1
|
Tomé D, Dias MS, Correia J, Almeida RD. Fibroblast growth factor signaling in axons: from development to disease. Cell Commun Signal 2023; 21:290. [PMID: 37845690 PMCID: PMC10577959 DOI: 10.1186/s12964-023-01284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 10/18/2023] Open
Abstract
The fibroblast growth factor (FGF) family regulates various and important aspects of nervous system development, ranging from the well-established roles in neuronal patterning to more recent and exciting functions in axonal growth and synaptogenesis. In addition, FGFs play a critical role in axonal regeneration, particularly after spinal cord injury, confirming their versatile nature in the nervous system. Due to their widespread involvement in neural development, the FGF system also underlies several human neurological disorders. While particular attention has been given to FGFs in a whole-cell context, their effects at the axonal level are in most cases undervalued. Here we discuss the endeavor of the FGF system in axons, we delve into this neuronal subcompartment to provide an original view of this multipurpose family of growth factors in nervous system (dys)function. Video Abstract.
Collapse
Affiliation(s)
- Diogo Tomé
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Marta S Dias
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Joana Correia
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ramiro D Almeida
- Institute of Biomedicine, Department of Medical Sciences - iBiMED, University of Aveiro, Aveiro, Portugal.
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Interleukin-4 activates divergent cell-intrinsic signals to regulate retinal cell proliferation induced by classical growth factors. Mol Cell Neurosci 2022; 123:103780. [PMID: 36108809 DOI: 10.1016/j.mcn.2022.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 12/30/2022] Open
Abstract
In the developing retina, precise coordination of cell proliferation, differentiation, and survival is essential for proper retinal maturation and function. We have previously reported evidence that interleukin-4 (IL-4) plays critical roles in neuronal differentiation and survival during retinal development. However, little is known about the role of IL-4 on retinal cell proliferation. In the current study, we investigated if IL-4 regulates cell proliferation induced by epidermal growth factor (EGF) and by fibroblast growth factor 2 (FGF2) in primary retinal cell cultures obtained from newborn rats. First, we show that EGF and FGF2 act as mitogens for glial cells, increasing proliferation of these cells in the retina. EGF- and FGF2-induced mitogenesis requires activation of distinct cell-intrinsic signals. In retinal cells exposed to FGF2, IL-4 downregulates p53 levels (a protein whose activation induces cell-cycle arrest) and increases mitogenic responsiveness to FGF2 through activation of protein kinase A (PKA) pathway. Conversely, in retinal cells exposed to EGF, IL-4 downregulates cyclin D1 levels (a protein required for cell-cycle progression), upregulates p53 levels, and decreases mitogenic responsiveness to EGF. The inhibitory effect induced by IL-4 on retinal cells exposed to EGF requires activation of Janus kinase 3 (JAK3), but not activation of PKA. Based on previous and current findings, we propose that IL-4 serves as a node of signal divergence, modulating multiple cell-intrinsic signals (e.g., cyclin D1, p53, JAK3, and PKA) and mitogenic responsiveness to cell-extrinsic signals (e.g., FGF2 and EGF) to control cell proliferation, differentiation, and survival during retinal development.
