: 21395869 DOI: 10.1111/j.1460-9568.2011.07650.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Endocannabinoid signalling participates in the control of neurogenesis, especially after brain insults. Obesity may explain alterations in physiology affecting neurogenesis, although it is unclear whether cannabinoid signalling may modulate neural proliferation in obese animals. Here we analyse the impact of obesity by using two approaches, a high-fat diet (HFD, 60% fat) and a standard/low-fat diet (STD, 10% fat), and the response to a subchronic treatment with the cannabinoid receptor type 1 (CB1) inverse agonist AM251 (3 mg/kg) on cell proliferation of two relevant neurogenic regions, namely the subventricular zone in the striatal wall of the lateral ventricle (SVZ) and the subgranular zone of the dentate gyrus (SGZ), and also in the hypothalamus given its role in energy metabolism. We found evidence of an interaction between diet-induced obesity and CB1 signalling in the regulation of cell proliferation. AM251 reduced caloric intake and body weight in obese rats, as well as corrected plasma levels of cholesterol and triglycerides. AM251 is shown, for the first time, to modulate cell proliferation in HFD-obese rats only. We observed an increase in the number of 5-bromo-2-deoxyuridine-labelled (BrdU+) cells in the SGZ, but a decrease in the number of BrdU+ cells in the SVZ and the hypothalamus of AM251-treated HFD rats. These BrdU+ cells expressed the neuron-specific βIII-tubulin. These results suggest that obesity may impact cell proliferation in the brain selectively, and provide support for a role of CB1 signalling regulation of neurogenesis in response to obesity.
Collapse
Affiliation(s)
- Patricia Rivera
- Laboratorio de Medicina Regenerativa, Hospital Carlos Haya, Fundación IMABIS, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Alvaro-Bartolomé M, Esteban S, García-Gutiérrez MS, Manzanares J, Valverde O, García-Sevilla JA. Regulation of Fas receptor/Fas-associated protein with death domain apoptotic complex and associated signalling systems by cannabinoid receptors in the mouse brain. Br J Pharmacol 2010; 160:643-56. [PMID: 20590568 DOI: 10.1111/j.1476-5381.2010.00710.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Natural and synthetic cannabinoids (CBs) induce deleterious or beneficial actions on neuronal survival. The Fas-associated protein with death domain (FADD) promotes apoptosis, and its phosphorylated form (p-FADD) mediates non-apoptotic actions. The regulation of Fas/FADD, mitochondrial apoptotic proteins and other pathways by CB receptors was investigated in the mouse brain. EXPERIMENTAL APPROACH Wild-type, CB(1) and CB(2) receptor knock-out (KO) mice were used to assess differences in receptor genotypes. CD1 mice were used to evaluate the effects of CB drugs on canonical apoptotic pathways and associated signalling systems. Target proteins were quantified by Western blot analysis. KEY RESULTS In brain regions of CB(1) receptor KO mice, Fas/FADD was reduced, but p-Ser191 FADD and the p-FADD/FADD ratio were increased. In CB(2) receptor KO mice, Fas/FADD was increased, but the p-FADD/FADD ratio was not modified. In mutant mice, cleavage of poly(ADP-ribose)-polymerase (PARP) did not indicate alterations in brain cell death. In CD1 mice, acute WIN55212-2 (CB(1) receptor agonist), but not JWH133 (CB(2) receptor agonist), inversely modulated brain FADD and p-FADD. Chronic WIN55212-2 induced FADD down-regulation and p-FADD up-regulation. Acute and chronic WIN55212-2 did not alter mitochondrial proteins or PARP cleavage. Acute, but not chronic, WIN55212-2 stimulated activation of anti-apoptotic (ERK, Akt) and pro-apoptotic (JNK, p38 kinase) pathways. CONCLUSIONS AND IMPLICATIONS CB(1) receptors appear to exert a modest tonic activation of Fas/FADD complexes in brain. However, chronic CB(1) receptor stimulation decreased pro-apoptotic FADD and increased non-apoptotic p-FADD. The multifunctional protein FADD could participate in the mechanisms of neuroprotection induced by CBs.
