1
|
Rocha SM, Gustafson DL, Safe S, Tjalkens RB. Comparative safety, pharmacokinetics, and off-target assessment of 1,1-bis(3'-indolyl)-1-( p-chlorophenyl) methane in mouse and dog: implications for therapeutic development. Toxicol Res (Camb) 2024; 13:tfae059. [PMID: 38655145 PMCID: PMC11033559 DOI: 10.1093/toxres/tfae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
The modified phytochemical derivative, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (C-DIM12), has been identified as a potential therapeutic platform based on its capacity to improve disease outcomes in models of neurodegeneration and cancer. However, comprehensive safety studies investigating pathology and off-target binding have not been conducted. To address this, we administered C-DIM12 orogastrically to outbred male CD-1 mice for 7 days (50 mg/kg/day, 200 mg/kg/day, and 300 mg/kg/day) and investigated changes in hematology, clinical chemistry, and whole-body tissue pathology. We also delivered a single dose of C-DIM12 (1 mg/kg, 5 mg/kg, 25 mg/kg, 100 mg/kg, 300 mg/kg, 1,000 mg/kg) orogastrically to male and female beagle dogs and investigated hematology and clinical chemistry, as well as plasma pharmacokinetics over 48-h. Consecutive in-vitro off-target binding through inhibition was performed with 10 μM C-DIM12 against 68 targets in tandem with predictive off-target structural binding capacity. These data show that the highest dose C-DIM12 administered in each species caused modest liver pathology in mouse and dog, whereas lower doses were unremarkable. Off-target screening and predictive modeling of C-DIM12 show inhibition of serine/threonine kinases, calcium signaling, G-protein coupled receptors, extracellular matrix degradation, and vascular and transcriptional regulation pathways. Collectively, these data demonstrate that low doses of C-DIM12 do not induce pathology and are capable of modulating targets relevant to neurodegeneration and cancer.
Collapse
Affiliation(s)
- Savannah M Rocha
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1680 Campus Delivery Fort Collins, CO 80523, USA
| | - Daniel L Gustafson
- Department of Clinical Sciences, Colorado State University, 1678 Campus Delivery Fort Collins, CO 80523, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M School of Veterinary, Medicine & Biomedical Sciences, 4466 TAMU College Station, TX 77843-4466, USA
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, 1680 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
2
|
Munoz-Tello P, Lin H, Khan P, de Vera IMS, Kamenecka TM, Kojetin DJ. Assessment of NR4A Ligands That Directly Bind and Modulate the Orphan Nuclear Receptor Nurr1. J Med Chem 2020; 63:15639-15654. [PMID: 33289551 PMCID: PMC8006468 DOI: 10.1021/acs.jmedchem.0c00894] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nurr1/NR4A2 is an orphan nuclear receptor transcription factor implicated as a drug target for neurological disorders including Alzheimer's and Parkinson's diseases. Previous studies identified small-molecule NR4A nuclear receptor modulators, but it remains unclear if these ligands affect transcription via direct binding to Nurr1. We assessed 12 ligands reported to affect NR4A activity for Nurr1-dependent and Nurr1-independent transcriptional effects and the ability to bind the Nurr1 ligand-binding domain (LBD). Protein NMR structural footprinting data show that amodiaquine, chloroquine, and cytosporone B bind the Nurr1 LBD; ligands that do not bind include C-DIM12, celastrol, camptothecin, IP7e, isoalantolactone, ethyl 2-[2,3,4-trimethoxy-6-(1-octanoyl)phenyl]acetate (TMPA), and three high-throughput screening hit derivatives. Importantly, ligands that modulate Nurr1 transcription also show Nurr1-independent effects on transcription in a cell type-specific manner, indicating that care should be taken when interpreting the functional response of these ligands in transcriptional assays. These findings should help focus medicinal chemistry efforts that desire to optimize Nurr1-binding ligands.