Collapse
|
3
|
Kingston R, Amin D, Misra S, Gross JM, Kuwajima T. Serotonin transporter-mediated molecular axis regulates regional retinal ganglion cell vulnerability and axon regeneration after nerve injury. PLoS Genet 2021; 17:e1009885. [PMID: 34735454 PMCID: PMC8594818 DOI: 10.1371/journal.pgen.1009885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/16/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
Molecular insights into the selective vulnerability of retinal ganglion cells (RGCs) in optic neuropathies and after ocular trauma can lead to the development of novel therapeutic strategies aimed at preserving RGCs. However, little is known about what molecular contexts determine RGC susceptibility. In this study, we show the molecular mechanisms underlying the regional differential vulnerability of RGCs after optic nerve injury. We identified RGCs in the mouse peripheral ventrotemporal (VT) retina as the earliest population of RGCs susceptible to optic nerve injury. Mechanistically, the serotonin transporter (SERT) is upregulated on VT axons after injury. Utilizing SERT-deficient mice, loss of SERT attenuated VT RGC death and led to robust retinal axon regeneration. Integrin β3, a factor mediating SERT-induced functions in other systems, is also upregulated in RGCs and axons after injury, and loss of integrin β3 led to VT RGC protection and axon regeneration. Finally, RNA sequencing analyses revealed that loss of SERT significantly altered molecular signatures in the VT retina after optic nerve injury, including expression of the transmembrane protein, Gpnmb. GPNMB is rapidly downregulated in wild-type, but not SERT- or integrin β3-deficient VT RGCs after injury, and maintaining expression of GPNMB in RGCs via AAV2 viruses even after injury promoted VT RGC survival and axon regeneration. Taken together, our findings demonstrate that the SERT-integrin β3-GPNMB molecular axis mediates selective RGC vulnerability and axon regeneration after optic nerve injury.
Collapse
Affiliation(s)
- Rody Kingston
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Dwarkesh Amin
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Sneha Misra
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey M. Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Takaaki Kuwajima
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
4
|
Carrella S, Indrieri A, Franco B, Banfi S. Mutation-Independent Therapies for Retinal Diseases: Focus on Gene-Based Approaches. Front Neurosci 2020; 14:588234. [PMID: 33071752 PMCID: PMC7541846 DOI: 10.3389/fnins.2020.588234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Gene therapy is proving to be an effective approach to treat or prevent ocular diseases ensuring a targeted, stable, and regulated introduction of exogenous genetic material with therapeutic action. Retinal diseases can be broadly categorized into two groups, namely monogenic and complex (multifactorial) forms. The high genetic heterogeneity of monogenic forms represents a significant limitation to the application of gene-specific therapeutic strategies for a significant fraction of patients. Therefore, mutation-independent therapeutic strategies, acting on common pathways that underly retinal damage, are gaining interest as complementary/alternative approaches for retinal diseases. This review will provide an overview of mutation-independent strategies that rely on the modulation in the retina of key genes regulating such crucial degenerative pathways. In particular, we will describe how gene-based approaches explore the use of neurotrophic factors, microRNAs (miRNAs), genome editing and optogenetics in order to restore/prolong visual function in both outer and inner retinal diseases. We predict that the exploitation of gene delivery procedures applied to mutation/gene independent approaches may provide the answer to the unmet therapeutic need of a large fraction of patients with genetically heterogeneous and complex retinal diseases.
Collapse
Affiliation(s)
- Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
5
|
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons. Int J Mol Sci 2018; 19:ijms19124052. [PMID: 30558189 PMCID: PMC6321366 DOI: 10.3390/ijms19124052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
Collapse
|
6
|
