1
|
Kapic A, Sabnis N, Dossou AS, Chavez J, Ceresa L, Gryczynski Z, Fudala R, Dickerman R, Bunnell BA, Lacko AG. Photophysical Characterization and In Vitro Evaluation of α-Mangostin-Loaded HDL Mimetic Nano-Complex in LN-229 Glioblastoma Spheroid Model. Int J Mol Sci 2024; 25:7378. [PMID: 39000485 PMCID: PMC11242846 DOI: 10.3390/ijms25137378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Cytotoxic activity has been reported for the xanthone α-mangostin (AMN) against Glioblastoma multiforme (GBM), an aggressive malignant brain cancer with a poor prognosis. Recognizing that AMN's high degree of hydrophobicity is likely to limit its systemic administration, we formulated AMN using reconstituted high-density lipoprotein (rHDL) nanoparticles. The photophysical characteristics of the formulation, including fluorescence lifetime and steady-state anisotropy, indicated that AMN was successfully incorporated into the rHDL nanoparticles. To our knowledge, this is the first report on the fluorescent characteristics of AMN with an HDL-based drug carrier. Cytotoxicity studies in a 2D culture and 3D spheroid model of LN-229 GBM cells and normal human astrocytes showed an enhanced therapeutic index with the rHDL-AMN formulation compared to the unincorporated AMN and Temozolomide, a standard GBM chemotherapy agent. Furthermore, treatment with the rHDL-AMN facilitated a dose-dependent upregulation of autophagy and reactive oxygen species generation to a greater extent in LN-229 cells compared to astrocytes, indicating the reduced off-target toxicity of this novel formulation. These studies indicate the potential therapeutic benefits to GBM patients via selective targeting using the rHDL-AMN formulation.
Collapse
Affiliation(s)
- Ammar Kapic
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Akpedje S Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jose Chavez
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Luca Ceresa
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Zygmunt Gryczynski
- College of Science and Engineering, Texas Christian University, Fort Worth, TX 76109, USA
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rob Dickerman
- Department of Spine Surgery, Neurological and Spine Surgeon, 5575 Frisco Square Blvd, Frisco, TX 75093, USA
| | - Bruce A Bunnell
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
2
|
Sutter PA, Willis CM, Menoret A, Nicaise AM, Sacino A, Sikkema AH, Jellison ER, Win KK, Han DK, Church W, Baron W, Vella AT, Crocker SJ. Astrocytic TIMP-1 regulates production of Anastellin, an inhibitor of oligodendrocyte differentiation and FTY720 responses. Proc Natl Acad Sci U S A 2024; 121:e2306816121. [PMID: 38266047 PMCID: PMC10835138 DOI: 10.1073/pnas.2306816121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. Astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout (Timp1KO) mice do not efficiently remyelinate following a demyelinating injury. Here, we performed an unbiased proteomic analysis and identified a fibronectin-derived peptide called Anastellin (Ana) that was unique to the Timp1KO astrocyte secretome. Ana was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Ana is known to act upon the sphingosine-1-phosphate receptor 1, and we determined that Ana also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro. Administration of FTY720 to wild-type C57BL/6 mice during MOG35-55-experimental autoimmune encephalomyelitis ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 (Timp1KO) had no effect. Analysis of Timp1 and fibronectin (FN1) transcripts from primary human astrocytes from healthy and multiple sclerosis (MS) donors revealed lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Last, analyses of proteomic databases of MS samples identified Ana peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high disease activity. A role for Ana in MS as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and innate remyelination potential in the MS brain.
Collapse
Affiliation(s)
- Pearl A. Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Cory M. Willis
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Antoine Menoret
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Alexandra M. Nicaise
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Anthony Sacino
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Arend. H. Sikkema
- Department of Biomedical Sciences of Cells & Systems, Section Neurobiology, University of Groningen, University Medical Center Groningen, Groningen9700RB, the Netherlands
| | - Evan R. Jellison
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Kyaw K. Win
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT06030
| | - David K. Han
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT06030
| | - William Church
- Department of Chemistry and Neuroscience Program, Trinity College, Hartford, CT06106
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Neurobiology, University of Groningen, University Medical Center Groningen, Groningen9700RB, the Netherlands
| | - Anthony T. Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| |
Collapse
|
3
|
Sutter PA, Willis CM, Menoret A, Nicaise AM, Sacino A, Sikkema AH, Jellison E, Win KK, Han DK, Church W, Baron W, Vella AT, Crocker SJ. Astrocytic TIMP-1 regulates production of Anastellin, a novel inhibitor of oligodendrocyte differentiation and FTY720 responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529003. [PMID: 36824834 PMCID: PMC9949145 DOI: 10.1101/2023.02.17.529003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. We have previously demonstrated that murine astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout ( Timp1 KO ) mice do not efficiently remyelinate following a demyelinating injury. To better understand the basis of this, we performed unbiased proteomic analyses and identified a fibronectin-derived peptide called anastellin that is unique to the murine Timp1 KO astrocyte secretome. Anastellin was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Anastellin is known to act upon the sphingosine-1-phosphate receptor 1 (S1PR1), and we determined that anastellin also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro . Further, administration of FTY720 to wild-type C57BL/6 mice during MOG 35-55 -EAE ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 in astrocytes ( Timp1 cKO ) had no effect. Analysis of human TIMP1 and fibronectin ( FN1 ) transcripts from healthy and multiple sclerosis (MS) patient brain samples revealed an inverse relationship where lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Lastly, we analyzed proteomic databases of MS samples and identified anastellin peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high versus low disease activity. The prospective role for anastellin generation in association with myelin lesions as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and the innate remyelination potential of the the MS brain. Significance Statement Astrocytic production of TIMP-1 prevents the protein catabolism of fibronectin. In the absence of TIMP-1, fibronectin is further digested leading to a higher abundance of anastellin peptides that can bind to sphingosine-1-phosphate receptor 1. The binding of anastellin with the sphingosine-1-phosphate receptor 1 impairs the differentiation of oligodendrocytes progenitor cells into myelinating oligodendrocytes in vitro , and negates the astrocyte-mediated therapeutic effects of FTY720 in the EAE model of chronic CNS inflammation. These data indicate that TIMP-1 production by astrocytes is important in coordinating astrocytic functions during inflammation. In the absence of astrocyte produced TIMP-1, elevated expression of anastellin may represent a prospective biomarker for FTY720 therapeutic responsiveness.
Collapse
|
4
|
Proulx J, Stacy S, Park IW, Borgmann K. A Non-Canonical Role for IRE1α Links ER and Mitochondria as Key Regulators of Astrocyte Dysfunction: Implications in Methamphetamine use and HIV-Associated Neurocognitive Disorders. Front Neurosci 2022; 16:906651. [PMID: 35784841 PMCID: PMC9247407 DOI: 10.3389/fnins.2022.906651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Astrocytes are one of the most numerous glial cells in the central nervous system (CNS) and provide essential support to neurons to ensure CNS health and function. During a neuropathological challenge, such as during human immunodeficiency virus (HIV)-1 infection or (METH)amphetamine exposure, astrocytes shift their neuroprotective functions and can become neurotoxic. Identifying cellular and molecular mechanisms underlying astrocyte dysfunction are of heightened importance to optimize the coupling between astrocytes and neurons and ensure neuronal fitness against CNS pathology, including HIV-1-associated neurocognitive disorders (HAND) and METH use disorder. Mitochondria are essential organelles for regulating metabolic, antioxidant, and inflammatory profiles. Moreover, endoplasmic reticulum (ER)-associated signaling pathways, such as calcium and the unfolded protein response (UPR), are important messengers for cellular fate and function, including inflammation and mitochondrial homeostasis. Increasing evidence supports that the three arms of the UPR are involved in the direct contact and communication between ER and mitochondria through mitochondria-associated ER membranes (MAMs). The current study investigated the effects of HIV-1 infection and chronic METH exposure on astrocyte ER and mitochondrial homeostasis and then examined the three UPR messengers as potential regulators of astrocyte mitochondrial dysfunction. Using primary human astrocytes infected with pseudotyped HIV-1 or exposed to low doses of METH for 7 days, astrocytes had increased mitochondrial oxygen consumption rate (OCR), cytosolic calcium flux and protein expression of UPR mediators. Notably, inositol-requiring protein 1α (IRE1α) was most prominently upregulated following both HIV-1 infection and chronic METH exposure. Moreover, pharmacological inhibition of the three UPR arms highlighted IRE1α as a key regulator of astrocyte metabolic function. To further explore the regulatory role of astrocyte IRE1α, astrocytes were transfected with an IRE1α overexpression vector followed by activation with the proinflammatory cytokine interleukin 1β. Overall, our findings confirm IRE1α modulates astrocyte mitochondrial respiration, glycolytic function, morphological activation, inflammation, and glutamate uptake, highlighting a novel potential target for regulating astrocyte dysfunction. Finally, these findings suggest both canonical and non-canonical UPR mechanisms of astrocyte IRE1α. Thus, additional studies are needed to determine how to best balance astrocyte IRE1α functions to both promote astrocyte neuroprotective properties while preventing neurotoxic properties during CNS pathologies.
