1
|
Cheng GWY, Mok KKS, Yeung SHS, Kofler J, Herrup K, Tse KH. Apolipoprotein E ε4 Mediates Myelin Breakdown by Targeting Oligodendrocytes in Sporadic Alzheimer Disease. J Neuropathol Exp Neurol 2022; 81:717-730. [PMID: 35779013 DOI: 10.1093/jnen/nlac054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
White matter degradation in the frontal lobe is one of the earliest detectable changes in aging and Alzheimer disease. The ε4 allele of apolipoprotein E (APOE4) is strongly associated with such myelin pathology but the underlying cellular mechanisms remain obscure. We hypothesized that, as a lipid transporter, APOE4 directly triggers pathology in the cholesterol-rich myelin sheath independent of AD pathology. To test this, we performed immunohistochemistry on brain tissues from healthy controls, sporadic, and familial Alzheimer disease subjects. While myelin basic protein expression was largely unchanged, in frontal cortex the number of oligodendrocytes (OLs) was significantly reduced in APOE4 brains independent of their Braak stage or NIA-RI criteria. This high vulnerability of OLs was confirmed in humanized APOE3 or APOE4 transgenic mice. A gradual decline of OL numbers was found in the aging brain without associated neuronal loss. Importantly, the application of lipidated human APOE4, but not APOE3, proteins significantly reduced the formation of myelinating OL in primary cell culture derived from Apoe-knockout mice, especially in cholesterol-depleted conditions. Our findings suggest that the disruption of myelination in APOE4 carriers may represent a direct OL pathology, rather than an indirect consequence of amyloid plaque formation or neuronal loss.
Collapse
Affiliation(s)
- Gerald Wai-Yeung Cheng
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Kingston King-Shi Mok
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Sunny Hoi-Sang Yeung
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| | - Julia Kofler
- Division of Neuropathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- From the Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR
| |
Collapse
|
2
|
Khandker L, Jeffries MA, Chang YJ, Mather ML, Evangelou AV, Bourne JN, Tafreshi AK, Ornelas IM, Bozdagi-Gunal O, Macklin WB, Wood TL. Cholesterol biosynthesis defines oligodendrocyte precursor heterogeneity between brain and spinal cord. Cell Rep 2022; 38:110423. [PMID: 35235799 PMCID: PMC8988216 DOI: 10.1016/j.celrep.2022.110423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 12/28/2022] Open
Abstract
Brain and spinal cord oligodendroglia have distinct functional characteristics, and cell-autonomous loss of individual genes can result in different regional phenotypes. However, a molecular basis for these distinctions is unknown. Using single-cell analysis of oligodendroglia during developmental myelination, we demonstrate that brain and spinal cord precursors are transcriptionally distinct, defined predominantly by cholesterol biosynthesis. We further identify the mechanistic target of rapamycin (mTOR) as a major regulator promoting cholesterol biosynthesis in oligodendroglia. Oligodendroglia-specific loss of mTOR decreases cholesterol biosynthesis in both the brain and the spinal cord, but mTOR loss in spinal cord oligodendroglia has a greater impact on cholesterol biosynthesis, consistent with more pronounced deficits in developmental myelination. In the brain, mTOR loss results in a later adult myelin deficit, including oligodendrocyte death, spontaneous demyelination, and impaired axonal function, demonstrating that mTOR is required for myelin maintenance in the adult brain. Using single-cell RNA sequencing, Khandker et al. reveal that oligodendroglia in the brain and spinal cord are distinct. These differences arise from mechanisms regulating cholesterol acquisition, necessary for maintenance of the lipid-rich myelin sheath, and involve mTOR in the regulation of cholesterol biosynthesis in oligodendroglia.