Wilson AM, Mazzaferri J, Bergeron É, Patskovsky S, Marcoux-Valiquette P, Costantino S, Sapieha P, Meunier M. In Vivo Laser-Mediated Retinal Ganglion Cell Optoporation Using K V1.1 Conjugated Gold Nanoparticles. NANO LETTERS 2018; 18:6981-6988. [PMID: 30285455 DOI: 10.1021/acs.nanolett.8b02896] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vision loss caused by retinal diseases affects hundreds of millions of individuals worldwide. The retina is a delicate central nervous system tissue stratified into layers of cells with distinct roles. Currently, there is a void in treatments that selectively target diseased retinal cells, and current therapeutic paradigms present complications associated with off-target effects. Herein, as a proof of concept, we introduce an in vivo method using a femtosecond laser to locally optoporate retinal ganglion cells (RGCs) targeted with functionalized gold nanoparticles (AuNPs). We provide evidence that AuNPs functionalized with an antibody toward the cell-surface voltage-gated K+ channel subunit KV1.1 can selectively deliver fluorescently tagged siRNAs or fluorescein isothiocyanate-dextran dye into retinal cells when irradiated with an 800 nm 100 fs laser. Importantly, neither AuNP administration nor irradiation resulted in RGC death. This system provides a novel, non-viral-based approach that has the potential to selectively target retinal cells in diseased regions while sparing healthy areas and may be harnessed in future cell-specific therapies for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ariel M Wilson
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | | | - Éric Bergeron
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | - Sergiy Patskovsky
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | - Paule Marcoux-Valiquette
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| | | | | | - Michel Meunier
- Department of Engineering Physics , Polytechnique Montréal , Montreal , Quebec , Canada , H3C 3A7
| |
Collapse
|
7
|
Pfingst BE, Zhou N, Colesa DJ, Watts MM, Strahl SB, Garadat SN, Schvartz-Leyzac KC, Budenz CL, Raphael Y, Zwolan TA. Importance of cochlear health for implant function. Hear Res 2015; 322:77-88. [PMID: 25261772 PMCID: PMC4377117 DOI: 10.1016/j.heares.2014.09.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 01/17/2023]
Abstract
Amazing progress has been made in providing useful hearing to hearing-impaired individuals using cochlear implants, but challenges remain. One such challenge is understanding the effects of partial degeneration of the auditory nerve, the target of cochlear implant stimulation. Here we review studies from our human and animal laboratories aimed at characterizing the health of the implanted cochlea and the auditory nerve. We use the data on cochlear and neural health to guide rehabilitation strategies. The data also motivate the development of tissue-engineering procedures to preserve or build a healthy cochlea and improve performance obtained by cochlear implant recipients or eventually replace the need for a cochlear implant. This article is part of a Special Issue entitled .
Collapse
Affiliation(s)
- Bryan E Pfingst
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA.
| | - Ning Zhou
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA; East Carolina University, Greenville, NC, USA
| | - Deborah J Colesa
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa M Watts
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | | | - Soha N Garadat
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA; The University of Jordan, Amman, Jordan
| | | | - Cameron L Budenz
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Teresa A Zwolan
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Differential effects of AAV.BDNF and AAV.Ntf3 in the deafened adult guinea pig ear. Sci Rep 2015; 5:8619. [PMID: 25726967 DOI: 10.1038/srep08619] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 01/27/2015] [Indexed: 01/14/2023] Open
Abstract
Cochlear hair cell loss results in secondary regression of peripheral auditory fibers (PAFs) and loss of spiral ganglion neurons (SGNs). The performance of cochlear implants (CI) in rehabilitating hearing depends on survival of SGNs. Here we compare the effects of adeno-associated virus vectors with neurotrophin gene inserts, AAV.BDNF and AAV.Ntf3, on guinea pig ears deafened systemically (kanamycin and furosemide) or locally (neomycin). AAV.BDNF or AAV.Ntf3 was delivered to the guinea pig cochlea one week following deafening and ears were assessed morphologically 3 months later. At that time, neurotrophins levels were not significantly elevated in the cochlear fluids, even though in vitro and shorter term in vivo experiments demonstrate robust elevation of neurotrophins with these viral vectors. Nevertheless, animals receiving these vectors exhibited considerable re-growth of PAFs in the basilar membrane area. In systemically deafened animals there was a negative correlation between the presence of differentiated supporting cells and PAFs, suggesting that supporting cells influence the outcome of neurotrophin over-expression aimed at enhancing the cochlear neural substrate. Counts of SGN in Rosenthal's canal indicate that BDNF was more effective than NT-3 in preserving SGNs. The results demonstrate that a transient elevation in neurotrophin levels can sustain the cochlear neural substrate in the long term.
