1
|
Hayashi S, Seki-Omura R, Yamada S, Kamata T, Sato Y, Oe S, Koike T, Nakano Y, Iwashita H, Hirahara Y, Tanaka S, Sekijima T, Ito T, Yasukochi Y, Higasa K, Kitada M. OLIG2 translocates to chromosomes during mitosis via a temperature downshift: A novel neural cold response of mitotic bookmarking. Gene 2024; 891:147829. [PMID: 37748631 DOI: 10.1016/j.gene.2023.147829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Shinichi Hayashi
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan.
| | - Ryohei Seki-Omura
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Shintaro Yamada
- Department of Functional Neuroscience, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Taito Kamata
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-nocho, Niigata, Japan; Faculty of Agriculture, Niigata University, 8050 Ikarashi 2-nocho, Niigata, Japan
| | - Yuki Sato
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Souichi Oe
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Taro Koike
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Yousuke Nakano
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Hikaru Iwashita
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Yukie Hirahara
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan; Faculty of Nursing, Kansai Medical University, Shinmachi 2-2-2, Hirakata, Osaka, Japan
| | - Susumu Tanaka
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan; Department of Anatomy and Physiology, Faculty of Nursing and Nutrition, University of Nagasaki, Manabino 1-1-1, Nagasaki, Japan
| | - Tsuneo Sekijima
- Faculty of Agriculture, Niigata University, 8050 Ikarashi 2-nocho, Niigata, Japan
| | - Takeshi Ito
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Yoshiki Yasukochi
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan
| | - Masaaki Kitada
- Department of Anatomy, Faculty of Medicine, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka, Japan.
| |
Collapse
|
2
|
Yi C, Verkhratsky A, Niu J. Pathological potential of oligodendrocyte precursor cells: terra incognita. Trends Neurosci 2023:S0166-2236(23)00103-0. [PMID: 37183154 DOI: 10.1016/j.tins.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023]
Abstract
Adult oligodendrocyte precursor cells (aOPCs), transformed from fetal OPCs, are idiosyncratic neuroglia of the central nervous system (CNS) that are distinct in many ways from other glial cells. OPCs have been classically studied in the context of their remyelinating capacity. Recent studies, however, revealed that aOPCs not only contribute to post-lesional remyelination but also play diverse crucial roles in multiple neurological diseases. In this review we briefly present the physiology of aOPCs and summarize current knowledge of the beneficial and detrimental roles of aOPCs in different CNS diseases. We discuss unique features of aOPC death, reactivity, and changes during senescence, as well as aOPC interactions with other glial cells and pathological remodeling during disease. Finally, we outline future perspectives for the study of aOPCs in brain pathologies which may instigate the development of aOPC-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China; Department of Pathology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PL, UK; Achucarro Centre for Neuroscience, Basque Foundation for Science (IKERBASQUE), Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
3
|
Ravi B, Kanwar P, Sanyal SK, Bheri M, Pandey GK. VDACs: An Outlook on Biochemical Regulation and Function in Animal and Plant Systems. Front Physiol 2021; 12:683920. [PMID: 34421635 PMCID: PMC8375762 DOI: 10.3389/fphys.2021.683920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The voltage-dependent anion channels (VDACs) are the most abundant proteins present on the outer mitochondrial membrane. They serve a myriad of functions ranging from energy and metabolite exchange to highly debatable roles in apoptosis. Their role in molecular transport puts them on the center stage as communicators between cytoplasmic and mitochondrial signaling events. Beyond their general role as interchangeable pores, members of this family may exhibit specific functions. Even after nearly five decades of their discovery, their role in plant systems is still a new and rapidly emerging field. The information on biochemical regulation of VDACs is limited. Various interacting proteins and post-translational modifications (PTMs) modulate VDAC functions, amongst these, phosphorylation is quite noticeable. In this review, we have tried to give a glimpse of the recent advancements in the biochemical/interactional regulation of plant VDACs. We also cover a critical analysis on the importance of PTMs in the functional regulation of VDACs. Besides, the review also encompasses numerous studies which can identify VDACs as a connecting link between Ca2+ and reactive oxygen species signaling in special reference to the plant systems.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