Collapse
|
5
|
Fields JA, Swinton MK, Montilla-Perez P, Ricciardelli E, Telese F. The Cannabinoid Receptor Agonist, WIN-55212-2, Suppresses the Activation of Proinflammatory Genes Induced by Interleukin 1 Beta in Human Astrocytes. Cannabis Cannabinoid Res 2022; 7:78-92. [PMID: 33998879 PMCID: PMC8864424 DOI: 10.1089/can.2020.0128] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Alterations of astrocyte function play a crucial role in neuroinflammatory diseases due to either the loss of their neuroprotective role or the gain of their toxic inflammatory properties. Accumulating evidence highlights that cannabinoids and cannabinoid receptor agonists, such as WIN55,212-2 (WIN), reduce inflammation in cellular and animal models. Thus, the endocannabinoid system has become an attractive target to attenuate chronic inflammation in neurodegenerative diseases. However, the mechanism of action of WIN in astrocytes remains poorly understood. Objective: We studied the immunosuppressive property of WIN by examining gene expression patterns that were modulated by WIN in reactive astrocytes. Materials and Methods: Transcriptomic analysis by RNA-seq was carried out using primary human astrocyte cultures stimulated by the proinflammatory cytokine interleukin 1 beta (IL1β) in the presence or absence of WIN. Real-time quantitative polymerase chain reaction analysis was conducted on selected transcripts to characterize the dose-response effects of WIN, and to test the effect of selective antagonists of cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptors (PPAR). Results: Transcriptomic analysis showed that the IL1β-induced inflammatory response is robustly inhibited by WIN pretreatment. WIN treatment alone also induced substantial gene expression changes. Pathway analysis revealed that the anti-inflammatory properties of WIN were linked to the regulation of kinase pathways and gene targets of neuroprotective transcription factors, including PPAR and SMAD (mothers against decapentaplegic homolog). The inhibitory effect of WIN was dose-dependent, but it was not affected by selective antagonists of CB1 or PPAR. Conclusions: This study suggests that targeting the endocannabinoid system may be a promising strategy to disrupt inflammatory pathways in reactive astrocytes. The anti-inflammatory activity of WIN is independent of CB1, suggesting that alternative receptors mediate the effects of WIN. These results provide mechanistic insights into the anti-inflammatory activity of WIN and highlight that astrocytes are a potential therapeutic target to ameliorate neuroinflammation in the brain.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry and University of California San Diego, La Jolla, California, USA
| | - Mary K. Swinton
- Department of Psychiatry and University of California San Diego, La Jolla, California, USA
| | | | - Eugenia Ricciardelli
- Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Francesca Telese
- Department of Medicine, University of California San Diego, La Jolla, California, USA.,*Address correspondence to: Francesca Telese, PhD, Department of Medicine, University of California San Diego, La Jolla, CA 93093, USA,
| |
Collapse
|
6
|
Farahtaj F, Alizadeh L, Gholami A, Khosravy MS, Bashar R, Gharibzadeh S, Mahmoodzadeh Niknam H, Ghaemi A. Differential pathogenesis of intracerebral and intramuscular inoculation of street rabies virus and CVS-11 strains in a mouse model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:943-950. [PMID: 34712425 PMCID: PMC8528248 DOI: 10.22038/ijbms.2021.54264.12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/25/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The mechanisms of rabies evasion and immunological interactions with the host defense have not been completely elucidated. Here, we evaluated the dynamic changes in the number of astrocytes, microglial and neuronal cells in the brain following intramuscular (IM) and intracerebral (IC) inoculations of street rabies virus (SRV). MATERIALS AND METHODS The SRV isolated from a jackal and CVS-11 were used to establish infection in NMRI-female mice. The number of astrocytes (by expression of GFAP), microglial (by Iba1), and neuronal cells (by MAP-2) in the brain following IM and IC inoculations of SRV were evaluated by immunohistochemistry and H & E staining 7 to 30 days post-infection. RESULTS Increased numbers of astrocytes and microglial cells in dead mice infected by SRV via both IC and IM routes were recorded. The number of neuronal cells in surviving mice was decreased only in IC-infected mice, while in the dead group, this number was decreased by both routes.The risk of death in SRV-infected mice was approximately 3 times higher than in the CVS-11 group. In IC-inoculated mice, viral dilution was the only influential factor in mortality, while the type of strain demonstrated a significant impact on the mortality rate in IM inoculations. CONCLUSION Our results suggested that microglial cells and their inflammatory cytokines may not contribute to the neuroprotection and recovery in surviving mice following intracerebral inoculation of SRV. An unexpected decrease in MAP2 expression via intramuscular inoculation indicates the imbalance in the integrity and stability of neuronal cytoskeleton which aggravates rabies infection.
Collapse
Affiliation(s)
- Firozeh Farahtaj
- National Center for Reference & Research on Rabies, Institut Pasteur of Iran, Tehran, Iran
| | - Leila Alizadeh
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Gholami
- Viral vaccine Production, Pasteur Institute of Iran, Karaj, Iran
| | | | - Rouzbeh Bashar
- National Center for Reference & Research on Rabies, Institut Pasteur of Iran, Tehran, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging of Infectious Diseases, Institut Pasteur of Iran, Tehran, Iran
| | | | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Joshi CR, Stacy S, Sumien N, Ghorpade A, Borgmann K. Astrocyte HIV-1 Tat Differentially Modulates Behavior and Brain MMP/TIMP Balance During Short and Prolonged Induction in Transgenic Mice. Front Neurol 2020; 11:593188. [PMID: 33384653 PMCID: PMC7769877 DOI: 10.3389/fneur.2020.593188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Despite effective antiretroviral therapy (ART), mild forms of HIV-associated neurocognitive disorders (HAND) continue to afflict approximately half of all people living with HIV (PLWH). As PLWH age, HIV-associated inflammation perturbs the balance between brain matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs), likely contributing to neuropathogenesis. The MMP/TIMP balance is associated with cognition, learning, and memory, with TIMPs eliciting neuroprotective effects. Dysregulation of the MMP/TIMP balance was evident in the brains of PLWH where levels of TIMP-1, the inducible family member, were significantly lower than non-infected controls, and MMPs were elevated. Here, we evaluated the MMP/TIMP levels in the doxycycline (DOX)-induced glial fibrillary acidic protein promoter-driven HIV-1 transactivator of transcription (Tat) transgenic mouse model. The HIV-1 protein Tat is constitutively expressed by most infected cells, even during ART suppression of viral replication. Many studies have demonstrated indirect and direct mechanisms of short-term Tat-associated neurodegeneration, including gliosis, blood-brain barrier disruption, elevated inflammatory mediators and neurotoxicity. However, the effects of acute vs. prolonged exposure on Tat-induced dysregulation remain to be seen. This is especially relevant for TIMP-1 as expression was previously shown to be differentially regulated in human astrocytes during acute vs. chronic inflammation. In this context, acute Tat expression was induced with DOX intraperitoneal injections over 3 weeks, while DOX-containing diet was used to achieve long-term Tat expression over 6 months. First, a series of behavior tests evaluating arousal, ambulation, anxiety, and cognition was performed to examine impairments analogous to those observed in HAND. Next, gene expression of components of the MMP/TIMP axis and known HAND-relevant inflammatory mediators were assessed. Altered anxiety-like, motor and/or cognitive behaviors were observed in Tat-induced (iTat) mice. Gene expression of MMPs and TIMPs was altered depending on the duration of Tat expression, which was independent of the HIV-associated neuroinflammation typically implicated in MMP/TIMP regulation. Collectively, we infer that HIV-1 Tat-mediated dysregulation of MMP/TIMP axis and behavioral changes are dependent on duration of exposure. Further, prolonged Tat expression demonstrates a phenotype comparable to asymptomatic to mild HAND manifestation in patients.
Collapse
Affiliation(s)
- Chaitanya R Joshi
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Satomi Stacy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
8
|
Cisneros IE, Ghorpade A, Borgmann K. Methamphetamine Activates Trace Amine Associated Receptor 1 to Regulate Astrocyte Excitatory Amino Acid Transporter-2 via Differential CREB Phosphorylation During HIV-Associated Neurocognitive Disorders. Front Neurol 2020; 11:593146. [PMID: 33324330 PMCID: PMC7724046 DOI: 10.3389/fneur.2020.593146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Methamphetamine (METH) use, referred to as methamphetamine use disorder (MUD), results in neurocognitive decline, a characteristic shared with HIV-associated neurocognitive disorders (HAND). MUD exacerbates HAND partly through glutamate dysregulation. Astrocyte excitatory amino acid transporter (EAAT)-2 is responsible for >90% of glutamate uptake from the synaptic environment and is significantly decreased with METH and HIV-1. Our previous work demonstrated astrocyte trace amine associated receptor (TAAR) 1 to be involved in EAAT-2 regulation. Astrocyte EAAT-2 is regulated at the transcriptional level by cAMP responsive element binding (CREB) protein and NF-κB, transcription factors activated by cAMP, calcium and IL-1β. Second messengers, cAMP and calcium, are triggered by TAAR1 activation, which is upregulated by IL-1β METH-mediated increases in these second messengers and signal transduction pathways have not been shown to directly decrease astrocyte EAAT-2. We propose CREB activation serves as a master regulator of EAAT-2 transcription, downstream of METH-induced TAAR1 activation. To investigate the temporal order of events culminating in CREB activation, genetically encoded calcium indicators, GCaMP6s, were used to visualize METH-induced calcium signaling in primary human astrocytes. RNA interference and pharmacological inhibitors targeting or blocking cAMP-dependent protein kinase A and calcium/calmodulin kinase II confirmed METH-induced regulation of EAAT-2 and resultant glutamate clearance. Furthermore, we investigated METH-mediated CREB phosphorylation at both serine 133 and 142, the co-activator and co-repressor forms, respectively. Overall, this work revealed METH-induced differential CREB phosphorylation is a critical regulator for EAAT-2 function and may thus serve as a mechanistic target for the attenuation of METH-induced excitotoxicity in the context of HAND.
Collapse
Affiliation(s)
- Irma E Cisneros
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Kathleen Borgmann
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
9
|
Proulx J, Joshi C, Vijayaraghavalu S, Saraswathy M, Labhasetwar V, Ghorpade A, Borgmann K. Arginine-Modified Polymers Facilitate Poly (Lactide-Co-Glycolide)-Based Nanoparticle Gene Delivery to Primary Human Astrocytes. Int J Nanomedicine 2020; 15:3639-3647. [PMID: 32547019 PMCID: PMC7250304 DOI: 10.2147/ijn.s250865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/24/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Astrocyte dysfunction is a hallmark of central nervous system injury or infection. As a primary contributor to neurodegeneration, astrocytes are an ideal therapeutic target to combat neurodegenerative conditions. Gene therapy has arisen as an innovative technique that provides excellent prospect for disease intervention. Poly (lactide-co-glycolide) (PLGA) and polyethylenimine (PEI) are polymeric nanoparticles commonly used in gene delivery, each manifesting their own set of advantages and disadvantages. As a clinically approved polymer by the Federal Drug Administration, well characterized for its biodegradability and biocompatibility, PLGA-based nanoparticles (PLGA-NPs) are appealing for translational gene delivery systems. However, our investigations revealed PLGA-NPs were ineffective at facilitating exogenous gene expression in primary human astrocytes, despite their success in other cell lines. Furthermore, PEI polymers illustrate high delivery efficiency but induce cytotoxicity. The purpose of this study is to develop viable and biocompatible NPsystem for astrocyte-targeted gene therapy. MATERIALS AND METHODS Successful gene expression by PLGA-NPs alone or in combination with arginine-modified PEI polymers (AnPn) was assessed by a luciferase reporter gene encapsulated in PLGA-NPs. Cytoplasmic release and nuclear localization of DNA were investigated using fluorescent confocal imaging with YOYO-labeled plasmid DNA (pDNA). NP-mediated cytotoxicity was assessed via lactate dehydrogenase in primary human astrocytes and neurons. RESULTS Confocal imaging of YOYO-labeled pDNA confirmed PLGA-NPs delivered pDNA to the cytoplasm in a dose and time-dependent manner. However, co-staining revealed pDNA delivered by PLGA-NPs did not localize to the nucleus. The addition of AnPn significantly improved nuclear localization of pDNA and successfully achieved gene expression in primary human astrocytes. Moreover, these formulations were biocompatible with both astrocytes and neurons. CONCLUSION By co-transfecting two polymeric NPs, we developed an improved system for gene delivery and expression in primary human astrocytes. These findings provide a basis for a biocompatible and clinically translatable method to regulate astrocyte function during neurodegenerative diseases and disorders.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Chaitanya Joshi
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sivakumar Vijayaraghavalu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Manju Saraswathy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anuja Ghorpade
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kathleen Borgmann
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX, USA,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX76107, USA,Correspondence: Kathleen Borgmann Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX76107, USATel +1 817 735-0339Fax +1 817 735-2610 Email
| |
Collapse
|
10
|
Combination of clotam and vincristine enhances anti-proliferative effect in medulloblastoma cells. Gene 2019; 705:67-76. [PMID: 30991098 DOI: 10.1016/j.gene.2019.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Medulloblastoma (MB) is characterized by highly invasive embryonal neuro-epithelial tumors that metastasize via cerebrospinal fluid. MB is difficult to treat and the chemotherapy is associated with significant toxicities and potential long-term disabilities. Previously, we showed that small molecule, clotam (tolfenamic acid: TA) inhibited MB cell proliferation and tumor growth in mice by targeting, survivin. Overexpression of survivin is associated with aggressiveness and poor prognosis in several cancers, including MB. The aim of this study was to test combination treatment involving Vincristine® (VCR), a standard chemotherapeutic drug for MB and TA against MB cells. DAOY and D283 MB cells were treated with 10 μg/mL TA or VCR (DAOY: 2 ng/mL; D283: 1 ng/mL) or combination (TA + VCR). These optimized doses were lower than individual IC50 values. The effect of single or combination treatment on cell viability (CellTiterGlo kit), Combination Index (Chou-Talalay method based on median-drug effect analysis), activation of apoptosis and cell cycle modulation (by flow cytometry using Annexin V and propidium iodide respectively) and the expression of associated markers including survivin (Western immunoblot) were determined. Combination Index showed moderate synergistic cytotoxic effect in both cells. When compared to individual agents, the combination of TA and VCR increased MB cell growth inhibition, induced apoptosis and caused cell cycle (G2/M phase) arrest. Survivin expression was also decreased by the combination treatment. TA is effective for inducing the anti-proliferative response of VCR in MB cells. MB has four distinct genetic/molecular subgroups. Experiments were conducted with MB cells representing two subgroups (DAOY: SHH group; D283: group 4/3). TA-induced inhibition of survivin expression potentially destabilizes mitotic microtubule assembly, sensitizing MB cells and enhancing the efficacy of VCR.
