1
|
Díaz-García CM, Meyer DJ, Nathwani N, Rahman M, Martínez-François JR, Yellen G. The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle. eLife 2021; 10:e64821. [PMID: 33555254 PMCID: PMC7870136 DOI: 10.7554/elife.64821] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
When neurons engage in intense periods of activity, the consequent increase in energy demand can be met by the coordinated activation of glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. However, the trigger for glycolytic activation is unknown and the role for Ca2+ in the mitochondrial responses has been debated. Using genetically encoded fluorescent biosensors and NAD(P)H autofluorescence imaging in acute hippocampal slices, here we find that Ca2+ uptake into the mitochondria is responsible for the buildup of mitochondrial NADH, probably through Ca2+ activation of dehydrogenases in the TCA cycle. In the cytosol, we do not observe a role for the Ca2+/calmodulin signaling pathway, or AMPK, in mediating the rise in glycolytic NADH in response to acute stimulation. Aerobic glycolysis in neurons is triggered mainly by the energy demand resulting from either Na+ or Ca2+ extrusion, and in mouse dentate granule cells, Ca2+ creates the majority of this demand.
Collapse
Affiliation(s)
| | - Dylan J Meyer
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Nidhi Nathwani
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mahia Rahman
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | | | - Gary Yellen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
2
|
Contribution of Intrinsic Lactate to Maintenance of Seizure Activity in Neocortical Slices from Patients with Temporal Lobe Epilepsy and in Rat Entorhinal Cortex. Int J Mol Sci 2017; 18:ijms18091835. [PMID: 28832554 PMCID: PMC5618484 DOI: 10.3390/ijms18091835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed the contribution of lactate to the maintenance of transmembrane potassium gradients, synaptic signaling and pathological network activity in chronic epileptic human tissue. Stimulus induced and spontaneous field potentials and extracellular potassium concentration changes (∆[K⁺]O) were recorded in parallel with tissue pO₂ and pH in slices from TLE patients while blocking MCTs by α-cyano-4-hydroxycinnamic acid (4-CIN) or d-lactate. Intrinsic lactate contributed to the oxidative energy metabolism in chronic epileptic tissue as revealed by the changes in pO₂ following blockade of lactate uptake. However, unlike the results in rat hippocampus, ∆[K⁺]O recovery kinetics and field potential amplitude did not depend on the presence of lactate. Remarkably, inhibition of lactate uptake exerted pH-independent anti-seizure effects both in healthy rat and chronic epileptic tissue and this effect was partly mediated via adenosine 1 receptor activation following decreased oxidative metabolism.
Collapse
|
3
|
Uytingco CR, Puche AC, Munger SD. Using Intrinsic Flavoprotein and NAD(P)H Imaging to Map Functional Circuitry in the Main Olfactory Bulb. PLoS One 2016; 11:e0165342. [PMID: 27902689 PMCID: PMC5130181 DOI: 10.1371/journal.pone.0165342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/10/2016] [Indexed: 12/02/2022] Open
Abstract
Neurons exhibit strong coupling of electrochemical and metabolic activity. Increases in intrinsic fluorescence from either oxidized flavoproteins or reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] in the mitochondria have been used as an indicator of neuronal activity for the functional mapping of neural circuits. However, this technique has not been used to investigate the flow of olfactory information within the circuitry of the main olfactory bulb (MOB). We found that intrinsic flavoprotein fluorescence signals induced by electrical stimulation of single glomeruli displayed biphasic responses within both the glomerular (GL) and external plexiform layers (EPL) of the MOB. Pharmacological blockers of mitochondrial activity, voltage-gated Na+ channels, or ionotropic glutamate receptors abolished stimulus-dependent flavoprotein responses. Blockade of GABAA receptors enhanced the amplitude and spatiotemporal spread of the flavoprotein signals, indicating an important role for inhibitory neurotransmission in shaping the spread of neural activity in the MOB. Stimulus-dependent spread of fluorescence across the GL and EPL displayed a spatial distribution consistent with that of individual glomerular microcircuits mapped by neuroanatomic tract tracing. These findings demonstrated the feasibility of intrinsic fluorescence imaging in the olfactory systems and provided a new tool to examine the functional circuitry of the MOB.