4
|
Zhao S, Xiao P, Cui H, Gong P, Lin C, Chen F, Tang Z. Hypothermia-Induced Ubiquitination of Voltage-Dependent Anion Channel 3 Protects BV2 Microglia Cells From Cytotoxicity Following Oxygen-Glucose Deprivation/Recovery. Front Mol Neurosci 2020; 13:100. [PMID: 32581711 PMCID: PMC7289978 DOI: 10.3389/fnmol.2020.00100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Hypothermia attenuates microglial activation and exerts a potential neuroprotective effect against cerebral ischemic-reperfusion (I/R) injury. However, the underlying mechanism remains to be elucidated. In this in vitro study, a model of oxygen-glucose deprivation, followed by recovery (OGD/R), was used to investigate whether hypothermia exerts anti-inflammatory and anti-apoptosis properties via enhanced ubiquitination and down-regulation of voltage-dependent anion channel 3 (VDAC3) expression. Methods: BV2 microglia were cultured under OGD for 4 h following reperfusion with or without hypothermia for 2, 4, or 8 h. M1 and M2 microglia markers [inducible nitric oxide synthase (iNOS) and arginase (Arg)1] were detected using immunofluorescence. The levels of pro-inflammatory cytokines [tumor necrosis factor (TNF) α, interleukin (IL)-1β], and anti-inflammatory factor (IL-10) were determined using enzyme-linked immunosorbent assay (ELISA). Mitochondrial membrane potential (ΔΨm) was assayed by JC-1 staining using a flow cytometer. Expression of caspase-3, cleaved caspase-3, and VDAC3 were assessed using western blot analysis. The cellular locations and interactions of ubiquitin and VDAC3 were identified using double immunofluorescence staining and immunoprecipitation (IP) assay. Also, the level of the VDAC3 mRNA was determined using a quantitative polymerase chain reaction (qPCR). Results: Hypothermia inhibited the OGD/R-induced microglia activation and differentiation into the M1 type with pro-inflammatory effect, whereas it promoted differentiation to the M2 type with anti-inflammatory effect. Hypothermia attenuated OGD/R-induced loss of Δψm, as well as the expression of apoptosis-associated proteins. Compared to normothermia, hypothermia increased the level of ubiquitinated VDAC3 in the BV2 microglia at both 2 and 8 h of reperfusion. Furthermore, hypothermia did not attenuate VDAC3 mRNA expression in OGD/R-induced microglia. Conclusions: Hypothermia treatment during reperfusion, attenuated OGD/R-induced inflammation, and apoptosis in BV2 microglia. This might be due to the promotion of VDAC3 ubiquitination, identifying VDAC3 as a new target of hypothermia.
Collapse
Affiliation(s)
- Shen Zhao
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Peng Xiao
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Hao Cui
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ping Gong
- Department of Emergency Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian City, China
| | - Caijing Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Feng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Gao H, Kam C, Chou TY, Wu MY, Zhao X, Chen S. A simple yet effective AIE-based fluorescent nano-thermometer for temperature mapping in living cells using fluorescence lifetime imaging microscopy. NANOSCALE HORIZONS 2020; 5:488-494. [PMID: 32118250 DOI: 10.1039/c9nh00693a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We designed and synthesized a novel nano-thermometer using aggregation-induced-emission (AIE) dye as the reporter and household butter as the matrix. This temperature nanosensor showed decreased fluorescence intensities (∼2%/°C) and shorter fluorescence lifetimes (∼0.11 ns/°C) upon increasing the environmental temperature in the physiological temperature range. Such fluorescence responses were reversible and independent of the environmental pH and ionic strength. The application of these nano-thermometers in temperature sensing in living cells using fluorescence lifetime imaging microscopy (FLIM) was also demonstrated. To the best of our knowledge, this is the first example of AIE-based nano-thermometer for temperature sensing in living cells. This work also provides us with a simple and low-cost method for rapid fabrication of an effective nanosensor based on AIE mechanism.