Collapse
Affiliation(s)
- M Alvaro-Bartolomé
- Laboratori de Neurofarmacologia, IUNICS, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Trazzi S, Steger M, Mitrugno VM, Bartesaghi R, Ciani E. CB1 cannabinoid receptors increase neuronal precursor proliferation through AKT/glycogen synthase kinase-3beta/beta-catenin signaling. J Biol Chem 2010; 285:10098-10109. [PMID: 20083607 DOI: 10.1074/jbc.m109.043711] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system is involved in the regulation of many physiological effects in the central and peripheral nervous system. Recent findings have demonstrated the presence of a functional endocannabinoid system within neuronal progenitors located in the hippocampus and ventricular/subventricular zone that participates in the regulation of cell proliferation. It is presently unknown whether the endocannabinoid system exerts a widespread effect on neuronal precursors from different neurogenic regions, and very little is known about the signaling by which it regulates neuronal precursor proliferation. Herein, we demonstrate the presence of cannabinoid CB(1) receptors in granule cell precursors (GCPs) during early cerebellar development. Activation of CB(1) receptors by HU-210 promoted GCP proliferation in vitro, an effect that was prevented by a selective CB(1) antagonist. Accordingly, in vivo experiments showed that GCP proliferation was increased by chronic HU-210 treatment and that in CB(1)-deficient mice cell proliferation was significantly lower than in wild-type littermates, indicating that the endocannabinoid system is physiologically involved in regulation of GCP proliferation. The pro-proliferative effect of cannabinoids in GCPs was mediated through the CB(1)/AKT/glycogen synthase kinase-3beta/beta-catenin pathway. Involvement of this pathway was also observed in cultures of neuronal precursors from the subventricular zone, suggesting that this pathway may be a general mechanism by which endocannabinoids regulate proliferation of neuronal precursors. These observations suggest that endocannabinoids constitute a new family of lipid signaling cues that may exert a widespread effect on neuronal precursor proliferation during brain development.
Collapse
Affiliation(s)
- Stefania Trazzi
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna
| | - Martin Steger
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna
| | - Valentina Maria Mitrugno
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna
| | - Renata Bartesaghi
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna
| | - Elisabetta Ciani
- Department of Human and General Physiology, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna; Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy.
| |
Collapse
|
12
|
Dalton GD, Bass CE, Van Horn CG, Howlett AC. Signal transduction via cannabinoid receptors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2009; 8:422-31. [PMID: 19839935 PMCID: PMC3976677 DOI: 10.2174/187152709789824615] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 10/09/2009] [Indexed: 01/20/2023]
Abstract
The endocannabinoids anandamide and 2-arachidonoylglycerol are lipid mediators that signal via CB(1) and CB(2) cannabinoid receptors and Gi/o-proteins to inhibit adenylyl cyclase and stimulate mitogen-activated protein kinase. In the brain, CB(1) receptors interact with opioid receptors in close proximity, and these receptors may share G-proteins and effector systems. In the striatum, CB(1) receptors function in coordination with D(1) and D(2) dopamine receptors, and combined stimulation of CB(1)-D(2) receptor heteromeric complexes promotes a unique interaction to stimulate cAMP production. CB(1) receptors also trigger growth factor receptor signaling cascades in cells by engaging in cross-talk or interreceptor signal transmission with the receptor tyrosine kinase (RTK) family. Mechanisms for CB(1) receptor-RTK transactivation can include stimulation of signal transduction pathways regulated by second messengers such as phospholipase C, metalloprotease cleavage of membrane-bound precursor proteins such as epidermal growth factor which activate RTKs, RTK autophosphorylation, and recruitment of non-receptor tyrosine kinases. CB(1) and CB(2) receptors are expressed in peripheral tissues including liver and adipose tissue, and are induced in pathological conditions. Novel signal transduction resulting from endocannabinoid regulation of AMP-regulated kinase and peroxisome proliferator-activated receptors have been discovered from studies of hepatocytes and adipocytes. It can be predicted that drug discovery of the future will be based upon these novel signal transduction mechanisms for endocannabinoid mediators.