Collapse
|
11
|
Joshi CR, Raghavan V, Vijayaraghavalu S, Gao Y, Saraswathy M, Labhasetwar V, Ghorpade A. Reaching for the Stars in the Brain: Polymer-Mediated Gene Delivery to Human Astrocytes. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:645-657. [PMID: 30081235 PMCID: PMC6082920 DOI: 10.1016/j.omtn.2018.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/22/2018] [Indexed: 02/04/2023]
Abstract
Astrocytes, the "star-shaped" glial cells, are appealing gene-delivery targets to treat neurological diseases due to their diverse roles in brain homeostasis and disease. Cationic polymers have successfully delivered genes to mammalian cells and hence present a viable, non-immunogenic alternative to widely used viral vectors. In this study, we investigated the gene delivery potential of a series of arginine- and polyethylene glycol-modified, siloxane-based polyethylenimine analogs in primary cultured human neural cells (neurons and astrocytes) and in mice. Plasmid DNAs encoding luciferase reporter were used to measure gene expression. We hypothesized that polyplexes with arginine would help in cellular transport of the DNA, including across the blood-brain barrier; polyethylene glycol will stabilize polyethylenimine and reduce its toxicity while maintaining its DNA-condensing ability. Polyplexes were non-toxic to human neural cells and red blood cells. Cellular uptake of polyplexes and sustained gene expression were seen in human astrocytes as well as in mouse brains post-intravenous-injections. The polyplexes also delivered and expressed genes driven by astrocyte-restricted glial fibrillary acidic protein promoters, which are weaker than viral promoters. To our knowledge, the presented work validates a biocompatible and effective polymer-facilitated gene-delivery system for both human brain cells and mice for the first time.
Collapse
Affiliation(s)
- Chaitanya R Joshi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Vijay Raghavan
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sivakumar Vijayaraghavalu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yue Gao
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Manju Saraswathy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
12
|
Bowen KE, Mathew SO, Borgmann K, Ghorpade A, Mathew PA. A novel ligand on astrocytes interacts with natural cytotoxicity receptor NKp44 regulating immune response mediated by NK cells. PLoS One 2018; 13:e0193008. [PMID: 29447242 PMCID: PMC5814005 DOI: 10.1371/journal.pone.0193008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022] Open
Abstract
NK cells play important role in immunity against pathogens and cancer. NK cell functions are regulated by inhibitory and activating receptors binding corresponding ligands on the surface of target cells. NK cells were shown to be recruited to the CNS following several pathological conditions. NK cells could impact CNS physiology by killing glial cells and by secreting IFN-γ. Astrocytes are intimately involved in immunological and inflammatory events occurring in the CNS and reactive astrogliosis is a key feature in HIV-associated neurocognitive disorders. There is little data on NK-astrocyte interactions and ligands expressed on astrocytes that could impact NK cell function. Natural cytotoxicity receptors (NCRs) play a critical role in the cytolytic function of NK cells. Among the NCRs, NKp44 is unique in expression and signal transduction. NKp44 is expressed only upon activation of NK cells and it can mediate both activating and inhibitory signals to NK cells. Here, we have studied the expression and function of natural cytotoxicity receptor NKp44 upon NK-astrocytes interactions in the presence or absence of an HIV peptide (HIV-3S peptide) shown to induce NK cell killing of CD4+ T cells during HIV–infection. Using a fusion protein consisting of the extracellular domain of NKp44 fused to Fc portion of human IgG, we determined the expression of a novel ligand for NKp44 (NKp44L) on astrocytes. Incubation of astrocytes with HIV-3S peptide downregulated NKp44L expression on astrocytes implicating protection from NK mediated killing. Thus, our study showed that NKp44 have a protective effect on astrocytes from NK cell mediated killing during HIV infection and impact astrocyte role in HAND.
Collapse
Affiliation(s)
- Kelly E Bowen
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Stephen O Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Porunelloor A Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
13
|
Tian B, Zhou M, Yang Y, Yu L, Luo Z, Tian D, Wang K, Cui M, Chen H, Fu ZF, Zhao L. Lab-Attenuated Rabies Virus Causes Abortive Infection and Induces Cytokine Expression in Astrocytes by Activating Mitochondrial Antiviral-Signaling Protein Signaling Pathway. Front Immunol 2018; 8:2011. [PMID: 29403485 PMCID: PMC5785723 DOI: 10.3389/fimmu.2017.02011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/27/2017] [Indexed: 12/25/2022] Open
Abstract
Rabies is an ancient disease but remains endemic in most parts of the world and causes approximately 59,000 deaths annually. The mechanism through which the causative agent, rabies virus (RABV), evades the host immune response and infects the host central nervous system (CNS) has not been completely elucidated thus far. Our previous studies have shown that lab-attenuated, but not wild-type (wt), RABV activates the innate immune response in the mouse and dog models. In this present study, we demonstrate that lab-attenuated RABV causes abortive infection in astrocytes, the most abundant glial cells in the CNS. Furthermore, we found that lab-attenuated RABV produces more double-stranded RNA (dsRNA) than wt RABV, which is recognized by retinoic acid-inducible gene I (RIG-I) or melanoma differentiation-associated protein 5 (MDA5). Activation of mitochondrial antiviral-signaling protein (MAVS), the common adaptor molecule for RIG-I and MDA5, results in the production of type I interferon (IFN) and the expression of hundreds of IFN-stimulated genes, which suppress RABV replication and spread in astrocytes. Notably, lab-attenuated RABV replicates in a manner identical to that of wt RABV in MAVS−/− astrocytes. It was also found that lab-attenuated, but not wt, RABV induces the expression of inflammatory cytokines via the MAVS- p38/NF-κB signaling pathway. These inflammatory cytokines increase the blood–brain barrier permeability and thus enable immune cells and antibodies infiltrate the CNS parenchyma, resulting in RABV control and elimination. In contrast, wt RABV restricts dsRNA production and thus evades innate recognition by RIG-I/MDA5 in astrocytes, which could be one of the mechanisms by which wt RABV evades the host immune response in resident CNS cells. Our findings suggest that astrocytes play a critical role in limiting the replication of lab-attenuated RABV in the CNS.
Collapse
Affiliation(s)
- Bin Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yu Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Lan Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhaochen Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Dayong Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Ke Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Min Cui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Pathology, University of Georgia, Athens, GA, United States
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Shah A, Kumar A. Methamphetamine-mediated endoplasmic reticulum (ER) stress induces type-1 programmed cell death in astrocytes via ATF6, IRE1α and PERK pathways. Oncotarget 2018; 7:46100-46119. [PMID: 27323860 PMCID: PMC5216784 DOI: 10.18632/oncotarget.10025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (MA), a psychostimulant drug has been associated with a variety of neurotoxic effects which are thought to be mediated by induction of pro-inflammatory cytokines/chemokines, oxidative stress and damage to blood-brain-barrier. Conversely, the ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases. However, its involvement in MA-mediated neurodegenerative effects remains largely unexplored. The present study was undertaken to assess the effect of MA on ER stress and its possible involvement in apoptosis. For this purpose, SVGA astrocytes were treated with MA, which induced the expressions of BiP and CHOP at both, mRNA and protein levels. This phenomenon was also confirmed in HFA and various regions of mouse brain. Assessment of IRE1α, ATF6 and PERK pathways further elucidated the mechanistic details underlying MA-mediated ER stress. Knockdown of various intermediate molecules in ER stress pathways using siRNA demonstrated reduction in MA-mediated CHOP. Finally, MA-mediated apoptosis was demonstrated via MTT assay and TUNEL staining. The involvement of ER stress in the apoptosis was demonstrated with the help of MTT and TUNEL assays in the presence of siRNA against various ER stress proteins. The apoptosis also involved activation of caspase-3 and caspase-9, which was reversed by knockdown with various siRNAs. Altogether, this is the first report demonstrating mechanistic details responsible for MA-mediated ER stress and its role in apoptosis. This study provides a novel group of targets that can be explored in future for management of MA-mediated cell death and MA-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
15
|
Nooka S, Ghorpade A. HIV-1-associated inflammation and antiretroviral therapy regulate astrocyte endoplasmic reticulum stress responses. Cell Death Discov 2017; 3:17061. [PMID: 29354290 PMCID: PMC5712632 DOI: 10.1038/cddiscovery.2017.61] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 12/28/2022] Open
Abstract
Antiretroviral (ARV) therapy (ART) has effectively suppressed the incidence of human immunodeficiency virus (HIV)-associated dementia in HIV-1 positive individuals. However, the prevalence of more subtle forms of neurocognitive dysfunction continues to escalate. Recently, endoplasmic reticulum (ER) stress has been linked to many neurological diseases; yet, its role in HIV/neuroAIDS remains largely unexplored. Furthermore, upregulation of astrocyte elevated gene-1 (AEG-1), a novel HIV-1 inducible gene, along with ER stress markers in a Huntington’s disease model, suggests a possible role in HIV-associated ER stress. The current study is focused on unfolded protein responses (UPRs) and AEG-1 regulation in primary human astrocytes exposed to HIV-associated neurocognitive disorders (HAND)-relevant stimuli (HIV-1 virions, inflammation and ARV drugs). Interleukin (IL)-1β and the nucleoside reverse transcriptase inhibitor abacavir upregulated expression of ER stress markers in human astrocytes, including binding immunoglobulin protein (BiP), C/EBP homologous protein (CHOP), and calnexin. In addition, IL-1β activated all three well-known UPR pathways: protein kinase RNA-like ER kinase (PERK); activating transcription factor 6 (ATF-6); and inositol-requiring enzyme 1α (IRE1α). AEG-1 upregulation correlated to ER stress and demonstrated astrocyte AEG-1 interaction with the calcium-binding chaperone, calnexin. IL-1β and abacavir enhanced intracellular calcium signaling in astrocytes in the absence of extracellular calcium, illustrating ER-associated calcium release. Alternatively, calcium evoked in response to HAND-relevant stimuli led to mitochondrial permeability transition pore (mPTP) opening in human astrocytes. Importantly, IL-1β- and abacavir-induced UPR and mPTP opening were inhibited by the intracellular calcium chelation, indicating the critical role of calcium signaling in HAND-relevant ER stress in astrocytes. In summary, our study highlights that ARV drugs and IL-1β induced UPR, AEG-1 expression, intracellular calcium, and mitochondrial depolarization in astrocytes. This study uncovers astrocyte ER stress as a novel therapeutic target in the management of HIV-1-associated neurotoxicity and possibly in the treatment of neuroAIDS.