Collapse
Affiliation(s)
- Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Hua Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Pasha Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Ian Mitchelle S. de Vera
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Theodore M. Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Douglas J. Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
3
|
Hammond SL, Popichak KA, Li X, Hunt LG, Richman EH, Damale PU, Chong EKP, Backos DS, Safe S, Tjalkens RB. The Nurr1 Ligand,1,1-bis(3'-Indolyl)-1-( p-Chlorophenyl)Methane, Modulates Glial Reactivity and Is Neuroprotective in MPTP-Induced Parkinsonism. J Pharmacol Exp Ther 2018; 365:636-651. [PMID: 29626009 PMCID: PMC5941193 DOI: 10.1124/jpet.117.246389] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/04/2018] [Indexed: 11/22/2022] Open
Abstract
The orphan nuclear receptor Nurr1 (also called nuclear receptor-4A2) regulates inflammatory gene expression in glial cells, as well as genes associated with homeostatic and trophic function in dopaminergic neurons. Despite these known functions of Nurr1, an endogenous ligand has not been discovered. We postulated that the activation of Nurr1 would suppress the activation of glia and thereby protect against loss of dopamine (DA) neurons after subacute lesioning with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our previous studies have shown that a synthetic Nurr1 ligand, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12), suppresses inflammatory gene expression in primary astrocytes and induces a dopaminergic phenotype in neurons. Pharmacokinetic analysis of C-DIM12 in mice by liquid chromatography-mass spectrometry demonstrated that approximately three times more compound concentrated in the brain than in plasma. Mice treated with four doses of MPTP + probenecid over 14 days were monitored for neurobehavioral function, loss of dopaminergic neurons, and glial activation. C-DIM12 protected against the loss of DA neurons in the substantia nigra pars compacta and DA terminals in the striatum, maintained a ramified phenotype in microglia, and suppressed activation of astrocytes. In vitro reporter assays demonstrated that C-DIM12 was an effective activator of Nurr1 transcription in neuronal cell lines. Computational modeling of C-DIM12 binding to the three-dimensional structure of human Nurr1 identified a high-affinity binding interaction with Nurr1 at the coactivator domain. Taken together, these data suggest that C-DIM12 is an activator of Nurr1 that suppresses glial activation and neuronal loss in vivo after treatment with MPTP, and that this receptor could be an efficacious target for disease modification in individuals with Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Sean L Hammond
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Katriana A Popichak
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Xi Li
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Lindsay G Hunt
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Evan H Richman
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Pranav U Damale
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Edwin K P Chong
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Donald S Backos
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Stephen Safe
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences (S.L.H., K.A.P., L.G.H., E.H.R., R.B.T.) and Department of Electrical and Computer Engineering (P.D., E.C.), Colorado State University, Fort Collins, Colorado; Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas (X.L., S.S.); and Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado (D.S.B.)
| |
Collapse
|
4
|
Jiang C, Li J, Lü G, Zheng Y, Yu X, Lü S, Hai L, Wu Y. Potassium tert-Butanolate promoted reaction of benzaldehydes and indoles: a new strategy for synthesis of bis(indolyl)arylmethanes. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-6382-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Rodríguez-Calvo R, Tajes M, Vázquez-Carrera M. The NR4A subfamily of nuclear receptors: potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opin Ther Targets 2017; 21:291-304. [PMID: 28055275 DOI: 10.1080/14728222.2017.1279146] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Prolonged inflammatory response contributes to the pathogenesis of chronic disease-related disturbances. Among nuclear receptors (NRs), the orphan NR4A subfamily, which includes Nur77 (NR4A1), Nurr1 (NR4A2) and NOR1 (NR4A3), has recently emerged as a therapeutic target for the treatment of inflammation. Areas covered: This review focuses on the capacity of NR4A receptors to counter-regulate the development of the inflammatory response, with a special focus on the molecular transrepression mechanisms. Expert opinion: Recent studies have highlighted the