Collapse
Affiliation(s)
- George D Dalton
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
13
|
Van Dross RT. Metabolism of anandamide by COX-2 is necessary for endocannabinoid-induced cell death in tumorigenic keratinocytes. Mol Carcinog 2009; 48:724-32. [PMID: 19148897 DOI: 10.1002/mc.20515] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonmelanoma skin cancer is the most prevalent cancer in the United States with approximately 1.25 million new cases diagnosed each year. Cyclooxygenase-2 (COX-2) expression is commonly elevated in these and other epithelial tumors. Cyclooxygenases metabolize arachidonic acid to prostaglandins, which promote growth and survival of tumor cells. COX-2 also metabolizes endocannabinoids forming prostaglandin-ethanolamides (PG-EA); however, the role of these lipid molecules in tumor cell survival is unclear. The goal of this research is to determine if the metabolic products of COX-2 contribute to endocannabinoid-induced cell death. Anandamide [also known as arachidonyl ethanolamide (AEA)] induced cell death in the COX-2 overexpressing squamous carcinoma cell line JWF2. In contrast, AEA did not initiate cell death in HaCaT keratinocytes, which express low basal levels of COX-2. Resistance to AEA-mediated cell death in HaCaT cells was reversed by overexpressing COX-2 in these cells. Next, ELISA assays were carried out to identify prostaglandins involved in AEA-mediated cell death. D-type prostaglandins were predominantly formed in AEA-exposed JWF2 cells although significant increases in E- and F-type prostaglandins were also seen. Cells were then treated with various prostaglandins or PG-EA to determine the contribution of each to AEA-induced cell death. PGD(2) and PGD(2)-EA were found to be cytotoxic to JWF2 keratinocytes and the PGD(2) dehydration products, PGJ(2) and 15-deoxy Delta(12,14) PGJ(2), were also potent inducers of cell death. These results suggest that AEA selectively induces cell death in tumorigenic keratinocytes due to COX-2 overexpression and the resulting metabolism of AEA to cytotoxic prostaglandins.
Collapse
Affiliation(s)
- Rukiyah T Van Dross
- Department of Pharmacology and Toxicology, East Carolina University, Brody School of Medicine, Greenville, North Carolina 28590, USA
| |
Collapse
|
14
|
Kim SR, Bok E, Chung YC, Chung ES, Jin BK. Interactions between CB(1) receptors and TRPV1 channels mediated by 12-HPETE are cytotoxic to mesencephalic dopaminergic neurons. Br J Pharmacol 2008; 155:253-64. [PMID: 18552868 PMCID: PMC2538702 DOI: 10.1038/bjp.2008.246] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/18/2008] [Accepted: 03/28/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSES We recently proposed the existence of neurotoxic interactions between the cannabinoid type 1 (CB(1)) receptor and transient receptor potential vanilloid 1 (TRPV1) channels in rat mesencephalic cultures. This study seeks evidence for the mediator(s) and mechanisms underlying the neurotoxic interactions between CB(1) receptors and TRPV1 in vitro and in vivo. EXPERIMENTAL APPROACH The mediator(s) and mechanism(s) for the interactions between CB(1) receptors and TRPV1 were evaluated by cell viability assays, immunocytochemistry, Fura-2 calcium imaging, mitochondrial morphology assay, ELISA and Western blot assay in vitro in neuron-enriched mesencephalic cultures. Injections into the substantia nigra and subsequent cell counts were also used to confirm these interactions in vivo. KEY RESULTS The neurotoxic interactions were mediated by 12(S)-hydroperoxyeicosatetraenoic acid (12(S)-HPETE), an endogenous TRPV1 agonist. CB(1) receptor agonists (HU210 and WIN55,212-2) increased the level of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), a downstream metabolite of 12(S)-HPETE, which stimulates TRPV1-mediated death of mesencephalic neurons, both in vitro and in vivo. The neurotoxicity was mediated by increased intracellular Ca(2+) concentration ([Ca(2+)](i)) through TRPV1, consequently leading to mitochondrial damage and was attenuated by baicalein, a 12-lipoxygenase inhibitor. CONCLUSION AND IMPLICATIONS Activation of CB(1) receptors in rat mesencephalic neurons was associated with biosynthesis of 12(S)-HPETE, which in turn stimulated TRPV1 activity, leading to increased [Ca(2+)](i), mitochondrial damage and neuronal death.