Collapse
Affiliation(s)
- Hui Gao
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China. and School of Aeronautic Science and Engineering, Beihang University, Beijing, China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| | - Tsu Yu Chou
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| | - Ming-Yu Wu
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China. and School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong, China.
| |
Collapse
|
6
|
Thomas L, Pasquini LA. Galectin-3 Exerts a Pro-differentiating and Pro-myelinating Effect Within a Temporal Window Spanning Precursors and Pre-oligodendrocytes: Insights into the Mechanisms of Action. Mol Neurobiol 2019; 57:976-987. [PMID: 31654317 DOI: 10.1007/s12035-019-01787-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes (OLG) are the cells resident in the CNS responsible for myelination. OLG undergo a succession of morphological and molecular changes along several maturational stages. Galectin-3 (Gal-3) is a 25- to 35-KDa protein belonging to the family of carbohydrate-binding galectins, which bind to glycoconjugates containing β-galactosides. Gal-3 lacks a specific receptor and its binding is thus rather unspecific, as it depends on the cellular environment and the repertoire of glycomolecules at the time when Gal-3 is present. Our previous work revealed that recombinant Gal-3 (rGal-3)-treated OLG showed accelerated differentiation, evidenced by an increase in the number of mature cells to the detriment of immature ones and accelerated actin cytoskeleton dynamics. These changes were a consequence of rGal-3 influence on Akt, Erk 1/2, and β-catenin signaling pathways. Considering this previous evidence, the aim of this study was to identify the temporal window of rGal-3 action on the OLG lineage to induce OLG maturation by using specific single pulses of rGal-3 over the different maturational stages of OLG, and to unravel its main direct targets promoting OLG differentiation by mass spectrometry analysis. Our results reveal a key temporal window spanning between OPC and pre-OLG states in which rGal-3 action promotes OLG differentiation, and identify several targets for rGal-3 binding including proteins related to the cytoskeleton, signaling pathways, metabolism and intracellular trafficking, among others. These results highlight the relevance of Gal-3 in signaling pathways regulating oligodendroglial differentiation and support a potential therapeutic role for rGal-3 in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Kurisu K, Kim JY, You J, Yenari MA. Therapeutic Hypothermia and Neuroprotection in Acute Neurological Disease. Curr Med Chem 2019; 26:5430-5455. [PMID: 31057103 PMCID: PMC6913523 DOI: 10.2174/0929867326666190506124836] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/24/2018] [Accepted: 04/11/2019] [Indexed: 01/07/2023]
Abstract
Therapeutic hypothermia has consistently been shown to be a robust neuroprotectant in many labs studying different models of neurological disease. Although this therapy has shown great promise, there are still challenges at the clinical level that limit the ability to apply this routinely to each pathological condition. In order to overcome issues involved in hypothermia therapy, understanding of this attractive therapy is needed. We review methodological concerns surrounding therapeutic hypothermia, introduce the current status of therapeutic cooling in various acute brain insults, and review the literature surrounding the many underlying molecular mechanisms of hypothermic neuroprotection. Because recent work has shown that body temperature can be safely lowered using pharmacological approaches, this method may be an especially attractive option for many clinical applications. Since hypothermia can affect multiple aspects of brain pathophysiology, therapeutic hypothermia could also be considered a neuroprotection model in basic research, which would be used to identify potential therapeutic targets. We discuss how research in this area carries the potential to improve outcome from various acute neurological disorders.
Collapse
Affiliation(s)
- Kota Kurisu
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | - Jong Youl Kim
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Departments of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jesung You
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, University of California, San Francisco and Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
8
|
Liska MG, Crowley MG, Tuazon JP, Borlongan CV. Neuroprotective and neuroregenerative potential of pharmacologically-induced hypothermia with D-alanine D-leucine enkephalin in brain injury. Neural Regen Res 2018; 13:2029-2037. [PMID: 30323116 PMCID: PMC6199924 DOI: 10.4103/1673-5374.241427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Neurovascular disorders, such as traumatic brain injury and stroke, persist as leading causes of death and disability - thus, the search for novel therapeutic approaches for these disorders continues. Many hurdles have hindered the translation of effective therapies for traumatic brain injury and stroke primarily because of the inherent complexity of neuropathologies and an inability of current treatment approaches to adapt to the unique cell death pathways that accompany the disorder symptoms. Indeed, developing potent treatments for brain injury that incorporate dynamic and multiple disorder-engaging therapeutic targets are likely to produce more effective outcomes than traditional drugs. The therapeutic use of hypothermia presents a promising option which may fit these criteria. While regulated temperature reduction has displayed great promise in preclinical studies of brain injury, clinical trials have been far less consistent and associated with adverse effects, especially when hypothermia is pursued via systemic cooling. Accordingly, devising better methods of inducing hypothermia may facilitate the entry of this treatment modality into the clinic. The use of the delta opioid peptide D-alanine D-leucine enkephalin (DADLE) to pharmacologically induce temperature reduction may offer a potent alternative, as DADLE displays both the ability to cause temperature reduction and to confer a broad profile of other neuroprotective and neuroregenerative processes. This review explores the prospect of DADLE-mediated hypothermia to treat neurovascular brain injuries, emphasizing the translational steps necessary for its clinical translation.