Collapse
|
9
|
O'Donovan KJ, Ma K, Guo H, Wang C, Sun F, Han SB, Kim H, Wong JK, Charron J, Zou H, Son YJ, He Z, Zhong J. B-RAF kinase drives developmental axon growth and promotes axon regeneration in the injured mature CNS. ACTA ACUST UNITED AC 2014; 211:801-14. [PMID: 24733831 PMCID: PMC4010899 DOI: 10.1084/jem.20131780] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intraneuronal activation of B-RAF kinase is sufficient to drive the growth of peripheral axon projections and enables robust regenerative axon growth in the injured optic nerve. Activation of intrinsic growth programs that promote developmental axon growth may also facilitate axon regeneration in injured adult neurons. Here, we demonstrate that conditional activation of B-RAF kinase alone in mouse embryonic neurons is sufficient to drive the growth of long-range peripheral sensory axon projections in vivo in the absence of upstream neurotrophin signaling. We further show that activated B-RAF signaling enables robust regenerative growth of sensory axons into the spinal cord after a dorsal root crush as well as substantial axon regrowth in the crush-lesioned optic nerve. Finally, the combination of B-RAF gain-of-function and PTEN loss-of-function promotes optic nerve axon extension beyond what would be predicted for a simple additive effect. We conclude that cell-intrinsic RAF signaling is a crucial pathway promoting developmental and regenerative axon growth in the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Kevin J O'Donovan
- Burke Medical Research Institute, Weill Cornell Medical College of Cornell University, White Plains, NY 10605
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vega-Meléndez GS, Blagburn JM, Blanco RE. Ciliary neurotrophic factor and fibroblast growth factor increase the speed and number of regenerating axons after optic nerve injury in adult Rana pipiens. J Neurosci Res 2013; 92:13-23. [PMID: 24166589 DOI: 10.1002/jnr.23303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/18/2013] [Accepted: 08/27/2013] [Indexed: 11/09/2022]
Abstract
Neurotrophins such as ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF) and growth factors such as fibroblast growth factor (FGF-2) play important roles in neuronal survival and in axonal outgrowth during development. However, whether they can modulate regeneration after optic nerve injury in the adult animal is less clear. The present study investigates the effects of application of these neurotrophic factors on the speed, number, and distribution of regenerating axons in the frog Rana pipiens after optic nerve crush. Optic nerves were crushed and the factors, or phosphate-buffered saline, were applied to the stump or intraocularly. The nerves were examined at different times after axotomy, using anterograde labeling with biotin dextran amine and antibody against growth-associated protein 43. We measured the length, number, and distribution of axons projecting beyond the lesion site. Untreated regenerating axons show an increase in elongation rate over 3 weeks. CNTF more than doubles this rate, FGF-2 increases it, and BDNF has little effect. In contrast, the numbers of regenerating axons that have reached 200 μm at 2 weeks were more than doubled by FGF-2, increased by CNTF, and barely affected by BDNF. The regenerating axons were preferentially distributed in the periphery of the nerve; although the numbers of axons were increased by neurotrophic factor application, this overall distribution was substantially unaffected.
Collapse
Affiliation(s)
- Giam S Vega-Meléndez
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, Old San Juan, Puerto Rico; Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | | | | |
Collapse
|
11
|
Abstract
OBJECTIVES This study aimed to search for protein kinases that play a role in acute pancreatitis and analyze their potential connection with each other. METHODS Information of human protein kinases were collected in protein kinase database, and then a systematic search was performed using PubMed for studies addressing the association between these kinases and acute pancreatitis. Gene Ontology Annotations were used to build interactions network for acute pancreatitis-associated protein kinases. RESULTS A total of 570 human protein kinases were found, in which 28 kinases play a role in acute pancreatitis. Among the 28 kinases, RIPK1, JAK2, SRC, EGFR, FYN, MET, JAK1, TYK2, and MTOR were annotated in Gene Ontology database. A gene ontology interactions network was built to visualize the common biological process these kinases participated in. CONCLUSIONS This study provides observations that protein kinases participate in all the sequential events in the exocrine pancreas in acute pancreatitis and that protein kinases are potential therapeutical target for acute pancreatitis.