Collapse
Affiliation(s)
- S R Kim
- Brain Disease Research Center, Ajou University School of Medicine Suwon, Korea
| | - E Bok
- Brain Disease Research Center, Ajou University School of Medicine Suwon, Korea
- Neuroscience Graduate Program, Ajou University School of Medicine Suwon, Korea
- Division of Cell Transformation and Restoration, Ajou University School of Medicine Suwon, Korea
| | - Y C Chung
- Brain Disease Research Center, Ajou University School of Medicine Suwon, Korea
- Neuroscience Graduate Program, Ajou University School of Medicine Suwon, Korea
- Division of Cell Transformation and Restoration, Ajou University School of Medicine Suwon, Korea
| | - E S Chung
- Brain Disease Research Center, Ajou University School of Medicine Suwon, Korea
- Division of Cell Transformation and Restoration, Ajou University School of Medicine Suwon, Korea
| | - B K Jin
- Brain Disease Research Center, Ajou University School of Medicine Suwon, Korea
- Neuroscience Graduate Program, Ajou University School of Medicine Suwon, Korea
- Division of Cell Transformation and Restoration, Ajou University School of Medicine Suwon, Korea
| |
Collapse
|
15
|
Graziani G, Tentori L, Muzi A, Vergati M, Tringali G, Pozzoli G, Navarra P. Evidence that corticotropin-releasing hormone inhibits cell growth of human breast cancer cells via the activation of CRH-R1 receptor subtype. Mol Cell Endocrinol 2007; 264:44-9. [PMID: 17097220 DOI: 10.1016/j.mce.2006.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/31/2006] [Accepted: 10/04/2006] [Indexed: 01/08/2023]
Abstract
It has been previously shown that corticotropin-releasing hormone (CRH) exerts antiproliferative activity on an estrogen-dependent tumor cell line, i.e. human endometrial adenocarcinoma Ishikawa (IK) cells. Here we have investigated the effects of CRH on another estrogen-dependent tumor cell line, human breast cancer MCF7 cells. In this paradigm, CRH given at a fixed concentration of 100 nM significantly inhibited cell growth induced by 100 nM estradiol (E2) after 48 and 72 h of incubation. This effect was not associated with the induction of apoptosis. CRH inhibition of cell proliferation was counteracted in a concentration-dependent manner by the non-selective CRH receptor antagonist, astressin, as well as by a CRH-R1 selective receptor antagonist, antalarmin. RNase protection assays carried out on MCF7 under basal conditions showed that these cells express in a constitutive manner the CRH-R1 receptor subtype. We have also investigated the putative source of CRH acting on breast cancer cells; we found that MCF7 cells express CRH mRNA under basal conditions and secrete sizable amounts of immunoreactive CRH, which leads to postulate the existence of paracrine-autocrine inhibitory mechanism operated by CRH in breast cancer cells.
Collapse
Affiliation(s)
- Grazia Graziani
- Pharmacology and Medical Oncology Section, Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|