Collapse
Affiliation(s)
- Luipa Khandker
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Marisa A Jeffries
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Yun-Juan Chang
- Office of Advance Research Computing, Rutgers University, Piscataway, NJ 08854, USA
| | - Marie L Mather
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Angelina V Evangelou
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jennifer N Bourne
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Azadeh K Tafreshi
- Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Isis M Ornelas
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ozlem Bozdagi-Gunal
- Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| |
Collapse
|
3
|
Pleiotropic effects of statins on brain cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183340. [PMID: 32387399 DOI: 10.1016/j.bbamem.2020.183340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 01/06/2023]
Abstract
Starting with cholesterol homeostasis, the first part of the review addresses various aspects of cholesterol metabolism in neuronal and glial cells and the mutual crosstalk between the two cell types, particularly the transport of cholesterol from its site of synthesis to its target loci in neuronal cells, discussing the multiple mechanistic aspects and transporter systems involved. Statins are next analyzed from the point of view of their chemical structure and its impingement on their pharmacological properties and permeability through cell membranes and the blood-brain barrier in particular. The following section then discusses the transcriptional effects of statins and the changes they induce in brain cell genes associated with a variety of processes, including cell growth, signaling and trafficking, uptake and synthesis of cholesterol. We review the effects of statins at the cellular level, analyzing their impact on the cholesterol composition of the nerve and glial cell plasmalemma, neurotransmitter receptor mobilization, myelination, dendritic arborization of neurons, synaptic vesicle release, and cell viability. Finally, the role of statins in disease is exemplified by Alzheimer and Parkinson diseases and some forms of epilepsy, both in animal models and in the human form of these pathologies.
Collapse
|
4
|
Barros S, Coimbra AM, Alves N, Pinheiro M, Quintana JB, Santos MM, Neuparth T. Chronic exposure to environmentally relevant levels of simvastatin disrupts zebrafish brain gene signaling involved in energy metabolism. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:113-125. [PMID: 32116137 DOI: 10.1080/15287394.2020.1733722] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Simvastatin (SIM), a hypocholesterolaemic drug belonging to the statins group, is a widely prescribed pharmaceutical for prevention of cardiovascular diseases. Several studies showed that lipophilic statins, as SIM, cross the blood-brain barrier and interfere with the energy metabolism of the central nervous system in humans and mammalian models. In fish and other aquatic organisms, the effects of SIM on the brain energy metabolism are unknown, particularly following exposure to low environmentally relevant concentrations. Therefore, the present study aimed at investigating the influence of SIM on gene signaling pathways involved in brain energy metabolism of adult zebrafish (Danio rerio) following chronic exposure (90 days) to environmentally relevant SIM concentrations ranging from 8 ng/L to 1000 ng/L. Real-time PCR was used to determine the transcript levels of several genes involved in different pathways of the brain energy metabolism (glut1b, gapdh, acadm, accα, fasn, idh3a, cox4i1, and cox5aa). The findings here reported integrated well with ecological and biochemical responses obtained in a parallel study. Data demonstrated that SIM modulates transcription of key genes involved in the mitochondrial electron transport chain, in glucose transport and metabolism, in fatty acid synthesis and β-oxidation. Further, SIM exposure led to a sex-dependent transcription profile for some of the studied genes. Overall, the present study demonstrated, for the first time, that SIM modulates gene regulation of key pathways involved in the energy metabolism in fish brain at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Susana Barros
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana M Coimbra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Nélson Alves
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| | - Marlene Pinheiro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade De Santiago De Compostela, Santiago De Compostela, Spain
| | - Miguel M Santos
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
- FCUP, Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Porto, Portugal
| | - Teresa Neuparth
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Matosinhos, Portugal
| |
Collapse
|
5
|
Quetiapine has an additive effect to triiodothyronine in inducing differentiation of oligodendrocyte precursor cells through induction of cholesterol biosynthesis. PLoS One 2019; 14:e0221747. [PMID: 31490950 PMCID: PMC6730995 DOI: 10.1371/journal.pone.0221747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/29/2019] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is characterized by demyelinated lesions in the central nervous system. Destruction of myelin and secondary damage to axons and neurons leads to significant disability, particularly in people with progressive MS. Accumulating evidence suggests that the potential for myelin repair exists in MS, although for unclear reasons this process fails. The cells responsible for producing myelin, the oligodendrocytes, and their progenitors, oligodendrocyte precursor cells (OPCs), have been identified at the site of lesions, even in adults. Their presence suggests the possibility that endogenous remyelination without transplantation of donor stem cells may be a mechanism for myelin repair in MS. Strategies to develop novel therapies have focused on induction of signaling pathways that stimulate OPCs to mature into myelin-producing oligodendrocytes that could then possibly remyelinate lesions. We have been investigating pharmacological approaches to enhance OPC differentiation, and have identified that the combination of two agents, triiodothyronine (T3) and quetiapine, leads to an additive effect on OPC differentiation and consequent myelin production via both overlapping and distinct signaling pathways. While the ultimate production of myelin requires cholesterol biosynthesis, we identified that quetiapine enhances gene expression in this pathway more potently than T3. Two blockers of cholesterol production, betulin and simvastatin, reduced OPC differentiation into myelin producing oligodendrocytes. Elucidating the nature of agents that lead to complementary and additive effects on oligodendrocyte differentiation and myelin production may pave the way for more efficient induction of remyelination in people with MS.