role of NR4A receptors as significant regulators of the inflammatory response. NR4A receptors are rapidly induced by inflammatory stimuli, thus suggesting that they are required for the initiation of inflammation. Nevertheless, NR4A anti-inflammatory properties indicate that this acute regulation could be a protective reaction aimed at resolving inflammation in the later stages. Therefore, NR4A receptors are involved in a negative feedback mechanism to maintain the inflammatory balance. However, the underlying mechanisms are not entirely clear. Only a small number of NR4A-target genes have been identified, and the transcriptional repression mechanisms are only beginning to emerge. Despite further research is needed to fully understand the role of NR4A receptors in inflammation, these NRs should be considered as targets for new therapeutic approaches to inflammatory diseases.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Calvo
- a Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Pere Virgili Health Research Institute (IISPV) and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Medicine and Health Sciences , Rovira i Virgili University , Reus , Spain
| | - Marta Tajes
- b Heart Diseases Biomedical Research Group, Inflammatory and Cardiovascular Disorders Program , Hospital del Mar Medical Research Institute (IMIM), Parc de Salut Mar , Barcelona , Spain
| | - Manuel Vázquez-Carrera
- c Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Pediàtrica-Hospital Sant Joan de Déu, and Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)-Instituto de Salud Carlos III, Faculty of Pharmacy, Diagonal 643 , University of Barcelona , Barcelona , Spain
| |
Collapse
|
6
|
Wang P, Yu X, Guan PP, Guo JW, Wang Y, Zhang Y, Zhao H, Wang ZY. Magnesium ion influx reduces neuroinflammation in Aβ precursor protein/Presenilin 1 transgenic mice by suppressing the expression of interleukin-1β. Cell Mol Immunol 2015; 14:451-464. [PMID: 26549801 DOI: 10.1038/cmi.2015.93] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) has been associated with magnesium ion (Mg2+) deficits and interleukin-1β (IL-1β) elevations in the serum or brains of AD patients. However, the mechanisms regulating IL-1β expression during Mg2+ dyshomeostasis in AD remain unknown. We herein studied the mechanism of IL-1β reduction using a recently developed compound, magnesium-L-threonate (MgT). Using human glioblastoma A172 and mouse brain D1A glial cells as an in vitro model system, we delineated the signaling pathways by which MgT suppressed the expression of IL-1β in glial cells. In detail, we found that MgT incubation stimulated the activity of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathways by phosphorylation, which resulted in IL-1β suppression. Simultaneous inhibition of the phosphorylation of ERK1/2 and PPARγ induced IL-1β upregulation in MgT-stimulated glial cells. In accordance with our in vitro data, the intracerebroventricular (i.c.v) injection of MgT into the ventricles of APP/PS1 transgenic mice and treatment of Aβ precursor protein (APP)/PS1 brain slices suppressed the mRNA and protein expression of IL-1β. These in vivo observations were further supported by the oral administration of MgT for 5 months. Importantly, Mg2+ influx into the ventricles of the mice blocked the effects of IL-1β or amyloid β-protein oligomers in the cerebrospinal fluid. This reduced the stimulation of IL-1β expression in the cerebral cortex of APP/PS1 transgenic mice, which potentially contributed to the inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Jing-Wen Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Yue Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Yan Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Hang Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| |
Collapse
|
7
|
Tang KS. Protective effect of arachidonic acid and linoleic acid on 1-methyl-4-phenylpyridinium-induced toxicity in PC12 cells. Lipids Health Dis 2014; 13:197. [PMID: 25522984 PMCID: PMC4320435 DOI: 10.1186/1476-511x-13-197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/01/2014] [Indexed: 01/13/2023] Open
Abstract