Collapse
Affiliation(s)
- Cedric R Uytingco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Adam C Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven D Munger
- Center for Smell and Taste, University of Florida, Gainesville, Florida, United States of America.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
4
|
Grasselli G, Rossi S, Musella A, Gentile A, Loizzo S, Muzio L, Di Sanza C, Errico F, Musumeci G, Haji N, Fresegna D, Sepman H, De Chiara V, Furlan R, Martino G, Usiello A, Mandolesi G, Centonze D. Abnormal NMDA receptor function exacerbates experimental autoimmune encephalomyelitis. Br J Pharmacol 2013; 168:502-17. [PMID: 22924679 DOI: 10.1111/j.1476-5381.2012.02178.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 08/04/2012] [Accepted: 08/13/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Glutamate transmission is dysregulated in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the animal model of MS. A characteristic of EAE is increased glutamate transmission associated with up-regulation of AMPA receptors. However, little is known about the role of NMDA receptors in the synaptic modifications induced by EAE. EXPERIMENTAL APPROACH The contribution of NMDA receptors to the alterations of glutamate transmission and disease severity in EAE mice was assessed by means of neurophysiological, morphological, Western blot, metabolic and clinical score assessments. KEY RESULTS In our EAE mice, there was an NMDA receptor-dependent increase of glutamate release, associated with marked activation of the astroglia. Presynaptic NMDA receptors became overactive during EAE, increasing synaptic glutamate release by a mechanism dependent on voltage-gated sodium channels. By means of NAD(P)H autofluorescence analysis, we also found that EAE has a glutamate and NMDA receptor-dependent dysfunction of mitochondrial activity, which is known to contribute to the neurodegenerative damage of MS and EAE. Furthermore, pharmacological blockade of NMDA receptors in vivo ameliorated both synaptic transmission defects and of the clinical disease course of EAE mice, while EAE induced in mice with a genetically enhanced NMDA receptor signalling had opposite effects. CONCLUSIONS AND IMPLICATIONS Our data, showing both sensitization of NMDA receptors and their involvement in the progression of the EAE disease, supggest that pharmacological impairment of NMDA receptor signalling would be a component of a neuroprotection strategy in MS.
Collapse
Affiliation(s)
- G Grasselli
- Fondazione Santa Lucia/Centro Europeo per la Ricerca sul Cervello (CERC), Università Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Neuroenergetic models of synaptic transmission predicted that energy demand is highest for action potentials (APs) and postsynaptic ion fluxes, whereas the presynaptic contribution is rather small. Here, we addressed the question of energy consumption at Schaffer-collateral synapses. We monitored stimulus-induced changes in extracellular potassium, sodium, and calcium concentration while recording partial oxygen pressure (pO(2)) and NAD(P)H fluorescence. Blockade of postsynaptic receptors reduced ion fluxes as well as pO(2) and NAD(P)H transients by ∼50%. Additional blockade of transmitter release further reduced Na(+), K(+), and pO(2) transients by ∼30% without altering presynaptic APs, indicating considerable contribution of Ca(2+)-removal, transmitter and vesicle turnover to energy consumption.
Collapse
|
6
|
Ivanov A, Mukhtarov M, Bregestovski P, Zilberter Y. Lactate Effectively Covers Energy Demands during Neuronal Network Activity in Neonatal Hippocampal Slices. FRONTIERS IN NEUROENERGETICS 2011; 3:2. [PMID: 21602909 PMCID: PMC3092068 DOI: 10.3389/fnene.2011.00002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/25/2011] [Indexed: 11/13/2022]
Abstract
Although numerous experimental data indicate that lactate is efficiently used for energy by the mature brain, the direct measurements of energy metabolism parameters during neuronal network activity in early postnatal development have not been performed. Therefore, the role of lactate in the energy metabolism of neurons at this age remains unclear. In this study, we monitored field potentials and contents of oxygen and NAD(P)H in correlation with oxidative metabolism during intense network activity in the CA1 hippocampal region of neonatal brain slices. We show that in the presence of glucose, lactate is effectively utilized as an energy substrate, causing an augmentation of oxidative metabolism. Moreover, in the absence of glucose lactate is fully capable of maintaining synaptic function. Therefore, during network activity in neonatal slices, lactate can be an efficient energy substrate capable of sustaining and enhancing aerobic energy metabolism.