Collapse
|
6
|
Wang SS, Zhang Z, Zhu TB, Chu SF, He WB, Chen NH. Myelin injury in the central nervous system and Alzheimer's disease. Brain Res Bull 2018; 140:162-168. [PMID: 29730417 DOI: 10.1016/j.brainresbull.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
Myelin is a membrane wrapped around the axon of the nerve cell, which is composed of the mature oligodendrocytes. The role of myelin is to insulate and prevent the nerve electrical impulses from the axon of the neurons to the axons of the other neurons, which is essential for the proper functioning of the nervous system. Minor changes in myelin thickness could lead to substantial changes in conduction speed and may thus alter neural circuit function. Demyelination is the myelin damage, which characterized by the loss of nerve sheath and the relative fatigue of the neuronal sheath and axon. Studies have shown that myelin injury may be closely related to neurodegenerative diseases and may be an early diagnostic criteria and therapeutic target. Thus this review summarizes the recent result of pathologic effect and signal pathways of myelin injury in neurodegenerative diseases, especially the Alzheimer's disease to provide new and effective therapeutic targets.
Collapse
Affiliation(s)
- Sha-Sha Wang
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Bi Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen-Bin He
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Nai-Hong Chen
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
7
|
Lin JP, Mironova YA, Shrager P, Giger RJ. LRP1 regulates peroxisome biogenesis and cholesterol homeostasis in oligodendrocytes and is required for proper CNS myelin development and repair. eLife 2017; 6:30498. [PMID: 29251594 PMCID: PMC5752207 DOI: 10.7554/elife.30498] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a large endocytic and signaling molecule broadly expressed by neurons and glia. In adult mice, global inducible (Lrp1flox/flox;CAG-CreER) or oligodendrocyte (OL)-lineage specific ablation (Lrp1flox/flox;Pdgfra-CreER) of Lrp1 attenuates repair of damaged white matter. In oligodendrocyte progenitor cells (OPCs), Lrp1 is required for cholesterol homeostasis and differentiation into mature OLs. Lrp1-deficient OPC/OLs show a strong increase in the sterol-regulatory element-binding protein-2 yet are unable to maintain normal cholesterol levels, suggesting more global metabolic deficits. Mechanistic studies revealed a decrease in peroxisomal biogenesis factor-2 and fewer peroxisomes in OL processes. Treatment of Lrp1−/− OPCs with cholesterol or activation of peroxisome proliferator-activated receptor-γ with pioglitazone alone is not sufficient to promote differentiation; however, when combined, cholesterol and pioglitazone enhance OPC differentiation into mature OLs. Collectively, our studies reveal a novel role for Lrp1 in peroxisome biogenesis, lipid homeostasis, and OPC differentiation during white matter development and repair.