Background Parkinson’s disease is a neurodegenerative disorder that is being characterized by the progressive loss of dopaminergic neurons of the nigrostriatal pathway in the brain. The protective effect of omega-6 fatty acids is unclear. There are lots of contradictions in the literature with regard to the cytoprotective role of arachidonic acid. To date, there is no solid evidence that shows the protective role of omega-6 fatty acids in Parkinson’s disease. In the current study, the potential of two omega-6 fatty acids (i.e. arachidonic acid and linoleic acid) in alleviating 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity in PC12 cells was examined. Methods Cultured PC12 cells were either treated with MPP+ alone or co-treated with one of the omega-6 fatty acids for 1 day. Cell viability was then assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results Cells treated with 500 μM MPP+ for a day reduced cell viability to ~70% as compared to control group. Linoleic acid (50 and 100 μM) significantly reduced MPP+-induced cell death back to ~85-90% of the control value. The protective effect could be mimicked by arachidonic acid, but not by ciglitazone. Conclusions Both linoleic acid and arachidonic acid are able to inhibit MPP+-induced toxicity in PC12 cells. The protection is not mediated via peroxisome proliferator-activated receptor gamma (PPAR-γ). Overall, the results suggest the potential role of omega-6 fatty acids in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
- Kim San Tang
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
8
|
De Miranda BR, Popichak KA, Hammond SL, Miller JA, Safe S, Tjalkens RB. Novel para-phenyl substituted diindolylmethanes protect against MPTP neurotoxicity and suppress glial activation in a mouse model of Parkinson's disease. Toxicol Sci 2014; 143:360-73. [PMID: 25406165 DOI: 10.1093/toxsci/kfu236] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The orphan nuclear receptor NR4A2 (Nurr1) constitutively regulates inflammatory gene expression in glial cells by suppressing DNA binding activity of NF-κB. We recently reported that novel 1,1-bis(3'-indolyl)-1-(p-substitutedphenyl)methane (C-DIM) compounds that activate NR4A family nuclear receptors in cancer lines also suppress inflammatory gene expression in primary astrocytes and prevent loss of dopaminergic neurons in mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp). In this study, we postulated that the basis for this neuroprotection involves blockade of glial activation and subsequent expression of NF-κB-regulated inflammatory genes. To examine this mechanism, we treated transgenic NF-κB/EGFP reporter mice with MPTPp for 7 days (MPTPp7d) followed by daily oral gavage with either vehicle (corn oil; MPTPp14d) or C-DIMs containing p-methoxyphenyl (C-DIM5), p-hydroxyphenyl (C-DIM8), or p-chlorophenyl (C-DIM12) groups. Each compound conferred significant protection against progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), even when given after 7 days of dosing with MPTPp. C-DIM12 had the greatest neuroprotective activity in MPTPp-treated mice, and was also the most potent compound in suppressing activation of microglia and astrocytes, expression of cytokines and chemokines in quantitative polymerase chain reaction (qPCR) array studies, and in reducing expression of NF-κB/EGFP in the SN. C-DIM12 prevented nuclear export of Nurr1 in dopaminergic neurons and enhanced expression of the Nurr1-regulated proteins tyrosine hydroxylase and the dopamine transporter. These data indicate that NR4A-active C-DIM compounds protect against loss of dopamine neurons in the MPTPp model of PD by preventing glial-mediated neuronal injury and by supporting a dopaminergic phenotype in TH-positive neurons in the SNpc.
Collapse
Affiliation(s)
- Briana R De Miranda
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Katriana A Popichak
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Sean L Hammond
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - James A Miller
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Stephen Safe
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Ronald B Tjalkens
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| |
Collapse
|
9
|
Abstract
Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS.
Collapse
|
10
|
Sidoryk-Wegrzynowicz M, Aschner M. Role of astrocytes in manganese mediated neurotoxicity. BMC Pharmacol Toxicol 2013; 14:23. [PMID: 23594835 PMCID: PMC3637816 DOI: 10.1186/2050-6511-14-23] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/10/2013] [Indexed: 01/08/2023] Open
Abstract
Astrocytes are responsible for numerous aspects of metabolic support, nutrition, control of the ion and neurotransmitter environment in central nervous system (CNS). Failure by astrocytes to support essential neuronal metabolic requirements plays a fundamental role in the pathogenesis of brain injury and the ensuing neuronal death. Astrocyte-neuron interactions play a central role in brain homeostasis, in particular via neurotransmitter recycling functions. Disruption of the glutamine (Gln)/glutamate (Glu) -γ-aminobutyric acid (GABA) cycle (GGC) between astrocytes and neurons contributes to changes in Glu-ergic and/or GABA-ergic transmission, and is associated with several neuropathological conditions, including manganese (Mn) toxicity. In this review, we discuss recent advances in support of the important roles for astrocytes in normal as well as neuropathological conditions primarily those caused by exposure to Mn.