Collapse
Affiliation(s)
- Shruthi Nooka
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Anuja Ghorpade
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
16
|
Borgmann K, Ghorpade A. Methamphetamine Augments Concurrent Astrocyte Mitochondrial Stress, Oxidative Burden, and Antioxidant Capacity: Tipping the Balance in HIV-Associated Neurodegeneration. Neurotox Res 2017; 33:433-447. [PMID: 28993979 DOI: 10.1007/s12640-017-9812-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/15/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023]
Abstract
Methamphetamine (METH) use, with and without human immunodeficiency virus (HIV)-1 comorbidity, exacerbates neurocognitive decline. Oxidative stress is a probable neurotoxic mechanism during HIV-1 central nervous system infection and METH abuse, as viral proteins, antiretroviral therapy and METH have each been shown to induce mitochondrial dysfunction. However, the mechanisms regulating mitochondrial homeostasis and overall oxidative burden in astrocytes are not well understood in the context of HIV-1 infection and METH abuse. Here, we report METH-mediated dysregulation of astrocyte mitochondrial morphology and function during prolonged exposure to low levels of METH. Mitochondria became larger and more rod shaped with METH when assessed by machine learning, segmentation analyses. These changes may be mediated by elevated mitofusin expression coupled with inhibitory phosphorylation of dynamin-related protein-1, which regulate mitochondrial fusion and fission, respectively. While METH decreased oxygen consumption and ATP levels during acute exposure, chronic treatment of 1 to 2 weeks significantly enhanced both when tested in the absence of METH. Together, these changes significantly increased not only expression of antioxidant proteins, augmenting the astrocyte's oxidative capacity, but also oxidative damage. We propose that targeting astrocytes to reduce their overall oxidative burden and expand their antioxidant capacity could ultimately tip the balance from neurotoxicity towards neuroprotection.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Institute for Molecular Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Anuja Ghorpade
- Institute for Molecular Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
17
|
Vartak-Sharma N, Nooka S, Ghorpade A. Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 2016; 157:133-157. [PMID: 27090750 DOI: 10.1016/j.pneurobio.2016.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/23/2022]
Abstract
Recent attempts to analyze human immunodeficiency virus (HIV)-1-induced gene expression changes in astrocytes uncovered a multifunctional oncogene, astrocyte elevated gene-1 (AEG-1). Our previous studies revealed that AEG-1 regulates reactive astrocytes proliferation, migration and inflammation, hallmarks of aging and CNS injury. Moreover, the involvement of AEG-1 in neurodegenerative disorders, such as Huntington's disease and migraine, and its induction in the aged brain suggest a plausible role in regulating overall CNS homeostasis and aging. Therefore, it is important to investigate AEG-1 specifically in aging-associated cognitive decline. In this study, we decipher the common mechanistic links in cancer, aging and HIV-1-associated neurocognitive disorders that likely contribute to AEG-1-based regulation of astrocyte responses and function. Despite AEG-1 incorporation into HIV-1 virions and its induction by HIV-1, tumor necrosis factor-α and interleukin-1β, the specific role(s) of AEG-1 in astrocyte-driven HIV-1 neuropathogenesis are incompletely defined. We propose that AEG-1 plays a central role in a multitude of cellular stress responses involving mitochondria, endoplasmic reticulum and the nucleolus. It is thus important to further investigate AEG-1-based cellular and molecular regulation in order to successfully develop better therapeutic approaches that target AEG-1 to combat cancer, HIV-1 and aging.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA; Institute for Integrated Cell-Material Sciences, Kyoto University, Japan; Institute for Stem Cell Research and Regenerative Medicine, National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shruthi Nooka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
18
|
Pandey R, Ghorpade A. Cytosolic phospholipase A2 regulates alcohol-mediated astrocyte inflammatory responses in HIV-associated neurocognitive disorders. Cell Death Discov 2015; 1:15045. [PMID: 27551474 PMCID: PMC4979440 DOI: 10.1038/cddiscovery.2015.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/12/2015] [Indexed: 01/09/2023] Open
Abstract
Alcohol (EtOH) abuse and HIV-1 infection remain leading public health problems not only in the United States but also across the world. Alcohol abusers have a significantly greater risk of HIV-1 infection than non-drinkers globally. In the United States, prevalence of EtOH abuse is over two-fold higher in HIV-1-positive individuals than that of the general population. Although alcohol abusers show neurodegeneration, exacerbated neuroinflammation and oxidative damage, the mechanism(s) by which EtOH regulates astrocyte inflammatory responses in HIV-associated neurocognitive disorders is unknown. Thus, we explored signaling pathway(s) involved in EtOH-mediated activation of human astrocytes with HIV-1 and subsequent alterations in their inflammatory functions. Alcohol exposure altered the morphology of astrocytes, proinflammatory responses and induced cytotoxicity in a dose-dependent manner. Time-dependent changes were also evaluated. EtOH and HIV-1 cotreatment decreased cell viability and proliferation, while increasing apoptosis and mitochondrial depolarization. EtOH and HIV-1 together increased the levels of proinflammatory molecules, interleukin-1β, tumor necrosis factor-α, CXCL8, tissue inhibitor of metalloproteinases-1 and more importantly, arachidonic acid, a known downstream target of cytosolic phospholipase A2 (cPLA2). Consistent with this observation, phospho-cPLA2 levels were augmented in HIV-1 and EtOH cotreatment as compared with HIV-1 or EtOH alone. Cyclooxygenase 2 was upregulated as measured by real-time PCR and western blot, whereas cotreatment of HIV-1 and EtOH decreased cytochrome P450-2E1 levels as compared with EtOH alone. Furthermore, we confirmed that blocking cPLA2 with arachidonyl tri floro methyl ketone, a cPLA2-specific inhibitor, effectively prevented cPLA2 phosphorylation and downstream outcomes. Thus, the present findings suggest that cPLA2 has a critical role in alcohol and HIV-induced astrocyte inflammation. In the future, cPLA2 inhibitors may present novel therapeutic tools to treat alcohol abuse and HIV-associated neurocognitive disorder comorbidity.
Collapse
Affiliation(s)
- R Pandey
- Department of Cell Biology and Immunology, University of North Texas Health Science Center , Fort Worth, TX, USA
| | - A Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center , Fort Worth, TX, USA
| |
Collapse
|
19
|
Borgmann K, Ghorpade A. HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads. Front Microbiol 2015; 6:1143. [PMID: 26579077 PMCID: PMC4621459 DOI: 10.3389/fmicb.2015.01143] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/05/2015] [Indexed: 12/30/2022] Open
Abstract
As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.
Collapse
Affiliation(s)
- Kathleen Borgmann
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
| |
Collapse
|
20
|
Johnson KM, Crocker SJ. TIMP-1 couples RhoK activation to IL-1β-induced astrocyte responses. Neurosci Lett 2015; 609:165-70. [PMID: 26484505 DOI: 10.1016/j.neulet.2015.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/21/2015] [Accepted: 10/13/2015] [Indexed: 12/27/2022]
Abstract
Interleukin-1β (IL-1β) is a pleotropic cytokine known to influence the central nervous system (CNS) responses to injury or infection. IL-1β also directly induces astrocytic expression of tissue inhibitor of metalloproteinases (TIMP)-1, a potent trophic factor and regulator of matrix metalloproteinase activity. In this study, we examined the functional relationship between IL-1β and TIMP-1 and determined that the behavior of astrocytes in response to IL-1β is determined by TIMP-1 expression. Using primary astrocytes from C57Bl/6 mice, we found astrocytes from wildtype (Wt) mice exhibited a robust wound healing response to a scratch wound that was arrested in response to IL-1β. In contrast, TIMP-1 knockout (TIMP-1KO) astrocytes, exhibited minimal response to the scratch wound but an accelerated response following IL-1β-treatment. We also determined that the scratch wound effect in Wt cultures was attenuated by inhibition of Rho kinase but amplified in the TIMP-1KO cultures. We propose that the specific induction of TIMP-1 from astrocytes in response to IL-1β reflects a previously unrecognized physiological relationship where the directionality of astrocytic behavior is determined by the actions of TIMP‑1. These findings may provide additional insight into glial responses in the context of neuropathology where expression of TIMP-1 may vary and astrocytic responses may be impacted by the inflammatory milieu of the CNS.
Collapse
Affiliation(s)
- Kasey M Johnson
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States.