Collapse
Affiliation(s)
- Anton Ivanov
- Faculté de Médecine Timone, Institut National de la Santé et de la Recherche Médicale U751, Université de la Méditerranée Marseille, France
| | | | | | | |
Collapse
|
7
|
Figley CR, Stroman PW. The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 2011; 33:577-88. [DOI: 10.1111/j.1460-9568.2010.07584.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Sirotin YB, Das A. Spatial Relationship between Flavoprotein Fluorescence and the Hemodynamic Response in the Primary Visual Cortex of Alert Macaque Monkeys. FRONTIERS IN NEUROENERGETICS 2010; 2:6. [PMID: 20577638 PMCID: PMC2890124 DOI: 10.3389/fnene.2010.00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/10/2010] [Indexed: 11/13/2022]
Abstract
Flavoprotein fluorescence imaging (FFI) is a novel intrinsic optical signal that is steadily gaining ground as a valuable imaging tool in neuroscience research due to its closer relationship with local metabolism relative to the more commonly used hemodynamic signals. We have developed a technique for FFI imaging in the primary visual cortex (V1) of alert monkeys. Due to the nature of neurovascular coupling, hemodynamic signals are known to spread beyond the locus of metabolic activity. To determine whether FFI signals could provide a more focal measure of cortical activity in alert animals, we compared FFI and hemodynamic point spreads (i.e. responses to a minimal visual stimulus) and functional mapping signals over V1 in macaques performing simple fixation tasks. FFI responses were biphasic, with an early and focal fluorescence increase followed by a delayed and spatially broader fluorescence decrease. As expected, the early fluorescence increase, indicating increased local oxidative metabolism, was somewhat narrower than the simultaneously observed hemodynamic response. However, the later FFI decrease was broader than the hemodynamic response and started prior to the cessation of visual stimulation suggesting different mechanisms underlying the two phases of the fluorescence signal. FFI mapping signals were free of vascular artifacts and comparable in amplitude to hemodynamic mapping signals. These results indicate that the FFI response may be a more local and direct indicator of cortical metabolism than the hemodynamic response in alert animals.
Collapse
|
9
|
Use of NAD(P)H and flavoprotein autofluorescence transients to probe neuron and astrocyte responses to synaptic activation. Neurochem Int 2009; 56:379-86. [PMID: 20036704 DOI: 10.1016/j.neuint.2009.12.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/15/2009] [Accepted: 12/22/2009] [Indexed: 11/21/2022]
Abstract
Synaptic stimulation in brain slices is accompanied by changes in tissue autofluorescence, which are a consequence of changes in tissue metabolism. Autofluorescence excited by ultraviolet light has been most extensively studied, and is due to reduced pyridine nucleotides (NADH and NADPH, collectively termed NAD(P)H). Stimulation generates a characteristic compound NAD(P)H response, comprising an initial fluorescence decrease and then an overshooting increase that slowly recovers to baseline levels. Evoked NAD(P)H transients are relatively easy to record, do not require the addition of exogenous indicators and have good signal-noise ratios. These characteristics make NAD(P)H imaging methods very useful for tracking the spread of neuronal activity in complex brain tissues, however the cellular basis of synaptically-evoked autofluorescence transients has been the subject of recent debate. Of particular importance is the question of whether signals are due primarily to changes in neuronal mitochondrial function, and/or whether astrocyte metabolism triggered by glutamate uptake may be a significant contributor to the overshooting NAD(P)H fluorescence increases. This mini-review addresses the subcellular origins of NAD(P)H autofluorescence and the evidence for mitochondrial and glycolytic contributions to compound transients. It is concluded that there is no direct evidence for a contribution to NAD(P)H signals from glycolysis in astrocytes following synaptic glutamate uptake. In contrast, multiple lines of evidence, including from complimentary flavoprotein autofluorescence signals, imply that mitochondrial NADH dynamics in neurons dominate compound evoked NAD(P)H transients. These signals are thus appropriate for studies of mitochondrial function and dysfunction in brain slices, in addition to providing robust maps of postsynaptic neuronal activation following physiological activation.