Collapse
|
11
|
De Miranda BR, Miller JA, Hansen RJ, Lunghofer PJ, Safe S, Gustafson DL, Colagiovanni D, Tjalkens RB. Neuroprotective efficacy and pharmacokinetic behavior of novel anti-inflammatory para-phenyl substituted diindolylmethanes in a mouse model of Parkinson's disease. J Pharmacol Exp Ther 2013; 345:125-38. [PMID: 23318470 DOI: 10.1124/jpet.112.201558] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There are currently no registered drugs that slow the progression of neurodegenerative diseases, in part because translation from animal models to the clinic has been hampered by poor distribution to the brain. The present studies examined a selected series of para-phenyl-substituted diindolylmethane (C-DIM) compounds that display anti-inflammatory and neuroprotective efficacy in vitro. We postulated that the pharmacokinetic behavior of C-DIM compounds after oral administration would correlate with neuroprotective efficacy in vivo in a mouse model of Parkinson's disease. Pharmacokinetics and metabolism of 1,1-bis(3'-indolyl)-1-(p-methoxyphenyl)methane (C-DIM5), 1,1-bis(3'-indolyl)-1-(phenyl)methane, 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (C-DIM8), and 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane (C-DIM12) were determined in plasma and brain of C57Bl/6 mice after oral and intravenous administration at 10 and 1 mg/Kg, respectively. Putative metabolites were measured in plasma, liver, and urine. C-DIM compounds given orally displayed the highest area under the curve, Cmax, and Tmax levels, and C-DIM12 exhibited the most favorable pharmacokinetics of the compounds tested. Oral bioavailability of each compound ranged from 6% (C-DIM8) to 42% (C-DIM12). After pharmacokinetic studies, the neuroprotective efficacy of C-DIM5, C-DIM8, and C-DIM12 (50 mg/Kg per oral) was examined in mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid for 14 days, a model of progressive neurodegeneration with a strong neuroinflammatory component. C-DIM5 and C-DIM12 given orally once daily after one week of exposure to MPTP and probenecid prevented further loss of dopaminergic neurons in the substantia nigra pars compacta and striatal dopamine terminals, indicating that these compounds could be effective therapeutic agents to prevent neurodegeneration.
Collapse
Affiliation(s)
- Briana R De Miranda
- Center for Environmental Medicine, Department of Environmental and Radiological Health Sciences, Animal Cancer Center, Colorado State University, Fort Collins, Colorado 80523-1680, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Haskew-Layton RE, Payappilly JB, Xu H, Bennett SAL, Ratan RR. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) protects neurons from oxidative death via an Nrf2 astrocyte-specific mechanism independent of PPARγ. J Neurochem 2013. [DOI: 10.1111/jnc.12107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Renée E. Haskew-Layton
- The Burke Medical Research Institute; Department of Neurology and Neuroscience; Weill Medical College of Cornell University; White Plains New York USA
| | - Jimmy B. Payappilly
- The Burke Medical Research Institute; Department of Neurology and Neuroscience; Weill Medical College of Cornell University; White Plains New York USA
| | - Hongbin Xu
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology; University of Ottawa; Ottawa Canada
| | - Steffany A. L. Bennett
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology; University of Ottawa; Ottawa Canada
| | - Rajiv R. Ratan
- The Burke Medical Research Institute; Department of Neurology and Neuroscience; Weill Medical College of Cornell University; White Plains New York USA
| |
Collapse
|
13
|
Kilcoyne M, Sharma S, McDevitt N, O'Leary C, Joshi L, McMahon SS. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments. Biochem Biophys Res Commun 2012; 420:616-22. [PMID: 22465128 DOI: 10.1016/j.bbrc.2012.03.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/12/2012] [Indexed: 12/27/2022]
Abstract
Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually α-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment with ChABC was successful in returning neuronal glycosylation to normal conditions at all timepoints for MAA, PNA and SNA-I staining, and by day 8 in the case of WFA. This study demonstrated neuronal cell surface glycosylation changes in an inhibitory environment and indicated a return to normal glycosylation after treatment with ChABC, which may be promising for identifying potential therapies for neuronal regeneration strategies.