| |
Collapse
|
21
|
Gangwani MR, Kumar A. Multiple Protein Kinases via Activation of Transcription Factors NF-κB, AP-1 and C/EBP-δ Regulate the IL-6/IL-8 Production by HIV-1 Vpr in Astrocytes. PLoS One 2015; 10:e0135633. [PMID: 26270987 PMCID: PMC4535882 DOI: 10.1371/journal.pone.0135633] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 07/24/2015] [Indexed: 11/24/2022] Open
Abstract
Neurocognitive impairments affect a substantial population of HIV-1 infected individuals despite the success of anti-retroviral therapy in controlling viral replication. Astrocytes are emerging as a crucial cell type that might be playing a very important role in the persistence of neuroinflammation seen in patients suffering from HIV-1 associated neurocognitive disorders. HIV-1 viral proteins including Vpr exert neurotoxicity through direct and indirect mechanisms. Induction of IL-8 in microglial cells has been shown as one of the indirect mechanism through which Vpr reduces neuronal survival. We show that HIV-1 Vpr induces IL-6 and IL-8 in astrocytes in a time-dependent manner. Additional experiments utilizing chemical inhibitors and siRNA revealed that HIV-1 Vpr activates transcription factors NF-κB, AP-1 and C/EBP-δ via upstream protein kinases PI3K/Akt, p38-MAPK and Jnk-MAPK leading to the induction of IL-6 and IL-8 in astrocytes. We demonstrate that one of the mechanism for neuroinflammation seen in HIV-1 infected individuals involves induction of IL-6 and IL-8 by Vpr in astrocytes. Understanding the molecular pathways involved in the HIV-1 neuroinflammation would be helpful in the design of adjunct therapy to ameliorate some of the symptoms associated with HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Mohitkumar R. Gangwani
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, Missouri, United States of America
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ahmed F, Plantman S, Cernak I, Agoston DV. The Temporal Pattern of Changes in Serum Biomarker Levels Reveals Complex and Dynamically Changing Pathologies after Exposure to a Single Low-Intensity Blast in Mice. Front Neurol 2015; 6:114. [PMID: 26124743 PMCID: PMC4464198 DOI: 10.3389/fneur.2015.00114] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/05/2015] [Indexed: 01/05/2023] Open
Abstract
Time-dependent changes in blood-based protein biomarkers can help identify the pathological processes in blast-induced traumatic brain injury (bTBI), assess injury severity, and monitor disease progression. We obtained blood from control and injured mice (exposed to a single, low-intensity blast) at 2-h, 1-day, 1–week, and 1-month post-injury. We then determined the serum levels of biomarkers related to metabolism (4-HNE, HIF-1α, ceruloplasmin), vascular function (AQP1, AQP4, VEGF, vWF, Flk-1), inflammation (OPN, CINC1, fibrinogen, MIP-1a, OX-44, p38, MMP-8, MCP-1 CCR5, CRP, galectin-1), cell adhesion and the extracellular matrix (integrin α6, TIMP1, TIMP4, Ncad, connexin-43), and axonal (NF-H, Tau), neuronal (NSE, CK-BB) and glial damage (GFAP, S100β, MBP) at various post-injury time points. Our findings indicate that the exposure to a single, low-intensity blast results in metabolic and vascular changes, altered cell adhesion, and axonal and neuronal injury in the mouse model of bTBI. Interestingly, serum levels of several inflammatory and astroglial markers were either unchanged or elevated only during the acute and subacute phases of injury. Conversely, serum levels of the majority of biomarkers related to metabolic and vascular functions, cell adhesion, as well as neuronal and axonal damage remained elevated at the termination of the experiment (1 month), indicating long-term systemic and cerebral alterations due to blast. Our findings show that the exposure to a single, low-intensity blast induces complex pathological processes with distinct temporal profiles. Hence, monitoring serum biomarker levels at various post-injury time points may provide enhanced diagnostics in blast-related neurological and multi-system deficits.
Collapse
Affiliation(s)
- Farid Ahmed
- Department of Anatomy, Physiology and Genetics, Uniformed Services University , Bethesda, MD , USA
| | - Stefan Plantman
- Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| | - Ibolja Cernak
- Faculty of Rehabilitation Medicine, Canadian Military and Veterans' Clinical Rehabilitation Research, University of Alberta , Edmonton, AB , Canada
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University , Bethesda, MD , USA ; Department of Neuroscience, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
23
|
Correro-Shahgaldian MR, Ghayor C, Spencer ND, Weber FE, Gallo LM. A Model System of the Dynamic Loading Occurring in Synovial Joints: The Biological Effect of Plowing on Pristine Cartilage. Cells Tissues Organs 2015; 199:364-72. [DOI: 10.1159/000375294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/19/2022] Open
|
24
|
Cisneros IE, Ghorpade A. Methamphetamine and HIV-1-induced neurotoxicity: role of trace amine associated receptor 1 cAMP signaling in astrocytes. Neuropharmacology 2014; 85:499-507. [PMID: 24950453 PMCID: PMC4315503 DOI: 10.1016/j.neuropharm.2014.06.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 01/01/2023]
Abstract
Methamphetamine (METH) is abused by about 5% of the United States population with approximately 10-15% of human immunodeficiency virus-1 (HIV-1) patients reporting its use. METH abuse accelerates the onset and severity of HIV-associated neurocognitive disorders (HAND) and astrocyte-induced neurotoxicity. METH activates G-protein coupled receptors such as trace amine associated receptor 1 (TAAR1) increasing intracellular cyclic adenosine monophosphate (cAMP) levels in presynaptic cells of monoaminergic systems. In the present study, we investigated the effects of METH and HIV-1 on primary human astrocyte TAAR1 expression, function and glutamate clearance. Our results demonstrate combined conditions increased TAAR1 mRNA levels 7-fold and increased intracellular cAMP levels. METH and beta-phenylethylamine (β-PEA), known TAAR1 agonists, increased intracellular cAMP levels in astrocytes. Further, TAAR1 knockdown significantly reduced intracellular cAMP levels in response to METH/β-PEA, indicating signaling through astrocyte TAAR1. METH±HIV-1 decreased excitatory amino acid transporter-2 (EAAT-2) mRNA and significantly decreased glutamate clearance. RNA interference for TAAR1 prevented METH-mediated decreases in EAAT-2. TAAR1 knockdown significantly increased glutamate clearance, which was further heightened significantly by METH. Moreover, TAAR1 overexpression significantly decreased EAAT-2 levels and glutamate clearance that were further reduced by METH. Taken together, our data show that METH treatment activated TAAR1 leading to intracellular cAMP in human astrocytes and modulated glutamate clearance abilities. Furthermore, molecular alterations in astrocyte TAAR1 levels correspond to changes in astrocyte EAAT-2 levels and function. To our knowledge this is the first report implicating astrocyte TAAR1 as a novel receptor for METH during combined injury in the context of HAND.
Collapse
Affiliation(s)
- Irma E Cisneros
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| |
Collapse
|
25
|
Molecular mechanisms of increased cerebral vulnerability after repeated mild blast-induced traumatic brain injury. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Vartak-Sharma N, Gelman BB, Joshi C, Borgamann K, Ghorpade A. Astrocyte elevated gene-1 is a novel modulator of HIV-1-associated neuroinflammation via regulation of nuclear factor-κB signaling and excitatory amino acid transporter-2 repression. J Biol Chem 2014; 289:19599-612. [PMID: 24855648 DOI: 10.1074/jbc.m114.567644] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Astrocyte elevated gene-1 (AEG-1), a novel human immunodeficiency virus (HIV)-1 and tumor necrosis factor (TNF)-α-inducible oncogene, has generated significant interest in the field of cancer research as a therapeutic target for many metastatic aggressive tumors. However, little is known about its role in astrocyte responses during HIV-1 central nervous system (CNS) infection and whether it contributes toward the development of HIV-associated neurocognitive disorders (HAND). Therefore, in this study, we investigated changes in AEG-1 CNS expression in HIV-1-infected brain tissues and elucidated a potential mechanism of AEG-1-mediated regulation of HAND. Immunoblotting and immunohistochemical analyses of HIV-1 seropositive and HIV-1 encephalitic human brain tissues revealed significantly elevated levels of AEG-1 protein. Immunohistochemical analyses of HIV-1 Tat transgenic mouse brain tissues also showed a marked increase in AEG-1 staining. Similar to in vivo observations, cultured astrocytes expressing HIV-1 Tat also revealed AEG-1 and cytokine up-regulation. Astrocytes treated with HAND-relevant stimuli, TNF-α, interleukin (IL)-1β, and HIV-1, also significantly induced AEG-1 expression and nuclear translocation via activation of the nuclear factor (NF)-κB pathway. Co-immunoprecipitation studies demonstrated IL-1β- or TNF-α-induced AEG-1 interaction with NF-κB p65 subunit. AEG-1 knockdown decreased NF-κB activation, nuclear translocation, and transcriptional output in TNF-α-treated astrocytes. Moreover, IL-1β treatment of AEG-1-overexpressing astrocytes significantly lowered expression of excitatory amino acid transporter 2, increased expression of excitatory amino acid transporter 2 repressor ying yang 1, and reduced glutamate clearance, a major transducer of excitotoxic neuronal damage. Findings from this study identify a novel transcriptional co-factor function of AEG-1 and further implicate AEG-1 in HAND-associated neuroinflammation.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| | - Benjamin B Gelman
- the Departments of Pathology and Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Chaitanya Joshi
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| | - Kathleen Borgamann
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| | - Anuja Ghorpade
- From the Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107 and
| |
Collapse
|
27
|
Genome-wide survey of interindividual differences of RNA stability in human lymphoblastoid cell lines. Sci Rep 2013; 3:1318. [PMID: 23422947 PMCID: PMC3576867 DOI: 10.1038/srep01318] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/04/2013] [Indexed: 11/18/2022] Open
Abstract
The extent to which RNA stability differs between individuals and its contribution to the interindividual expression variation remain unknown. We conducted a genome-wide analysis of RNA stability in seven human HapMap lymphoblastoid cell lines (LCLs) and analyzed the effect of DNA sequence variation on RNA half-life differences. Twenty-six percent of the expressed genes exhibited RNA half-life differences between LCLs at a false discovery rate (FDR) < 0.05, which accounted for ~ 37% of the gene expression differences between individuals. Nonsense polymorphisms were associated with reduced RNA half-lives. In genes presenting interindividual RNA half-life differences, higher coding GC3 contents (G and C percentages at the third-codon positions) were correlated with increased RNA half-life. Consistently, G and C alleles of single nucleotide polymorphisms (SNPs) in protein coding sequences were associated with enhanced RNA stability. These results suggest widespread interindividual differences in RNA stability related to DNA sequence and composition variation.
Collapse
|
28
|
Fields J, Cisneros IE, Borgmann K, Ghorpade A. Extracellular regulated kinase 1/2 signaling is a critical regulator of interleukin-1β-mediated astrocyte tissue inhibitor of metalloproteinase-1 expression. PLoS One 2013; 8:e56891. [PMID: 23457635 PMCID: PMC3572966 DOI: 10.1371/journal.pone.0056891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 01/17/2013] [Indexed: 11/21/2022] Open
Abstract
Astrocytes are essential for proper central nervous system (CNS) function and are intricately involved in neuroinflammation. Despite evidence that immune-activated astrocytes contribute to many CNS pathologies, little is known about the inflammatory pathways controlling gene expression. Our laboratory identified altered levels of tissue inhibitor of metalloproteinase (TIMP)-1 in brain lysates from human immunodeficiency virus (HIV)-1 infected patients, compared to age-matched controls, and interleukin (IL)-1β as a key regulator of astrocyte TIMP-1. Additionally, CCAAT enhancer binding protein (C/EBP)β levels are elevated in brain specimens from HIV-1 patients and the transcription factor contributes to astrocyte TIMP-1 expression. In this report we sought to identify key signaling pathways necessary for IL-1β-mediated astrocyte TIMP-1 expression and their interaction with C/EBPβ. Primary human astrocytes were cultured and treated with mitogen activated protein kinase-selective small molecule inhibitors, and IL-1β. TIMP-1 and C/EBPβ mRNA and protein expression were evaluated at 12 and 24 h post-treatment, respectively. TIMP-1 promoter-driven luciferase plasmids were used to evaluate TIMP-1 promoter activity in inhibitor-treated astrocytes. These data show that extracellular regulated kinase (ERK) 1/2-selective inhibitors block IL-1β-induced astrocyte TIMP-1 expression, but did not decrease C/EBPβ expression in parallel. The p38 kinase (p38K) inhibitors partially blocked both IL-1β-induced astrocyte TIMP-1 expression and C/EBPβ expression. The ERK1/2-selective inhibitor abrogated IL-1β-mediated increases in TIMP-1 promoter activity. Our data demonstrate that ERK1/2 activation is critical for IL-1β-mediated astrocyte TIMP-1 expression. ERK1/2-selective inhibition may elicit a compensatory response in the form of enhanced IL-1β-mediated astrocyte C/EBPβ expression, or, alternatively, ERK1/2 signaling may function to moderate IL-1β-mediated astrocyte C/EBPβ expression. Furthermore, p38K activation contributes to IL-1β-induced astrocyte TIMP-1 and C/EBPβ expression. These data suggest that ERK1/2 signals downstream of C/EBPβ to facilitate IL-1β-induced astrocyte TIMP-1 expression. Astrocyte ERK1/2 and p38K signaling may serve as therapeutic targets for manipulating CNS TIMP-1 and C/EBPβ levels, respectively.