Collapse
Affiliation(s)
- M. Grant Liska
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Marci G. Crowley
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Julian P. Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
9
|
Seyama T, Kamei Y, Iriyama T, Imada S, Ichinose M, Toshimitsu M, Fujii T, Asou H. Pretreatment with magnesium sulfate attenuates white matter damage by preventing cell death of developing oligodendrocytes. J Obstet Gynaecol Res 2018; 44:601-607. [PMID: 29363221 DOI: 10.1111/jog.13568] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/08/2017] [Indexed: 01/30/2023]
Abstract
AIM Antenatal maternal administration of magnesium sulfate (MgSO4 ) reduces cerebral palsy in preterm infants. However, it remains controversial as to whether it also reduces occurrence of white matter damage, or periventricular leukomalacia. We assessed the effect of MgSO4 against white matter damage induced by hypoxic-ischemic insult using a neonatal rat model and culture of premyelinating oligodendrocytes (pre-OL). METHODS Rat pups at postnatal day (P) 6 were administered either MgSO4 or vehicle intraperitoneally before hypoxic-ischemic insult (unilateral ligation of the carotid artery followed by 6% oxygen for 1 h). The population of oligodendrocyte (OL) markers and CD-68-positive microglia at P11, and TdT-mediated biotin-16-dUTP nick-end labeling (TUNEL)-positive cells at P8 were evaluated in pericallosal white matter. Primary cultures of mouse pre-OL were subjected to oxygen glucose deprivation condition, and the lactate dehydrogenase release from culture cells was evaluated to assess cell viability. RESULTS Pretreatment with MgSO4 attenuated the loss of OL markers, such as myelin basic protein and Olig2, in ipsilateral pericallosal white matter and decreased the number of CD-68-positive microglia and TUNEL-positive cells in vivo. Pretreatment with MgSO4 also inhibited lactate dehydrogenase release from pre-OL induced by oxygen glucose deprivation in vitro. CONCLUSION Pretreatment with MgSO4 attenuates white matter damage by preventing cell death of pre-OL.
Collapse
Affiliation(s)
- Takahiro Seyama
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology, Saitama Medical University Hospital, Saitama, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Tokyo, Japan
| | - Shinya Imada
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Tokyo, Japan
| | - Mari Ichinose
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Tokyo, Japan
| | - Masatake Toshimitsu
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroaki Asou
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Wang Y, Liu G, Hong D, Chen F, Ji X, Cao G. White matter injury in ischemic stroke. Prog Neurobiol 2016; 141:45-60. [PMID: 27090751 PMCID: PMC5677601 DOI: 10.1016/j.pneurobio.2016.04.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/01/2016] [Accepted: 04/10/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Gang Liu
- Department of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Dandan Hong
- Department of Bioengineering, University of Pittsburgh School of Engineering, United States
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China.
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Geriatric Research Education and Clinical Centers, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
11
|
Quintard H, Heurteaux C, Ichai C. Adult neurogenesis and brain remodelling after brain injury: From bench to bedside? Anaesth Crit Care Pain Med 2015; 34:239-45. [PMID: 26233283 DOI: 10.1016/j.accpm.2015.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/19/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Brain trauma and stroke cause important disabilities. The mechanisms involved are now well described, but all therapeutics developed thus far for neuro-protection are currently unsuccessful at improving neurologic prognosis. The recently studied neuro-restorative time following brain injury may point towards a promising therapeutic approach. The purpose of this paper is to explain the mechanisms of this revolutionary concept, give an overview of related knowledge and discuss its transfer into clinical practice. DATA SOURCES AND SYNTHESIS An overview of the neurogenesis concept using MEDLINE, EMBASE and CENTRAL databases was carried out in May 2014. The clinicaltrials.gov registry was used to search for ongoing clinical trials in this domain. CONCLUSION The concept of brain remodelling upset fundamental ideas concerning the neurologic system and opened new fields of research. Therapies currently under evaluation hold promising results and could have a real prognostic impact in future years, but the translation of these therapies from the laboratory to the clinic is still far from completion.