Collapse
Affiliation(s)
- Michelle Kilcoyne
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
14
|
Miller JA, Trout BR, Sullivan KA, Bialecki RA, Roberts RA, Tjalkens RB. Low-dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine causes inflammatory activation of astrocytes in nuclear factor-κB reporter mice prior to loss of dopaminergic neurons. J Neurosci Res 2011; 89:406-17. [PMID: 21259327 PMCID: PMC6487665 DOI: 10.1002/jnr.22549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 01/07/2023]
Abstract
Neuroinflammation is implicated in the progression of numerous disease states of the CNS, but early inflammatory signaling events in glial cells that may predispose neurons to injury are not easily characterized in vivo. To address this question, we exposed transgenic mice expressing a nuclear factor-κB (NF-κB)-driven enhanced green fluorescent protein (EGFP) reporter construct to low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and examined inflammatory activation of astrocytes in relation to neurobehavioral and neuropathological outcomes. The highest dose of MPTP (60 mg/kg total dose) caused a decrease in locomotor activity and a reduction in stride length. No significant loss of dopaminergic neurons in the substantia nigra was apparent at any dose. In contrast, expression of tyrosine hydroxylase in striatal fibers was reduced at 60 mg/kg MPTP, as were levels of dopamine and DOPAC. Colocalized expression of EGFP and inducible nitric oxide synthase (NOS2) occurred in astrocytes at 30 and 60 mg/kg MPTP and was associated with increased protein nitration in nigral dopaminergic neurons. Inhibition of NF-κB in primary astrocytes by expression of mutant IκBα suppressed expression of NOS2 and protected cocultured neurons from astrocyte-mediated apoptosis. These data indicate that inflammatory activation of astrocytes and enhanced nitrosative stress occurs at low doses of MPTP prior to loss of dopaminergic neurons. NF-κB-mediated expression of NOS2 appears to be a sensitive indicator of neuroinflammation that correlates with MPTP-induced neurochemical and neurobehavioral deficits prior to loss of dopaminergic neurons in the subtantia nigra.
Collapse
Affiliation(s)
- James A. Miller
- Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado
- Program in Molecular, Cellular, and Integrative Neuroscience, Colorado State University, Fort Collins, Colorado
| | - Briana R. Trout
- Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado
- Program in Molecular, Cellular, and Integrative Neuroscience, Colorado State University, Fort Collins, Colorado
| | - Kelly A. Sullivan
- Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado
| | | | - Ruth A. Roberts
- AstraZeneca Safety Assessment, Alderley Park, United Kingdom
| | - Ronald B. Tjalkens
- Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado
- Program in Molecular, Cellular, and Integrative Neuroscience, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
15
|
Lee CH, Park OK, Yoo KY, Byun K, Lee B, Choi JH, Hwang IK, Kim YM, Won MH. The role of peroxisome proliferator-activated receptor γ, and effects of its agonist, rosiglitazone, on transient cerebral ischemic damage. J Neurol Sci 2010; 300:120-9. [PMID: 20880548 DOI: 10.1016/j.jns.2010.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 08/25/2010] [Accepted: 09/03/2010] [Indexed: 11/30/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is expressed in neurons and glia, and its synthetic agonist, rosiglitazone (RSG), regulates inflammatory process and has neuroprotective effects against neurological disorders. In the present study, we examined the role of PPARγ in the hippocampal CA1 region (CA1) after transient cerebral ischemia and the neuroprotective effects of RSG on ischemic damage. RSG attenuated neuronal damage in the ischemic CA1, not showing perfect neuroprotection: the RSG appeared to delay neuronal death after ischemia/reperfusion (I/R). PPARγ immunoreactivity and protein levels were increased after I/R, and most of PPARγ-immunoreactive cells colocalized with microglia, not astrocytes. In addition, RSG attenuated glial activation and increased IL-4 and IL-13 levels in the ischemic CA1. These results indicate that PPARγ increases and expresses in microglia after I/R, and that RSG delays neuronal damage by interfering with glial activations and increases anti-inflammatory cytokines in response to ischemic damage.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology 2010; 276:85-94. [PMID: 20643181 DOI: 10.1016/j.tox.2010.07.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/23/2010] [Accepted: 07/11/2010] [Indexed: 01/20/2023]
Abstract
'Oxidative and Nitrative Stress in Toxicology and Disease' was the subject of a symposium held at the EUROTOX meeting in Dresden 15th September 2009. Reactive oxygen (ROS) and reactive nitrogen species (RNS) produced during tissue pathogenesis and in response to viral or chemical toxicants, induce a complex series of downstream adaptive and reparative events driven by the associated oxidative and nitrative stress. As highlighted by all the speakers, ROS and RNS can promote diverse biological responses associated with a spectrum of disorders including neurodegenerative/neuropsychiatric and cardiovascular diseases. Similar pathways are implicated during the process of liver and skin carcinogenesis. Mechanistically, reactive oxygen and nitrogen species drive sustained cell proliferation, cell death including both apoptosis and necrosis, formation of nuclear and mitochondrial DNA mutations, and in some cases stimulation of a pro-angiogenic environment. Here we illustrate the pivotal role played by oxidative and nitrative stress in cell death, inflammation and pain and its consequences for toxicology and disease pathogenesis. Examples are presented from five different perspectives ranging from in vitro model systems through to in vivo animal model systems and clinical outcomes.