Collapse
Affiliation(s)
- Jerel Fields
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Irma E. Cisneros
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Kathleen Borgmann
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anuja Ghorpade
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
29
|
Mamik MK, Ghorpade A. Src homology-2 domain-containing protein tyrosine phosphatase (SHP) 2 and p38 regulate the expression of chemokine CXCL8 in human astrocytes. PLoS One 2012; 7:e45596. [PMID: 23029125 PMCID: PMC3448633 DOI: 10.1371/journal.pone.0045596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/23/2012] [Indexed: 12/19/2022] Open
Abstract
CXCL8, one of the first chemokines found in the brain, is upregulated in the brains and cerebrospinal fluid of HIV-1 infected individuals suggesting its potential role in human immune deficiency virus (HIV)-associated neuroinflammation. Astrocytes are known to be the major contributors to the CXCL8 pool. Interleukin (IL)-1β activated astrocytes exhibit significant upregulation of CXCL8. In order to determine the signaling pathways involved in CXCL8 regulation in astrocytes, we employed pharmacological inhibitors for non-receptor Src homology-2 domain-containing protein tyrosine phosphatase (SHP) 2 and mitogen-activated protein kinases (MAPK) pathway and observed reduced expression of CXCL8 following IL-1β stimulation. Overexpression of SHP2 and p38 enzymes in astrocytes led to elevated CXCL8 expression; however, inactivating SHP2 and p38 with dominant negative mutants abrogated CXCL8 induction. Furthermore, SHP2 overexpression resulted in higher SHP2 and p38 enzyme activity whereas p38 overexpression resulted in higher p38 but not SHP2 enzyme activity. Phosphorylation of SHP2 was important for phosphorylation of p38, which in turn was critical for phosphorylation of extracellular signal regulated kinase (ERK). Thus, our findings suggest an important role for SHP2 in CXCL8 expression in astrocytes during inflammation, as SHP2, directly or indirectly, modulates p38 and ERK MAPK in the signaling cascade leading to CXCL8 production. This study provides detailed understanding of the mechanisms involved in CXCL8 production during neuroinflammation.
Collapse
Affiliation(s)
- Manmeet K. Mamik
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anuja Ghorpade
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
30
|
Vartak-Sharma N, Ghorpade A. Astrocyte elevated gene-1 regulates astrocyte responses to neural injury: implications for reactive astrogliosis and neurodegeneration. J Neuroinflammation 2012; 9:195. [PMID: 22884085 PMCID: PMC3488579 DOI: 10.1186/1742-2094-9-195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive astrogliosis is a ubiquitous but poorly understood hallmark of central nervous system pathologies such as trauma and neurodegenerative diseases. In vitro and in vivo studies have identified proinflammatory cytokines and chemokines as mediators of astrogliosis during injury and disease; however, the molecular mechanism remains unclear. In this study, we identify astrocyte elevated gene-1 (AEG-1), a human immunodeficiency virus 1 or tumor necrosis factor α-inducible oncogene, as a novel modulator of reactive astrogliosis. AEG-1 has engendered tremendous interest in the field of cancer research as a therapeutic target for aggressive tumors. However, little is known of its role in astrocytes and astrocyte-mediated diseases. Based on its oncogenic role in several cancers, here we investigate the AEG-1-mediated regulation of astrocyte migration and proliferation during reactive astrogliosis. METHODS An in vivo brain injury mouse model was utilized to show AEG-1 induction following reactive astrogliosis. In vitro wound healing and cell migration assays following AEG-1 knockdown were performed to analyze the role of AEG-1 in astrocyte migration. AEG-1-mediated regulation of astrocyte proliferation was assayed by quantifying the levels of cell proliferation markers, Ki67 and proliferation cell nuclear antigen, using immunocytochemistry. Confocal microscopy was used to evaluate nucleolar localization of AEG-1 in cultured astrocytes following injury. RESULTS The in vivo mouse model for brain injury showed reactive astrocytes with increased glial fibrillary acidic protein and AEG-1 colocalization at the wound site. AEG-1 knockdown in cultured human astrocytes significantly reduced astrocyte migration into the wound site and cell proliferation. Confocal analysis showed colocalization of AEG-1 to the nucleolus of injured cultured human astrocytes. CONCLUSIONS The present findings report for the first time the novel role of AEG-1 in mediating reactive astrogliosis and in regulating astrocyte responses to injury. We also report the nucleolar localization of AEG-1 in human astrocytes in response to injury. Future studies may be directed towards elucidating the molecular mechanism of AEG-1 action in astrocytes during reactive astrogliosis.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, USA
| | | |
Collapse
|
31
|
Fields J, Ghorpade A. C/EBPβ regulates multiple IL-1β-induced human astrocyte inflammatory genes. J Neuroinflammation 2012; 9:177. [PMID: 22818222 PMCID: PMC3464795 DOI: 10.1186/1742-2094-9-177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 07/20/2012] [Indexed: 01/19/2023] Open
Abstract
Background CCAAT enhancer-binding protein (C/EBP)β regulates gene expression in multiple organ systems and cell types, including astrocytes in the central nervous system (CNS). Inflammatory stimuli, interleukin (IL)-1β, tumor necrosis factor-α, human immunodeficiency virus (HIV)-1 and lipopolysaccharide induce astrocyte C/EBPβ expression. C/EBPβ is detectable in brains of Alzheimer’s disease (AD), Parkinson’s disease (PD) and HIV-1-associated dementia (HAD) patients, yet little is known about how C/EBPβ contributes to astrocyte gene regulation during neuroinflammation. Methods The expression of 92 human inflammation genes was compared between IL-1β-treated primary human astrocytes and astrocytes transfected with C/EBPβ-specific small interfering (si)RNA prior to IL-1β treatment for 12 h. Transcripts altered by > two-fold compared to control were subjected to one-way analysis of variance and Newman-Keuls post-test for multiple comparisons. Expression of two genes, cyclooxygenase-2 (COX-2) and bradykinin receptor B2 (BDKRB2) was further confirmed in additional human astrocyte donors. Astrocytes were treated with mitogen-activated protein kinase-selective inhibitors, then with IL-1β for 12 or 24 h followed by COX-2 and BDKRB2, expression analyses. Results IL-1β altered expression of 29 of 92 human inflammation genes by at least two-fold in primary human astrocytes in 12 h. C/EBPβ knockdown affected expression of 17 out of 29 IL-1β-regulated genes by > 25%. Two genes relevant to neuroinflammation, COX-2 and BDKRB2, were robustly decreased and increased, respectively, in response to C/EBPβ knockdown, and expression was confirmed in two additional donors. COX-2 and BDKRB2 mRNA remained altered in siRNA-transfected astrocytes at 12, 24 or 72 h. Inhibiting p38 kinase (p38K) activation blocked IL-1β-induced astrocyte COX-2 mRNA and protein expression, but not IL-1β-induced astrocyte BDKRB2 expression. Inhibiting extracellular-regulated kinase (ERK)1/2 activation blocked IL-1β-induced BDKRB2 mRNA expression while increasing COX-2 expression. Conclusion These data support an essential role for IL-1β in the CNS and identify new C/EBPβ functions in astrocytes. Additionally, this work suggests p38K and ERK1/2 pathways may regulate gene expression in a complementary manner to fine tune the IL-1β-mediated astrocyte inflammatory response. Delineating a role for C/EBPβ and other involved transcription factors in human astrocyte inflammatory response may lead to effective therapies for AD, PD, HAD and other neurological disorders.
Collapse
Affiliation(s)
- Jerel Fields
- University of North Texas Health Science Center, Camp Bowie Blvd, 3500, Fort Worth, TX, USA
| | | |
Collapse
|
32
|
Cisneros IE, Ghorpade A. HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res 2012; 10:392-406. [PMID: 22591363 PMCID: PMC3580828 DOI: 10.2174/157016212802138832] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 02/08/2023]
Abstract
Glutamate, the most abundant excitatory transmitter in the brain can lead to neurotoxicity when not properly regulated. Excitotoxicity is a direct result of abnormal regulation of glutamate concentrations in the synapse, and is a common neurotoxic mediator associated with neurodegenerative disorders. It is well accepted that methamphetamine (METH), a potent central nervous stimulant with high abuse potential, and human immunodeficiency virus (HIV)-1 are implicated in the progression of neurocognitive malfunction. Both have been shown to induce common neurodegenerative effects such as astrogliosis, compromised blood brain barrier integrity, and excitotoxicity in the brain. Reduced glutamate uptake from neuronal synapses likely leads to the accumulation of glutamate in the extracellular spaces. Astrocytes express the glutamate transporters responsible for majority of the glutamate uptake from the synapse, as well as for vesicular glutamate release. However, the cellular and molecular mechanisms of astrocyte-mediated excitotoxicity in the context of METH and HIV-1 are undefined. Topics reviewed include dysregulation of the glutamate transporters, specifically excitatory amino acid transporter-2, metabotropic glutamate receptor(s) expression and the release of glutamate by vesicular exocytosis. We also discuss glutamate concentration dysregulation through astrocytic expression of enzymes for glutamate synthesis and metabolism. Lastly, we discuss recent evidence of various astrocyte and neuron crosstalk mechanisms implicated in glutamate regulation. Astrocytes play an essential role in the neuropathologies associated with METH/HIV-1-induced excitotoxicity. We hope to shed light on common cellular and molecular pathways astrocytes share in glutamate regulation during drug abuse and HIV-1 infection.