Collapse
Affiliation(s)
- Hervé Quintard
- Intensive Care Unit, CHU Nice, 4, rue Pierre-Dévoluy, 06000 Nice, France.
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire (CNRS), Université de Sophia-Antipolis, 660, route des Lucioles, 06560 Valbonne, France.
| | - Carole Ichai
- Intensive Care Unit, CHU Nice, 4, rue Pierre-Dévoluy, 06000 Nice, France.
| |
Collapse
|
12
|
Han Z, Liu X, Luo Y, Ji X. Therapeutic hypothermia for stroke: Where to go? Exp Neurol 2015; 272:67-77. [PMID: 26057949 DOI: 10.1016/j.expneurol.2015.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/16/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023]
Abstract
Ischemic stroke is a major cause of death and long-term disability worldwide. Thrombolysis with recombinant tissue plasminogen activator is the only proven and effective treatment for acute ischemic stroke; however, therapeutic hypothermia is increasingly recognized as having a tissue-protective function and positively influencing neurological outcome, especially in cases of ischemia caused by cardiac arrest or hypoxic-ischemic encephalopathy in newborns. Yet, many aspects of hypothermia as a treatment for ischemic stroke remain unknown. Large-scale studies examining the effects of hypothermia on stroke are currently underway. This review discusses the mechanisms underlying the effect of hypothermia, as well as trends in hypothermia induction methods, methods for achieving optimal protection, side effects, and therapeutic strategies combining hypothermia with other neuroprotective treatments. Finally, outstanding issues that must be addressed before hypothermia treatment is implemented at a clinical level are also presented.
Collapse
Affiliation(s)
- Ziping Han
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xiangrong Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| |
Collapse
|
13
|
Ito A, Aoyama T, Tajino J, Nagai M, Yamaguchi S, Iijima H, Zhang X, Akiyama H, Kuroki H. Effects of the thermal environment on articular chondrocyte metabolism: a fundamental study to facilitate establishment of an effective thermotherapy for osteoarthritis. JOURNAL OF THE JAPANESE PHYSICAL THERAPY ASSOCIATION 2015; 17:14-21. [PMID: 25792904 DOI: 10.1298/jjpta.vol17_003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/07/2014] [Indexed: 12/15/2022]
Abstract
AIM To facilitate establishment of an effective thermotherapy for osteoarthritis (OA), we investigated the effects of the thermal environment on articular chondrocyte metabolism in vitro. METHODS Chondrocytes were isolated from porcine knee joints, and cultured at 32°C, 37°C and 41°C. Cell proliferation and viability were assessed at Days 2, 4 and 8. In addition, TdT-mediated dUTP nick end labeling (TUNEL) assay was performed at Day 3 to determine the proportion of apoptotic chondrocytes. Analysis of genes specific for factors related to the cartilage extracellular matrix (ECM), cartilage destruction, and cartilage protection was performed at Day 2. Furthermore, evaluation of heat stress tolerance, and heat shock protein 70 (HSP70) mRNA expression and protein synthesis was performed at Day 2 and 3, respectively. RESULTS Cell proliferation was more at 37°C than at 32°C and 41°C. Cell viability and the number of TUNEL-positive cells were not affected until Day 8 and 3, respectively. The expression of the ECM-related genes was up-regulated at higher temperature. The expression of MMP13, a type II collagen destructive enzyme, and that of TIMP1 and TIMP2, which are MMP inhibitors, were up-regulated at higher temperatures. Finally, the chondrocytes cultured at 41°C may acquire heat stress tolerance, in part, due to the up-regulation of HSP70, and may inhibit apoptosis induced by various stresses, which is observed in OA. CONCLUSIONS The thermal environment affects articular chondrocyte metabolism, and a heat stimulus of approximately 41°C could enhance chondrocyte anabolism and induce heat stress tolerance.