Collapse
|
17
|
Aschner M, Erikson KM, Herrero Hernández E, Hernández EH, Tjalkens R. Manganese and its role in Parkinson's disease: from transport to neuropathology. Neuromolecular Med 2009; 11:252-66. [PMID: 19657747 PMCID: PMC4613768 DOI: 10.1007/s12017-009-8083-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/24/2009] [Indexed: 01/03/2023]
Abstract
The purpose of this review is to highlight recent advances in the neuropathology associated with Mn exposures. We commence with a discussion on occupational manganism and clinical aspects of the disorder. This is followed by novel considerations on Mn transport (see also chapter by Yokel, this volume), advancing new hypotheses on the involvement of several transporters in Mn entry into the brain. This is followed by a brief description of the effects of Mn on neurotransmitter systems that are putative modulators of dopamine (DA) biology (the primary target of Mn neurotoxicity), as well as its effects on mitochondrial dysfunction and disruption of cellular energy metabolism. Next, we discuss inflammatory activation of glia in neuronal injury and how disruption of synaptic transmission and glial-neuronal communication may serve as underlying mechanisms of Mn-induced neurodegeneration commensurate with the cross-talk between glia and neurons. We conclude with a discussion on therapeutic aspects of Mn exposure. Emphasis is directed at treatment modalities and the utility of chelators in attenuating the neurodegenerative sequelae of exposure to Mn. For additional reading on several topics inherent to this review as well as others, the reader may wish to consult Aschner and Dorman (Toxicological Review 25:147-154, 2007) and Bowman et al. (Metals and neurodegeneration, 2009).
Collapse
Affiliation(s)
- Michael Aschner
- Departments of Pediatrics and Pharmacology and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, 2215-B Garland Avenue, 11425 MRB IV, Nashville, TN, 37232-0414, USA.
| | | | | | | | | |
Collapse
|
18
|
Carbone DL, Popichak KA, Moreno JA, Safe S, Tjalkens RB. Suppression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nitric-oxide synthase 2 expression in astrocytes by a novel diindolylmethane analog protects striatal neurons against apoptosis. Mol Pharmacol 2008; 75:35-43. [PMID: 18840677 DOI: 10.1124/mol.108.050781] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The progressive debilitation of motor functions in Parkinson's disease (PD) results from degeneration of dopaminergic neurons within the substantia nigra pars compacta of the midbrain. Long-term inflammatory activation of microglia and astrocytes plays a central role in the progression of PD and is characterized by activation of the nuclear factor-kappaB (NF-kappaB) signaling cascade and subsequent overproduction of inflammatory cytokines and nitric oxide (NO). Suppression of this neuroinflammatory phenotype has received considerable attention as a potential target for chemotherapy, but there are no currently approved drugs that sufficiently address this problem. The data presented here demonstrate the efficacy of a novel anti-inflammatory diindolylmethane class compound, 1,1-bis(3'-indolyl)-1-(p-t-butylphenyl)methane (DIM-C-pPhtBu), in suppressing NF-kappaB-dependent expression of inducible nitric-oxide synthase (NOS2) and NO production in astrocytes exposed to the parkinsonian neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) through a mechanism distinct from that described for the thiazolidinedione-class compound, rosiglitazone. Chromatin immunoprecipitations revealed that micromolar concentrations of DIM-C-pPhtBu prevented association of the p65 subunit of NF-kappaB with enhancer elements in the Nos2 promoter but had little effect on DNA binding of either peroxisome proliferator-activated receptor-gamma (PPAR-gamma) or the nuclear corepressor NCoR2. Treatment with DIM-C-pPhtBu concomitantly suppressed NO production and protein nitration in MPTP-activated astrocytes and completely protected cocultured primary striatal neurons from astrocyte-dependent apoptosis. These data demonstrate the efficacy of DIM-C-pPhtBu in preventing the activation of NF-kappaB-dependent inflammatory genes in primary astrocytes and suggest that this class of compounds may be effective neuroprotective anti-inflammatory agents in vivo.
Collapse
Affiliation(s)
- David L Carbone
- Department of Environmental and Radiological Health Sciences, Colorado State University, Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|