Collapse
Affiliation(s)
- Jing-Ping Lin
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| | - Yevgeniya A Mironova
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter Shrager
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI, United States.,Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.,Interdepartmental Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Cholesterol Biosynthesis Supports Myelin Gene Expression and Axon Ensheathment through Modulation of P13K/Akt/mTor Signaling. J Neurosci 2017; 36:7628-39. [PMID: 27445141 DOI: 10.1523/jneurosci.0726-16.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/06/2016] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Myelin, which ensheaths and insulates axons, is a specialized membrane highly enriched with cholesterol. During myelin formation, cholesterol influences membrane fluidity, associates with myelin proteins such as myelin proteolipid protein, and assembles lipid-rich microdomains within membranes. Surprisingly, cholesterol also is required by oligodendrocytes, glial cells that make myelin, to express myelin genes and wrap axons. How cholesterol mediates these distinct features of oligodendrocyte development is not known. One possibility is that cholesterol promotes myelination by facilitating signal transduction within the cell, because lipid-rich microdomains function as assembly points for signaling molecules. Signaling cascades that localize to cholesterol-rich regions of the plasma membrane include the PI3K/Akt pathway, which acts upstream of mechanistic target of rapamycin (mTOR), a major driver of myelination. Through manipulation of cholesterol levels and PI3K/Akt/mTOR signaling in zebrafish, we discovered that mTOR kinase activity in oligodendrocytes requires cholesterol. Drawing on a combination of pharmacological and rescue experiments, we provide evidence that mTOR kinase activity is required for cholesterol-mediated myelin gene expression. On the other hand, cholesterol-dependent axon ensheathment is mediated by Akt signaling, independent of mTOR kinase activity. Our data reveal that cholesterol-dependent myelin gene expression and axon ensheathment are facilitated by distinct signaling cascades downstream of Akt. Because mTOR promotes cholesterol synthesis, our data raise the possibility that cholesterol synthesis and mTOR signaling engage in positive feedback to promote the formation of myelin membrane. SIGNIFICANCE STATEMENT The speed of electrical impulse movement through axons is increased by myelin, a specialized, cholesterol-rich glial cell membrane that tightly wraps axons. During development, myelin membrane grows dramatically, suggesting a significant demand on mechanisms that produce and assemble myelin components, while it spirally wraps axons. Our studies indicate that cholesterol is necessary for both myelin growth and axon wrapping. Specifically, we found that cholesterol facilitates signaling mediated by the PI3K/Akt/mTOR pathway, a powerful driver of myelination. Because mTOR promotes the expression of genes necessary for cholesterol synthesis, cholesterol formation and PI3K/Akt/mTOR signaling might function as a feedforward mechanism to produce the large amounts of myelin membrane necessary for axon ensheathment.
Collapse
|
9
|
The ROCK/GGTase Pathway Are Essential to the Proliferation and Differentiation of Neural Stem Cells Mediated by Simvastatin. J Mol Neurosci 2016; 60:474-485. [DOI: 10.1007/s12031-016-0811-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022]
|
10
|
Monnerie H, Romer M, Jensen BK, Millar JS, Jordan-Sciutto KL, Kim SF, Grinspan JB. Reduced sterol regulatory element-binding protein (SREBP) processing through site-1 protease (S1P) inhibition alters oligodendrocyte differentiation in vitro. J Neurochem 2016; 140:53-67. [PMID: 27385127 DOI: 10.1111/jnc.13721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 01/09/2023]
Abstract
The formation of the myelin membrane of the oligodendrocyte in the CNS is a fundamental process requiring the coordinated synthesis of many different components. The myelin membrane is particularly rich in lipids, however, the regulation of this lipid synthesis is not understood. In other cell types, including Schwann cells, the myelin-forming cells of the PNS, lipid synthesis is tightly regulated by the sterol regulatory element-binding protein (SREBP) family of transcription factors, but this has not been previously shown in oligodendrocytes. We investigated SREBPs' role during oligodendrocyte differentiation in vitro. Both SREBP-1 and SREBP-2 were expressed in oligodendrocyte precursor cells and differentiating oligodendrocytes. Using the selective site-1 protease (S1P) inhibitor PF-429242, which inhibits the cleavage of SREBP precursor forms into mature forms, we found that preventing SREBP processing inhibited process growth and reduced the expression level of myelin basic protein, a major component of myelin. Further, process extension deficits could be rescued by the addition of exogenous cholesterol. Blocking SREBP processing reduced mRNA transcription and protein levels of SREBP target genes involved in both the fatty acid and the cholesterol synthetic pathways. Furthermore, de novo levels and total levels of cholesterol synthesis were greatly diminished when SREBP processing was inhibited. Together these results indicate that SREBPs are important regulators of oligodendrocyte maturation and that perturbation of their activity may affect myelin formation and integrity. Cover Image for this issue: doi: 10.1111/jnc.13781.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Micah Romer