Collapse
|
12
|
Dupraz S, Grassi D, Karnas D, Nieto Guil AF, Hicks D, Quiroga S. The insulin-like growth factor 1 receptor is essential for axonal regeneration in adult central nervous system neurons. PLoS One 2013; 8:e54462. [PMID: 23349896 PMCID: PMC3548777 DOI: 10.1371/journal.pone.0054462] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/11/2012] [Indexed: 11/18/2022] Open
Abstract
Axonal regeneration is an essential condition to re-establish functional neuronal connections in the injured adult central nervous system (CNS), but efficient regrowth of severed axons has proven to be very difficult to achieve. Although significant progress has been made in identifying the intrinsic and extrinsic mechanisms involved, many aspects remain unresolved. Axonal development in embryonic CNS (hippocampus) requires the obligate activation of the insulin-like growth factor 1 receptor (IGF-1R). Based on known similarities between axonal growth in fetal compared to mature CNS, we decided to examine the expression of the IGF-1R, using an antibody to the βgc subunit or a polyclonal anti-peptide antibody directed to the IGF-R (C20), in an in vitro model of adult CNS axonal regeneration, namely retinal ganglion cells (RGC) derived from adult rat retinas. Expression of both βgc and the β subunit recognized by C20 antibody were low in freshly isolated adult RGC, but increased significantly after 4 days in vitro. As in embryonic axons, βgc was localised to distal regions and leading growth cones in RGC. IGF-1R-βgc co-localised with activated p85 involved in the phosphatidylinositol-3 kinase (PI3K) signaling pathway, upon stimulation with IGF-1. Blocking experiments using either an antibody which neutralises IGF-1R activation, shRNA designed against the IGF-1R sequence, or the PI3K pathway inhibitor LY294002, all significantly reduced axon regeneration from adult RGC in vitro (∼40% RGC possessed axons in controls vs 2-8% in the different blocking studies). Finally, co-transfection of RGC with shRNA to silence IGF-1R together with a vector containing a constitutively active form of downstream PI3K (p110), fully restored axonal outgrowth in vitro. Hence these data demonstrate that axonal regeneration in adult CNS neurons requires re-expression and activation of IGF-1R, and targeting this system may offer new therapeutic approaches to enhancing axonal regeneration following trauma.
Collapse
Affiliation(s)
- Sebastián Dupraz
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Diego Grassi
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Diana Karnas
- Rhythms, Life and Death in the Retina, Centre National de la Recherche Scientifique (CNRS) UPR-3212 Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Alvaro F. Nieto Guil
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - David Hicks
- Rhythms, Life and Death in the Retina, Centre National de la Recherche Scientifique (CNRS) UPR-3212 Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Santiago Quiroga
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba y Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
13
|
Wilson AM, Di Polo A. Gene therapy for retinal ganglion cell neuroprotection in glaucoma. Gene Ther 2011; 19:127-36. [PMID: 21975466 DOI: 10.1038/gt.2011.142] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. The primary cause of glaucoma is not known, but several risk factors have been identified, including elevated intraocular pressure and age. Loss of vision in glaucoma is caused by the death of retinal ganglion cells (RGCs), the neurons that convey visual information from the retina to the brain. Therapeutic strategies aimed at delaying or halting RGC loss, known as neuroprotection, would be valuable to save vision in glaucoma. In this review, we discuss the significant progress that has been made in the use of gene therapy to understand mechanisms underlying RGC degeneration and to promote the survival of these neurons in experimental models of optic nerve injury.