Collapse
Affiliation(s)
- Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Junichi Tajino
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Momoko Nagai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shoki Yamaguchi
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hirotaka Iijima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Xiangkai Zhang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
14
|
Belinsky GS, Antic SD. Mild hypothermia inhibits differentiation of human embryonic and induced pluripotent stem cells. Biotechniques 2015; 55:79-82. [PMID: 23931596 DOI: 10.2144/000114065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/03/2013] [Indexed: 11/23/2022] Open
Abstract
Culture of pluripotent stem cells at 35°C strikingly reduces unwanted spontaneous differentiation during hESC and iPSC maintenance compared with 37°C. Growth at 35°C did not affect expression of pluripotency mRNAs nor induce expression of cold-inducible genes. Colony size was somewhat reduced at 35°C. Thus, growth at 35°C is a convenient, simple method to reduce the labor of removing spontaneously differentiated colonies when maintaining pluripotent cells.
Collapse
Affiliation(s)
- Glenn S Belinsky
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA.
| | | |
Collapse
|
15
|
Ichinose M, Kamei Y, Iriyama T, Imada S, Seyama T, Toshimitsu M, Asou H, Yamamoto M, Fujii T. Hypothermia attenuates apoptosis and protects contact between myelin basic protein-expressing oligodendroglial-lineage cells and neurons against hypoxia-Ischemia. J Neurosci Res 2014; 92:1270-85. [DOI: 10.1002/jnr.23418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/17/2014] [Accepted: 04/21/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Mari Ichinose
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Shinya Imada
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Takahiro Seyama
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Masatake Toshimitsu
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| | - Hiroaki Asou
- Center for Kampo Medicine, Keio University School of Medicine; Tokyo Japan
| | | | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
| |
Collapse
|
16
|
Xu Y, Shao C, Fedorov VB, Goropashnaya AV, Barnes BM, Yan J. Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes. BMC Genomics 2013; 14:567. [PMID: 23957789 PMCID: PMC3751779 DOI: 10.1186/1471-2164-14-567] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/17/2013] [Indexed: 12/12/2022] Open
Abstract
Background Mammalian hibernators display phenotypes similar to physiological responses to calorie restriction and fasting, sleep, cold exposure, and ischemia-reperfusion in non-hibernating species. Whether biochemical changes evident during hibernation have parallels in non-hibernating systems on molecular and genetic levels is unclear. Results We identified the molecular signatures of torpor and arousal episodes during hibernation using a custom-designed microarray for the Arctic ground squirrel (Urocitellus parryii) and compared them with molecular signatures of selected mouse phenotypes. Our results indicate that differential gene expression related to metabolism during hibernation is associated with that during calorie restriction and that the nuclear receptor protein PPARα is potentially crucial for metabolic remodeling in torpor. Sleep-wake cycle-related and temperature response genes follow the same expression changes as during the torpor-arousal cycle. Increased fatty acid metabolism occurs during hibernation but not during ischemia-reperfusion injury in mice and, thus, might contribute to protection against ischemia-reperfusion during hibernation. Conclusions In this study, we systematically compared hibernation with alternative phenotypes to reveal novel mechanisms that might be used therapeutically in human pathological conditions.