Collapse
Affiliation(s)
| | - Anuja Ghorpade
- University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
33
|
Mamik MK, Banerjee S, Walseth TF, Hirte R, Tang L, Borgmann K, Ghorpade A. HIV-1 and IL-1β regulate astrocytic CD38 through mitogen-activated protein kinases and nuclear factor-κB signaling mechanisms. J Neuroinflammation 2011; 8:145. [PMID: 22027397 PMCID: PMC3247131 DOI: 10.1186/1742-2094-8-145] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 10/25/2011] [Indexed: 01/06/2023] Open
Abstract
Background Infection with human immunodeficiency virus type-1 (HIV)-1 leads to some form of HIV-1-associated neurocognitive disorders (HAND) in approximately half of the cases. The mechanisms by which astrocytes contribute to HIV-1-associated dementia (HAD), the most severe form of HAND, still remain unresolved. HIV-1-encephalitis (HIVE), a pathological correlate of HAD, affects an estimated 9-11% of the HIV-1-infected population. Our laboratory has previously demonstrated that HIVE brain tissues show significant upregulation of CD38, an enzyme involved in calcium signaling, in astrocytes. We also reported an increase in CD38 expression in interleukin (IL)-1β-activated astrocytes. In the present investigation, we studied regulatory mechanisms of CD38 gene expression in astrocytes activated with HIV-1-relevant stimuli. We also investigated the role of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB in astrocyte CD38 regulation. Methods Cultured human astrocytes were transfected with HIV-1YU-2 proviral clone and levels of CD38 mRNA and protein were measured by real-time PCR gene expression assay, western blot analysis and immunostaining. Astrocyte activation by viral transfection was determined by analyzing proinflammatory chemokine levels using ELISA. To evaluate the roles of MAPKs and NF-κB in CD38 regulation, astrocytes were treated with MAPK inhibitors (SB203580, SP600125, U0126), NF-κB interfering peptide (SN50) or transfected with dominant negative IκBα mutant (IκBαM) prior to IL-1β activation. CD38 gene expression and CD38 ADP-ribosyl cyclase activity assays were performed to analyze alterations in CD38 levels and function, respectively. Results HIV-1YU-2-transfection significantly increased CD38 mRNA and protein expression in astrocytes (p < 0.01) in a dose-dependent manner and induced astrocyte activation. IL-β-activation of HIV-1YU-2-transfected astrocytes significantly increased HIV-1 gene expression (p < 0.001). Treatment with MAPK inhibitors or NF-κB inhibitor SN50 abrogated IL-1β-induced CD38 expression and activity in astrocytes without altering basal CD38 levels (p < 0.001). IκBαM transfection also significantly inhibited IL-1β-mediated increases in CD38 expression and activity in astrocytes (p < 0.001). Conclusion The present findings demonstrate a direct involvement of HIV-1 and virus-induced proinflammatory stimuli in regulating astrocyte-CD38 levels. HIV-1YU-2-transfection effectively induced HIV-1p24 protein expression and activated astrocytes to upregulate CCL2, CXCL8 and CD38. In astrocytes, IL-1β-induced increases in CD38 levels were regulated through the MAPK signaling pathway and by the transcription factor NF-κB. Future studies may be directed towards understanding the role of CD38 in response to infection and thus its role in HAND.
Collapse
Affiliation(s)
- Manmeet K Mamik
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Fields J, Gardner-Mercer J, Borgmann K, Clark I, Ghorpade A. CCAAT/enhancer binding protein β expression is increased in the brain during HIV-1-infection and contributes to regulation of astrocyte tissue inhibitor of metalloproteinase-1. J Neurochem 2011; 118:93-104. [PMID: 21281310 PMCID: PMC3112278 DOI: 10.1111/j.1471-4159.2011.07203.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND) associated with infection and activation of mononuclear phagocytes (MP) in the brain, occur late in disease. Infected/activated MP initiate neuroinflammation activating glial cells and ultimately disrupting neuronal function. Astrocytes secrete tissue inhibitor of metalloproteinase (TIMP)-1 in response to neural injury. Altered TIMP-1 levels are implicated in several CNS diseases. CCAAT enhancer-binding protein β (C/EBPβ), a transcription factor, is expressed in rodent brains in response to neuroinflammation, implicating it in Alzheimer's, Parkinson's, and HAND. Here, we report that C/EBPβ mRNA levels are elevated and its isoforms differentially expressed in total brain tissue lysates of HIV-1-infected and HIV-1 encephalitis patients. In vitro, HAND-relevant stimuli additively induce C/EBPβ nuclear expression in human astrocytes through 7 days of treatment. Over-expression of C/EBPβ increases TIMP-1 promoter activity, mRNA, and protein levels in human astrocytes activated with interleukin-1β. Knockdown of C/EBPβ with siRNA decreases TIMP-1 mRNA and protein levels. These data suggest that C/EBPβ isoforms are involved in complex regulation of astrocyte TIMP-1 production during HIV-1 infection; however, further studies are required to completely understand their role during disease progression.
Collapse
Affiliation(s)
- Jerel Fields
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107
| | | | - Kathleen Borgmann
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107
| | - Ian Clark
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Anuja Ghorpade
- Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107
| |
Collapse
|
35
|
Abstract
Immune cells and glia interact with neurons to alter pain sensitivity and to mediate the transition from acute to chronic pain. In response to injury, resident immune cells are activated and blood-borne immune cells are recruited to the site of injury. Immune cells not only contribute to immune protection but also initiate the sensitization of peripheral nociceptors. Through the synthesis and release of inflammatory mediators and interactions with neurotransmitters and their receptors, the immune cells, glia and neurons form an integrated network that coordinates immune responses and modulates the excitability of pain pathways. The immune system also reduces sensitization by producing immune-derived analgesic and anti-inflammatory or proresolution agents. A greater understanding of the role of the immune system in pain processing and modulation reveals potential targets for analgesic drug development and new therapeutic opportunities for managing chronic pain.
Collapse
|
36
|
Soluble factors from IL-1β-stimulated astrocytes activate NR1a/NR2B receptors: implications for HIV-1-induced neurodegeneration. Biochem Biophys Res Commun 2010; 402:241-6. [PMID: 20933498 DOI: 10.1016/j.bbrc.2010.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Accepted: 10/02/2010] [Indexed: 11/20/2022]
Abstract
Astrocytes play an important role in astrocyte-neuron homeostasis. In HIV-1-infected brain, interleukin 1 beta (IL-1β) activation of astrocytes contributes to neurodegeneration. However, the molecular mechanisms underlying IL-1β-activated-astrocytes-induced neurodegeneration in HIV-1-infected brain are largely unknown. We hypothesize that secretory factors from the activated astrocytes affect N-methyl-d-aspartate (NMDA) receptor, a major pathway implicated in HIV-1-associated neurodegeneration. To test this hypothesis, we studied effects of IL-1β-stimulated astrocyte conditioned medium (ACM+) for its ability to activate NR1a/NR2B receptors expressed on Xenopus oocytes. Astrocytes treated with IL-1β 20ng/ml for 24h induced CXCL8, CCL2, MMP1 and MMP7. Pressure ejection of the ACM(+) produced an inward current in NR1a/NR2B-expressing oocytes. The inward current produced by ACM(+) was blocked by NMDA receptor antagonist, APV but not by non-NMDA receptor antagonist, CNQX. These results suggest that IL-1β stimulated astrocytes activate NR1a/NR2B receptors which may have implications in HIV-1-associated neurodegeneration.
Collapse
|
37
|
Floreani NA, Rump TJ, Abdul Muneer PM, Alikunju S, Morsey BM, Brodie MR, Persidsky Y, Haorah J. Alcohol-induced interactive phosphorylation of Src and toll-like receptor regulates the secretion of inflammatory mediators by human astrocytes. J Neuroimmune Pharmacol 2010; 5:533-45. [PMID: 20379791 DOI: 10.1007/s11481-010-9213-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 03/15/2010] [Indexed: 01/20/2023]
Abstract
Secretion of pro-inflammatory molecules by astrocytes after alcohol treatment was shown to be associated with neuroinflammation. We hypothesized that activation of cytosolic phospholipase A2 (cPLA2) and cyclooxygenase (COX-2) by ethanol in astrocytes enhanced the secretion of inflammatory agents via the interactive tyrosine phosphorylation of toll-like receptor 4 (TLR4) and Src kinase. To test this hypothesis, we treated primary human astrocytes with 20 mM ethanol for 48 h at 37°C. Ethanol exposure elevated cytochrome P450-2E1 activity, reactive oxygen species levels, and secretion of prostaglandin E2 (PGE2) in these cells. Secretion of PGE2 was associated with induction of cPLA2 activity and protein content as well as COX-2 protein level in a Src phosphorylation-dependent manner that occurred by enhanced transcription. Immunoprecipitation and Western blot analyses indicated that the interactive tyrosine phosphorylation of TLR4-Src complex at the cell membrane triggered the activation of cPLA2 and COX-2 in the cytoplasm through a Src signaling intermediate. Inhibition of ethanol metabolism, blockage of Src activity, or inactivation of TLR4 prevented the activation of cPLA2 and COX-2 as well as diminished PGE2 production, suggesting that interactive phosphorylation of TLR4-Src regulated the pro-inflammatory response in astrocytes. Experiments with small interfering RNA knockdown of TLR4 in human astrocytes confirmed that silencing expression also abolished the interactive phosphorylation of both TLR4 and Src in the presence of ethanol.
Collapse
Affiliation(s)
- Nicholas A Floreani
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5215, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kou W, Banerjee S, Eudy J, Smith LM, Persidsky R, Borgmann K, Wu L, Sakhuja N, Deshpande MS, Walseth TF, Ghorpade A. CD38 regulation in activated astrocytes: implications for neuroinflammation and HIV-1 brain infection. J Neurosci Res 2009; 87:2326-39. [PMID: 19365854 DOI: 10.1002/jnr.22060] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive astrogliosis is a key pathological aspect of neuroinflammatory disorders including human immunodeficiency virus type 1 (HIV-1)-associated neurological disease. On the basis of previous data that showedastrocytes activated with interleukin (IL)-1beta induce neuronal injury, we analyzed global gene changes in IL-1beta-activated human astrocytes by gene microarray. Among the up-regulated genes, CD38, a 45-kDa type II single chain transmembrane glycoprotein, was a top candidate, with a 17.24-fold change that was validated by real-time polymerase chain reaction. Key functions of CD38 include enzymatic activities and involvement in adhesion and cell signaling. Importantly, CD38(+)CD8(+) T-cell expression is a clinical correlate for progression of HIV-1 infection and biological marker for immune activation. Thus, CD38 expression in HIV-1 and/or IL-1beta-stimulated human astrocytes and human brain tissues was analyzed. IL-1beta and HIV-1 activation of astrocytes enhanced CD38 mRNA levels. Both CD38 immunoreactivity and adenosine 5'-diphosphate (ADP)-ribosyl cyclase activity were up-regulated in IL-1beta-activated astrocytes. CD38 knockdown using specific siRNAs significantly reduced astrocyte proinflammatory cytokine and chemokine production. However, CD38 mRNA levels were unchanged in IL-1beta knockdown conditions, suggesting that IL-1beta autocrine loop is not implicated in this process. Quantitative immunohistochemical analysis of HIV-seropositive without encephalitis and HIV-1 encephalitis brain tissues showed significant up-regulation of CD38, which colocalized with glial fibrillary acidic protein-positive cells in areas of inflammation. These results suggest an important role of CD38 in the regulation of astrocyte dysfunction during the neuroinflammatory processes involved in neurodegenerative/neuroinflammatory disorders such as HIV-1 encephalitis.