Collapse
Affiliation(s)
- A M Wilson
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
14
|
D'Onofrio PM, Thayapararajah M, Lysko MD, Magharious M, Spratt SK, Lee G, Ando D, Surosky R, Fehlings MG, Koeberle PD. Gene Therapy for Traumatic Central Nervous System Injury and Stroke Using an Engineered Zinc Finger Protein that Upregulates VEGF-A. J Neurotrauma 2011; 28:1863-79. [DOI: 10.1089/neu.2011.1896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
| | | | - Meghan D. Lysko
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Mark Magharious
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
| | - S. Kaye Spratt
- Department of Therapeutic Development, Sangamo Biosciences, Port Richmond, California
| | - Gary Lee
- Department of Therapeutic Development, Sangamo Biosciences, Port Richmond, California
| | - Dale Ando
- Department of Therapeutic Development, Sangamo Biosciences, Port Richmond, California
| | - Richard Surosky
- Department of Therapeutic Development, Sangamo Biosciences, Port Richmond, California
| | | | - Paulo D. Koeberle
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Graduate Department of Rehabilitation Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Magharious M, D'Onofrio PM, Hollander A, Zhu P, Chen J, Koeberle PD. Quantitative iTRAQ analysis of retinal ganglion cell degeneration after optic nerve crush. J Proteome Res 2011; 10:3344-62. [PMID: 21627321 DOI: 10.1021/pr2004055] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Retinal ganglion cells (RGCs) are central nervous system (CNS) neurons that transmit visual information from the retina to the brain. Apoptotic RGC degeneration causes visual impairment that can be modeled by optic nerve crush. Neuronal apoptosis is also a salient feature of CNS trauma, ischemia (stroke), and diseases of the CNS such as Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis. Optic nerve crush induces the apoptotic cell death of ∼ 70% of RGCs within the first 14 days after injury. This model is particularly attractive for studying adult neuron apoptosis because the time-course of RGC death is well established and axon regeneration within the myelinated optic nerve can be concurrently evaluated. Here, we performed a large scale iTRAQ proteomic study to identify and quantify proteins of the rat retina at 1, 3, 4, 7, 14, and 21 days after optic nerve crush. In total, 337 proteins were identified, and 110 were differentially regulated after injury. Of these, 58 proteins were upregulated (>1.3 ×), 46 were downregulated (<0.7 ×), and 6 showed both positive and negative regulation over 21 days, relative to normal retinas. Among the differentially expressed proteins, Thymosin-β4 showed an early upregulation at 3 days, the time-point that immediately precedes the induction of RGC apoptosis after injury. We examined the effect of exogenous Thymosin-β4 administration on RGC death after optic nerve injury. Intraocular injections of Thymosin-β4 significantly increased RGC survival by ∼ 3-fold compared to controls and enhanced axon regeneration after crush, demonstrating therapeutic potential for CNS insults. Overall, our study identified numerous proteins that are differentially regulated at key time-points after optic nerve crush, and how the temporal profiles of their expression parallel RGC death. This data will aid in the future development of novel therapeutics to promote neuronal survival and regeneration in the adult CNS.
Collapse
Affiliation(s)
- Mark Magharious
- Graduate Department of Rehabilitation Science, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Shibata SB, Cortez SR, Beyer LA, Wiler JA, Di Polo A, Pfingst BE, Raphael Y. Transgenic BDNF induces nerve fiber regrowth into the auditory epithelium in deaf cochleae. Exp Neurol 2010; 223:464-72. [PMID: 20109446 DOI: 10.1016/j.expneurol.2010.01.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 12/26/2022]
Abstract
Sensory organs typically use receptor cells and afferent neurons to transduce environmental signals and transmit them to the CNS. When sensory cells are lost, nerves often regress from the sensory area. Therapeutic and regenerative approaches would benefit from the presence of nerve fibers in the tissue. In the hearing system, retraction of afferent innervation may accompany the degeneration of auditory hair cells that is associated with permanent hearing loss. The only therapy currently available for cases with severe or complete loss of hair cells is the cochlear implant auditory prosthesis. To enhance the therapeutic benefits of a cochlear implant, it is necessary to attract nerve fibers back into the cochlear epithelium. Here we show that forced expression of the neurotrophin gene BDNF in epithelial or mesothelial cells that remain in the deaf ear induces robust regrowth of nerve fibers towards the cells that secrete the neurotrophin, and results in re-innervation of the sensory area. The process of neurotrophin-induced neuronal regeneration is accompanied by significant preservation of the spiral ganglion cells. The ability to regrow nerve fibers into the basilar membrane area and protect the auditory nerve will enhance performance of cochlear implants and augment future cell replacement therapies such as stem cell implantation or induced transdifferentiation. This model also provides a general experimental stage for drawing nerve fibers into a tissue devoid of neurons, and studying the interaction between the nerve fibers and the tissue.