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brigid K Jensen
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John S Millar
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Monnerie H, Romer M, Jensen BK, Millar JS, Jordan-Sciutto KL, Kim SF, Grinspan JB. Reduced sterol regulatory element-binding protein (SREBP) processing through site-1 protease (S1P) inhibition alters oligodendrocyte differentiation in vitro. J Neurochem 2016. [PMID: 27385127 DOI: 10.1111/jnc.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The formation of the myelin membrane of the oligodendrocyte in the CNS is a fundamental process requiring the coordinated synthesis of many different components. The myelin membrane is particularly rich in lipids, however, the regulation of this lipid synthesis is not understood. In other cell types, including Schwann cells, the myelin-forming cells of the PNS, lipid synthesis is tightly regulated by the sterol regulatory element-binding protein (SREBP) family of transcription factors, but this has not been previously shown in oligodendrocytes. We investigated SREBPs' role during oligodendrocyte differentiation in vitro. Both SREBP-1 and SREBP-2 were expressed in oligodendrocyte precursor cells and differentiating oligodendrocytes. Using the selective site-1 protease (S1P) inhibitor PF-429242, which inhibits the cleavage of SREBP precursor forms into mature forms, we found that preventing SREBP processing inhibited process growth and reduced the expression level of myelin basic protein, a major component of myelin. Further, process extension deficits could be rescued by the addition of exogenous cholesterol. Blocking SREBP processing reduced mRNA transcription and protein levels of SREBP target genes involved in both the fatty acid and the cholesterol synthetic pathways. Furthermore, de novo levels and total levels of cholesterol synthesis were greatly diminished when SREBP processing was inhibited. Together these results indicate that SREBPs are important regulators of oligodendrocyte maturation and that perturbation of their activity may affect myelin formation and integrity. Cover Image for this issue: doi: 10.1111/jnc.13781.
Collapse
Affiliation(s)
- Hubert Monnerie
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Micah Romer
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brigid K Jensen
- Department of Neuroscience, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John S Millar
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Ulivieri C, Baldari CT. Statins: From cholesterol-lowering drugs to novel immunomodulators for the treatment of Th17-mediated autoimmune diseases. Pharmacol Res 2014; 88:41-52. [DOI: 10.1016/j.phrs.2014.03.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/13/2022]
|
13
|
Goldstein MR, Mascitelli L. Regarding long-term statin therapy: are we trading stronger hearts for weaker brains? Med Hypotheses 2014; 83:346-51. [PMID: 24986644 DOI: 10.1016/j.mehy.2014.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/01/2014] [Accepted: 06/09/2014] [Indexed: 12/17/2022]
Abstract
Ideally, the benefits of long-term statin therapy should outweigh the risks in all populations. However, some data suggest that long-term statin therapy might promote cerebral small vessel disease and impair myelination, perhaps resulting from cholesterol depletion and pleiotropic effects on amyloid-β metabolism and oligodendrocyte function. The clinical ramifications can be problematic and have a negative impact on the quality of life. Questions are proposed and the answers should be found by analysis of randomized prospective trials specifically investigating the effects of statin therapy on brain structure and function. Those trials should not be funded by drug companies and the investigators should not have financial ties to the pharmaceutical industry. The relevance of the aforementioned is amplified in light of the new cardiovascular guidelines that might culminate in more than a billion people receiving statin therapy worldwide.
Collapse
Affiliation(s)
- Mark R Goldstein
- NCH Physician Group, 1845 Veterans Park Drive, Suite 110, Naples, FL 34109, USA.
| | - Luca Mascitelli
- Comando Brigata Alpina "Julia"/Multinational Land Force, Medical Service, 8 Via S. Agostino, Udine 33100, Italy.