Collapse
|
10
|
Dynamic NAD(P)H post-synaptic autofluorescence signals for the assessment of mitochondrial function in a neurodegenerative disease: monitoring the primary motor cortex of G93A mice, an amyotrophic lateral sclerosis model. Mitochondrion 2009; 10:108-14. [PMID: 19900586 DOI: 10.1016/j.mito.2009.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/18/2009] [Accepted: 11/03/2009] [Indexed: 12/14/2022]
Abstract
Abnormal mitochondrial function was reported in patients and models for amyotrophic lateral sclerosis (ALS). It is therefore important to set up sensitive tools for the monitoring of active agents that enhance energy metabolism delay onset, and extend lifespan of transgenic G93A-SOD1 ALS mice. In this report, primary motor cortex slices from G93A mice at different stages of disease were studied, using NAD(P)H autofluorescence post-synaptic signals following ultraviolet stimuli, as a probe to evaluate mitochondrial function. We observed consistent age-related alterations of responses in G93A primary motor cortex slices versus controls. We conclude that NAD(P)H autofluorescence post-synaptic signal is a highly sensitive real-time technique to detect mitochondrial function failure in primary cortex from living tissues.
Collapse
|
11
|
Synthesis of a New NIR Fluorescent Nd Complex Labeling Agent. J Fluoresc 2009; 20:225-34. [DOI: 10.1007/s10895-009-0542-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/15/2009] [Indexed: 11/26/2022]
|
12
|
L'Heureux B, Gurden H, Pain F. Autofluorescence imaging of NADH and flavoproteins in the rat brain: insights from Monte Carlo simulations. OPTICS EXPRESS 2009; 17:9477-9490. [PMID: 19506595 DOI: 10.1364/oe.17.009477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There has been recently a renewed interest in using Autofluorescence imaging (AF) of NADH and flavoproteins (Fp) to map brain activity in cortical areas. The recording of these cellular signals provides complementary information to intrinsic optical imaging based on hemodynamic changes. However, which of NADH or Fp is the best candidate for AF functional imaging is not established, and the temporal profile of AF signals is not fully understood. To bring new theoretical insights into these questions, Monte Carlo simulations of AF signals were carried out in realistic models of the rat somatosensory cortex and olfactory bulb. We show that AF signals depend on the structural and physiological features of the brain area considered and are sensitive to changes in blood flow and volume induced by sensory activation. In addition, we demonstrate the feasibility of both NADHAF and Fp-AF in the olfactory bulb.
Collapse
Affiliation(s)
- Barbara L'Heureux
- UMR8165 Imagerie et Modélisation en Neurobiologie et Cancérologie, CNRS/Université Paris XI/Paris VII, Bat 440, Campus d'Orsay, Orsay, France.
| | | | | |
Collapse
|
13
|
Dienel GA, Cruz NF. Imaging brain activation: simple pictures of complex biology. Ann N Y Acad Sci 2009; 1147:139-70. [PMID: 19076439 DOI: 10.1196/annals.1427.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elucidation of biochemical, physiological, and cellular contributions to metabolic images of brain is important for interpretation of images of brain activation and disease. Discordant brain images obtained with [(14)C]deoxyglucose and [1- or 6-(14)C]glucose were previously ascribed to increased glycolysis and rapid [(14)C]lactate release from tissue, but direct proof of [(14)C]lactate release from activated brain structures is lacking. Analysis of factors contributing to images of focal metabolic activity evoked by monotonic acoustic stimulation of conscious rats reveals that labeled metabolites of [1- or 6-(14)C]glucose are quickly released from activated cells as a result of decarboxylation reactions, spreading via gap junctions, and efflux via lactate transporters. Label release from activated tissue accounts for most of the additional [(14)C]glucose consumed during activation compared to rest. Metabolism of [3,4-(14)C]glucose generates about four times more [(14)C]lactate compared to (14)CO(2) in extracellular fluid, suggesting that most lactate is not locally oxidized. In brain slices, direct assays of lactate uptake from extracellular fluid demonstrate that astrocytes have faster influx and higher transport capacity than neurons. Also, lactate transfer from a single astrocyte to other gap junction-coupled astrocytes exceeds astrocyte-to-neuron lactate shuttling. Astrocytes and neurons have excess capacities for glycolysis, and oxidative metabolism in both cell types rises during sensory stimulation. The energetics of brain activation is quite complex, and the proportion of glucose consumed by astrocytes and neurons, lactate generation by either cell type, and the contributions of both cell types to brain images during brain activation are likely to vary with the stimulus paradigm and activated pathways.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|