Collapse
Affiliation(s)
- Seiji B Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, 1150 W. Med. Cntr. Dr., Ann Arbor, MI 48109-5648, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Chen P, Zhang Y, Qiao M, Yuan Y. Activated protein C, an anticoagulant polypeptide, ameliorates severe acute pancreatitis via regulation of mitogen-activated protein kinases. J Gastroenterol 2007; 42:887-96. [PMID: 18008033 DOI: 10.1007/s00535-007-2104-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 08/13/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND Our aim was to investigate the changes of mitogen-activated protein kinases (MAPKs) by activated protein C (APC) treatment in rats with severe acute pancreatitis (SAP), and relate them to changes in SAP severity, thus providing evidence for developing clinical therapies. METHODS Sprague-Dawley rats were given an intravenous injection of saline (SAP group), APC (50 microg/kg or 10 microg/kg), or CNI1493 just before SAP induction. One group of rats underwent a sham operation (control group). Experimental samples were harvested 16 h after SAP induction. The gene expression of pancreatic MAPKs was evaluated by cDNA microarrays. The mRNA and protein/phosphorylated protein levels of p38 MAPK, extracellular signal-regulated protein kinase (ERK) 1/2, and c-Jun N-terminal kinase (JNK) and the protein levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta were determined in pancreatic tissue. The severity of disease was evaluated by pancreatic histology, the pancreatic wet/dry weight ratio, and the serum amylase level. RESULTS In rats treated with APC (50 microg/kg) or CNI1493, the severity of pancreatitis and expression of pancreatic TNF-alpha and IL-1beta proteins were attenuated by the decreased expression and activity of p38 MAPK and JNK (vs. the SAP group, P < 0.01). The expression and activity of ERK1/2 were increased in APC-treated rats, especially in the group treated with APC 50 microg/kg (vs. the SAP or CNI1493-treated group, P < 0.01, respectively). CONCLUSIONS Inhibition of expression of pancreatic p38 MAPK and JNK and upregulation of ERK1/2 expression by APC treatment may protect against pancreatic injury, thus ameliorating severity of the disease.
Collapse
Affiliation(s)
- Ping Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | | | | | | |
Collapse
|
18
|
Thomson RE, Pellicano F, Iwata T. Fibroblast growth factor receptor 3 kinase domain mutation increases cortical progenitor proliferation via mitogen-activated protein kinase activation. J Neurochem 2006; 100:1565-78. [PMID: 17181553 DOI: 10.1111/j.1471-4159.2006.04285.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have previously shown that mice carrying the K644E kinase domain mutation in fibroblast growth factor receptor 3 (Fgfr3) (EIIa;Fgfr3(+/K644E)) have enlarged brains with increased proliferation and decreased apoptosis of the cortical progenitors. Despite its unique rostral-low caudal-high gradient expression in the cortex, how Fgfr3 temporally and spatially influences progenitor proliferation is unknown. In vivo BrdU labelling now showed that progenitor proliferation was 10-46% higher in the EIIa;Fgfr3(+/K644E) cortex compared with wild type during embryonic day 11.5 (E11.5)-E13.5. The difference in proliferation between the EIIa;Fgfr3(+/K644E) and wild-type cortices was the greatest in the caudal cortex at E12.5 and E13.5. Inhibition of mitogen-activated or extracellular signal-regulated protein kinase (MEK) in vitro at E11.5 reduced the proliferation rate of the EIIa;Fgfr3(+/K644E) cortical progenitors to similar levels observed in the wild type, indicating that the majority of the increase in cell proliferation caused by the Fgfr3 mutation is mitogen-activated protein kinase (MAPK) pathway-dependent at this stage. In addition, elevated levels of Sprouty were observed in the EIIa;Fgfr3(+/K644E) telencephalon at E14.5, indicating the presence of negative feedback that may have suppressed further MAPK activation. We suggest that temporal activation of MAPK is largely responsible for cell proliferation caused by the Fgfr3 mutation during early stages of cortical development.
Collapse
Affiliation(s)
- Rachel E Thomson
- Division of Cancer Sciences and Molecular Pathology, Faculty of Medicine, University of Glasgow, Beatson Laboratories for Cancer Research, Glasgow, UK
| | | | | |
Collapse
|