| |
Collapse
|
14
|
Mutation of 3-hydroxy-3-methylglutaryl CoA synthase I reveals requirements for isoprenoid and cholesterol synthesis in oligodendrocyte migration arrest, axon wrapping, and myelin gene expression. J Neurosci 2014; 34:3402-12. [PMID: 24573296 DOI: 10.1523/jneurosci.4587-13.2014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myelin membrane, which ensheaths axons, has an unusually high amount of cholesterol. Cholesterol influences membrane fluidity and assembles lipid-rich microdomains within membranes, and some studies have shown that cholesterol is important for myelination. How cholesterol influences the development and differentiation of oligodendrocytes, glial cells that make myelin, is not known nor is clear whether isoprenoids, which also are products of the cholesterol biosynthetic pathway, contribute to myelination. Through a forward genetic screen in zebrafish we discovered that mutation of hmgcs1, which encodes an enzyme necessary for isoprenoid and cholesterol synthesis, causes oligodendrocyte progenitor cells (OPCs) to migrate past their target axons and to fail to express myelin genes. Drawing on a combination of pharmacological inhibitor and rescue experiments, we provide evidence that isoprenoids and protein prenylation, but not cholesterol, are required in OPCs to halt their migration at target axons. On the other hand, cholesterol, but not isoprenoids, is necessary both for axon ensheathment and myelin gene expression. Our data reveal that different products of the cholesterol biosynthetic pathway have distinct roles in oligodendrocyte development and that they together help to coordinate directed migration, axon wrapping, and gene expression.
Collapse
|
15
|
Mascitelli L, Goldstein MR. Is intensive cholesterol lowering detrimental in multiple sclerosis? Neuroepidemiology 2011; 37:259. [PMID: 22156661 DOI: 10.1159/000334512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/10/2011] [Indexed: 11/19/2022] Open
|
16
|
Nelissen K, Mulder M, Smets I, Timmermans S, Smeets K, Ameloot M, Hendriks JJA. Liver X receptors regulate cholesterol homeostasis in oligodendrocytes. J Neurosci Res 2011; 90:60-71. [PMID: 21972082 DOI: 10.1002/jnr.22743] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 11/08/2022]
Abstract
Cholesterol synthesis and transport in oligodendrocytes are essential for optimal myelination and remyelination in pathological conditions such as multiple sclerosis. However, little is known about cholesterol homeostasis in the myelin-forming oligodendrocytes. Liver X receptors (LXRs) are nuclear oxysterol receptors that regulate genes involved in cholesterol homeostasis and may therefore play an important role in de- and remyelination. We investigated whether LXRs regulate cholesterol homeostasis in oligodendrocytes. mRNA expression of genes encoding LXR-α and LXR-β and their target genes (ABCA1, ABCG1, ABCG4, apoE, and LDLR) was detected in oligodendrocytes derived from both neonatal and adult rats using quantitative real-time PCR. The expression of LXR-β and several target genes was increased during oligodendrocyte differentiation. We further demonstrated that treatment of primary neonatal rat oligodendrocytes with the synthetic LXR agonist T0901317 induced the expression of several established LXR target genes, including ABCA1, ABCG1, apoE, and LDLR. Treatment of oligodendrocytes with T0901317 resulted in an enhanced cholesterol efflux in the presence of apolipoprotein A-I or high-density lipoprotein particles. These data show that LXRs are involved in regulating cholesterol homeostasis in oligodendrocytes.
Collapse
Affiliation(s)
- Katherine Nelissen
- Biomedical Research Institute, Hasselt University, and transnational University Limburg, Diepenbeek, Belgium
| | | | | | | | | | | | | |
Collapse
|
17
|
Butterfield DA, Barone E, Mancuso C. Cholesterol-independent neuroprotective and neurotoxic activities of statins: perspectives for statin use in Alzheimer disease and other age-related neurodegenerative disorders. Pharmacol Res 2011; 64:180-6. [PMID: 21536132 DOI: 10.1016/j.phrs.2011.04.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 01/24/2023]
Abstract
Statins, long known to be beneficial in conditions where dyslipidemia occurs by lowering serum cholesterol levels, also have been proposed for use in neurodegenerative conditions, including Alzheimer disease. However, it is not clear that the purported effectiveness of statins in neurodegenerative disorders is directly related to cholesterol-lowering effects of these agents; rather, the pleiotropic functions of statins likely play critical roles. Moreover, it is becoming more apparent with additional studies that statins can have deleterious effects in preclinical studies and lack effectiveness in various recent clinical trials. This perspective paper outlines pros and cons of the use of statins in neurodegenerative disorders, with particular emphasis on Alzheimer disease.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, KY 40506, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | |
Collapse
|