Collapse
Affiliation(s)
- Wei Kou
- Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mannello F. New implications of the proteolytic balance between matrix metalloproteinases and their tissue inhibitors in migraine with and without aura. Clin Chim Acta 2009; 409:1-3. [PMID: 19632213 DOI: 10.1016/j.cca.2009.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Matrix metalloproteinases (MMP) are proteolytic enzymes involved in the remodelling of almost all protein components of the extracellular matrix (ECM), characterized in 1960's during the metamorphosis process in tadpole tails. Ever growing research has identified MMP expression in a variety of physiological processes. Uncontrolled or inappropriate expression/activity of MMPs contributes to different pathologic conditions, including inflammation, tumour growth, cancer cell invasion and infection diseases. Under physiological conditions, MMP activity is precisely controlled by TIMPs and may have beneficial actions in the mature nervous system. However, an alteration of the MMP/TIMP balance is thought to be a key feature of the pathology of many inflammatory, degenerative and malignant neurological diseases; their pathogenesis is correlated to the detrimental effects of altered MMP/TIMP expression, leading to breakdown of the blood-brain barrier (BBB), demyelination, cytokine production and propagation of inflammatory response, deposition of amyloid proteins, tumor invasion and metastasis). Migraine is a complex, disabling disorder of the brain that manifests itself as attacks of often severe, throbbing head pain with sensory sensitivity to light, sound, smell and head movement (migraine without aura), and in a third of patients, with neurological symptoms (migraine with aura). In this issue of Clinica Chimica Acta, Martins-Oliveira et al. examine the different circulating MMP and TIMP profiles in women with migraine with and without aura. They confirm and expand the observation of increased MMP-9 plasma levels in migrainous patients, also describing for the first time that MMP-2, TIMP-1 and TIMP-2 show a different expression profile in migraine. Their findings are critically evaluated and reviewed. The knowledge of MMP- and TIMP-dependent pathways in migraine headache, the new proteolytic pathophysiological mechanisms, and the beneficial and detrimental effects of MMP inhibitory drugs may represent pieces of the complex migraine jigsaw puzzle, which is finalized to optimize cost-effectiveness of treatment and patient outcomes.
Collapse
|
40
|
Chao C, Ghorpade A. Production and Roles of Glial Tissue Inhibitor of Metalloproteinases-1 in Human Immunodeficiency Virus-1-Associated Dementia Neuroinflammation: A Review. ACTA ACUST UNITED AC 2009; 5:314-320. [PMID: 20585405 DOI: 10.3844/ajidsp.2009.314.319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PROBLEM STATEMENT: Tissue Inhibitor of Metalloproteinases-1 (TIMP-1) and its cognate targets, the Matrix Metalloproteinases (MMPs), were differentially expressed in human brain samples with or without HIV-1 infection or HIV-1 Encephalitis (HIVE). APPROACH: A through literature review demonstrated that cell culture models of Central Nervous System (CNS) cell types had been used to illustrate the intricate temporal patterns of TIMP-1/MMP expression, regulated by a variety of inflammatory cytokines. RESULTS: As MMPs and TIMP-1 can significantly altered the extracellular environment and cell signaling, the differential regulation of TIMP-1/MMP expression in neuroinflammation can impact neuronal function and survival in disease conditions. TIMP-1 pro-survival effects had been demonstrated in a variety of cell types including CNS neurons, protecting cells from a wide range of stress and insults. TIMP-1, also known to interact with non-MMP targets, altered cell behavior. In this review, we discussed the possibility that the upregulation of TIMP-1 by glia in acute neuroinflammation may be a neuroprotective response. CONCLUSION: It will be important to delineate the effects of TIMP-1 on neurons and identify receptors and downstream signaling pathways, in order to evaluate TIMP-1 as a therapeutic strategy for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- C Chao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
41
|
Immunohistochemical analysis of MMP-9, MMP-2 and TIMP-1, TIMP-2 expression in the central nervous system following infection with viral and bacterial meningitis. Folia Histochem Cytobiol 2009; 46:437-42. [PMID: 19141395 DOI: 10.2478/v10042-008-0058-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are capable of degrading components of the basal lamina of cerebral vessels, thereby disrupting the blood-brain barrier and inducing leukocyte recruitment. This study provides comprehensive information regarding the cell specificity of matrix metalloproteinases (MMP-2, MMP-9) and their binding tissue inhibitors (TIMP-1, TIMP-2) in the central nervous system during viral and bacterial meningitis. Specifically, we evaluated the immunoreactivity of MMPs and TIMPs in various cell types in brain parenchyma and meninges obtained from autopsy tissues. We found that a higher proportion of endothelial cells were positive for MMP-9 during meningitis when compared to controls. In addition, the immunoreactivity of MMP-9 decreased and the immunoreactivity of TIMP-1 increased in astrocytes upon infection. Furthermore, the results of this study revealed that mononuclear cells were highly immunoreactive for TIMP-1, TIMP-2 and MMP-9 during viral meningitis and that the expression of TIMPs in polymorphonuclear cells was even higher during bacterial meningitis. Taken together the results of this study indicated that the central nervous system resident cells and inflammatory infiltrates contribute to MMPs activity and that the expression patterns vary between cell types and in response to viral and bacterial meningitis.
Collapse
|
42
|
Banerjee S, Walseth TF, Borgmann K, Wu L, Bidasee KR, Kannan MS, Ghorpade A. CD38/cyclic ADP-ribose regulates astrocyte calcium signaling: implications for neuroinflammation and HIV-1-associated dementia. J Neuroimmune Pharmacol 2008; 3:154-64. [PMID: 18581239 DOI: 10.1007/s11481-008-9105-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 04/02/2008] [Indexed: 11/25/2022]
Abstract
CD38 is a 45-kD ectoenzyme involved in the synthesis of potent calcium (Ca(2+))-mobilizing agents, cyclic adenosine diphosphate-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP+). In HIV-1-infected patients, increased CD38 expression on CD8+ T cells is linked to immune system activation and progression of HIV-1 infection. However, the role of CD38 upregulation in astrocyte function and HIV-1-associated dementia (HAD-now called HAND: HIV-1-associated neurocognitive disorder) neuropathogenesis is unclear. To these ends, we used interleukin (IL)-1beta and HIV-1gp120 to activate primary human astrocytes and measured CD38 expression using real-time polymerase chain reaction and CD38 function by ADP-ribosyl cyclase activity. We also determined cADPR-mediated changes in single-cell intracellular Ca(2+) transients in activated astrocytes in presence or absence of ethylene glycol tetraacetic acid. CD38 levels were downregulated using CD38 small-interfering RNA (siRNA) and intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured. We previously reported a approximately 20-fold rise in CD38 messenger RNA levels in IL-1beta-activated astrocytes. We extend this observation and report that HIV-1gp120 potentiated CD38 expression in a dose-dependent manner and also increased CD38 enzyme activity in control and IL-1beta-activated astrocytes. We demonstrate higher cADPR levels in IL-1beta-activated astrocytes with a corresponding rise in [Ca(2+)](i) upon cADPR application and its non-hydrolysable analog, 3-deaza-cADPR. In activated astrocytes, pre-treatment with the cADPR-specific antagonist 8-Br-cADPR and CD38 siRNA transfection returned elevated [Ca(2+)](i) to baseline, thus confirming a CD38-cADPR specific response. These data are important for unraveling the mechanisms underlying the role of astrocyte-CD38 in HAD and have broader implications in other inflammatory diseases involving astrocyte activation and CD38 dysregulation.
Collapse
Affiliation(s)
- Sugato Banerjee
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Subramaniam K, Pech CM, Stacey MC, Wallace HJ. Induction of MMP-1, MMP-3 and TIMP-1 in normal dermal fibroblasts by chronic venous leg ulcer wound fluid*. Int Wound J 2008; 5:79-86. [PMID: 18336381 DOI: 10.1111/j.1742-481x.2007.00336.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the wound bed of chronic venous leg ulcers, an imbalance of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) may cause excessive proteolysis and impair wound granulation. Soluble mediators in the wound environment may be responsible for this imbalance. The in vitro effect of wound fluid from venous leg ulcers on dermal fibroblast production of MMP-1, MMP-3 and TIMP-1 was compared with the effect of acute wound fluid from two different sources: fluid from post-mastectomy axillary drains and fluid from skin graft donor sites. Significantly higher MMP-1 and MMP-3 levels were induced by chronic venous leg ulcer wound fluid compared with both types of acute wound fluid (P < 0.005). Chronic venous ulcer wound fluid reduced TIMP-1 protein levels significantly more than acute graft fluid (P < 0.05). Venous ulcer wound fluid significantly increased MMP-1 and MMP-3 production in dermal fibroblasts and reduced TIMP-1 production, confirming that mediators in the leg ulcer microenvironment can potentially induce excessive proteolysis in the ulcer dermis by altering the balance between MMPs and TIMPs. Inflammatory mediators including interleukin-1beta and tumour necrosis factor-alpha can induce these MMPs. Further work is required to confirm the factors responsible for the induction of a high MMP and low TIMP profile in fibroblasts by venous ulcer wound fluid.
Collapse
Affiliation(s)
- Kavitha Subramaniam
- School of Surgery and Pathology, The University of Western Australia, Fremantle Hospital, Fremantle, Western Australia, Australia
| | | | | | | |
Collapse
|
44
|
Dhar A, Gardner J, Borgmann K, Wu L, Ghorpade A. Novel role of TGF-beta in differential astrocyte-TIMP-1 regulation: implications for HIV-1-dementia and neuroinflammation. J Neurosci Res 2006; 83:1271-80. [PMID: 16496359 PMCID: PMC3820372 DOI: 10.1002/jnr.20787] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Astrocyte production of tissue inhibitor of metalloproteinase (TIMP)-1 is important in central nervous system (CNS) homeostasis and inflammatory diseases such as HIV-1-associated dementia (HAD). TIMPs and matrix metalloproteinases (MMPs) regulate the remodeling of the extracellular matrix. An imbalance between TIMPs and MMPs is associated with many pathologic conditions. Our recently published studies uniquely demonstrate that HAD patients have reduced levels of TIMP-1 in the brain. Astrocyte-TIMP-1 expression is differentially regulated in acute and chronic inflammatory conditions. In this and the adjoining report (Gardner et al., 2006), we investigate the mechanisms that may be involved in differential TIMP-1 regulation. One mechanism for TIMP-1 downregulation is the production of anti-inflammatory molecules, which can activate signaling pathways during chronic inflammation. We investigated the contribution of transforming growth factor (TGF)-signaling in astrocyte-MMP/TIMP-1-astrocyte regulation. TGF-beta1 and beta2 levels were upregulated in HAD brain tissues. Co-stimulation of astrocytes with IL-1beta and TGF-beta mimicked the TIMP-1 downregulation observed with IL-1beta chronic activation. Measurement of astrocyte-MMP protein levels showed that TGF-beta combined with IL-1beta increased MMP-2 and decreased proMMP-1 expression compared to IL-1beta alone. We propose that one of the mechanisms involved in TIMP-1 downregulation may be through TGF-signaling in chronic immune activation. These studies show a novel extracellular regulatory loop in astrocyte-TIMP-1 regulation.
Collapse
Affiliation(s)
- Alok Dhar
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jessica Gardner
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kathleen Borgmann
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Li Wu
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Anuja Ghorpade
- Laboratory of Cellular Neuroimmunology, University of Nebraska Medical Center, Omaha, Nebraska
- Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
- Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|