Collapse
Affiliation(s)
- Yichi Xu
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
17
|
Miki T, Kaneda M, Iida K, Hasegawa G, Murakami M, Yamamoto N, Asou H, Kasahara K. An anti-sulfatide antibody O4 immunoprecipitates sulfatide rafts including Fyn, Lyn and the G protein α subunit in rat primary immature oligodendrocytes. Glycoconj J 2013; 30:819-23. [DOI: 10.1007/s10719-013-9487-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 01/06/2023]
|
18
|
Thinnes FP. New findings concerning vertebrate porin II--on the relevance of glycine motifs of type-1 VDAC. Mol Genet Metab 2013; 108:212-24. [PMID: 23419876 DOI: 10.1016/j.ymgme.2013.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
New findings concerning vertebrate porin part I was published in 1997, then summarizing early data and reflections regarding the molecular structure of vertebrate voltage-dependent anion-selective channels, VDAC/eukaryotic porin, and the extra-mitochondrial expression pattern of human type-1 VDAC. Meanwhile, endeavors of different laboratories confirmed and widened this beginning by encircling the function of the channels. Regarding the function of mitochondrial outer membrane-standing VDACs the channels are established parts of the intrinsic apoptotic pathway and thus therapeutic targets in studies on several diseases: cancer, Alzheimer's disease, Down Syndrome, Parkinson's disease, Amyotrophic Lateral Sclerosis, cystic fibrosis and malaria. Regarding cell membrane-integrated type-1 VDAC it has been documented by different approaches that this porin channel is engaged in cell volume regulation, trans-membrane electron transport and apoptosis. Furthermore, new data insinuate a bridging of extrinsic and intrinsic apoptotic pathways, putatively gaining relevance in Alzheimer research. Mammalian type-1 VDAC, a β-barrel, is basically built up by nineteen β-sheets connected by peptide stretches of varying lengths. The molecule also comprises an N-terminal stretch of some twenty amino acids which, according to biochemical data, traverses the channel lumen towards the cytosolic surface of outer mitochondrial membranes or the plasma lemma, respectively and works as voltage sensor in channel gating. In artificial lipid bilayers VDACs figure as anion or cation-channels, as VDACs are permeable to both cations and anions, with voltage shifts changing the relative permeability. Type-1 VDAC carries several motifs where glycine residues are in critical positions. Motifs of this type, on the on hand, are established nucleotide binding sites. On the other hand, the GxxxG motifs are also discussed as relevant peptide dimerization/aggregation/membrane perturbation motifs. Finally, GxxxG motifs bind cholesterol. Type-1 VDAC shows one such GxxxG motif at the proximal end of its N-terminal voltage sensor while amyloid Aβ peptides include three of them in series. Noteworthy, two additional may be modified versions, GxxxGxG and GxxGxxxG, are found on β-sheet 19 or 9, respectively. Recent data have allowed speculating that amyloid Aβ induces apoptosis via opening type-1 VDAC in cell membranes of hypo-metabolic neurons, a process most likely running over life time--as leaves fall from trees in the tropics--and ending in Alzheimer's disease whenever critical brain regions are affected. The expression of GxxxG motifs on either reactant under consideration is in line with this model of Alzheimer's disease pathogenesis, which clearly differs from the amyloid Aβ cascade theory, and which can, furthermore, be understood as a basic model for apoptosis induction. However, to assume randomly distributed interactions of body wide found amyloid Aβ peptides with the N-terminal voltage sensors of ubiquitously expressed cell membrane-standing human type-1 VDAC opens up a new view on Alzheimer's disease, which might even include a clue on systemic aspects of the disease. While elaborating this concept, my focus was at first only on the GxxxG motif at the proximal end of the N-terminal voltage sensor of type-1 VDAC. Here, I include a corresponding sequence stretch on the channel's β-sheet 19, too.
Collapse
|
19
|
Effects of hypothermia on oligodendrocyte precursor cell proliferation, differentiation and maturation following hypoxia ischemia in vivo and in vitro. Exp Neurol 2013; 247:720-9. [PMID: 23524193 DOI: 10.1016/j.expneurol.2013.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/02/2013] [Accepted: 03/14/2013] [Indexed: 02/03/2023]
Abstract
Hypoxic-ischemia (HI) not only causes gray matter injury but also white matter injury, leading to severe neurological deficits and mortality, and only limited therapies exist. The white matter of animal models and human patients with HI-induced brain injury contains increased oligodendrocyte precursor cells (OPCs). However, little OPC can survive and mature to repair the injured white matter. Here, we test the effects of mild hypothermia on OPC proliferation, differentiation and maturation. Animals suffered to left carotid artery ligation followed by 8% oxygen for 2h in 7-day-old rats. They were divided into a hypothermic group (rectal temperature 32-33 °C for 48 h) and a normothermic group (36-37 °C for 48 h), then animals were sacrificed at 3, 7, 14 and 42 days after HI surgery. Our results showed that hypothermia successfully enhanced early OL progenitors (NG2(+)) and its proliferation in the corpus callosum (CC) after HI. Late OL progenitor (O4(+)) accumulation decreased accompanied with increased OL maturation which is detected by myelin basic protein (MBP) and proteolipid protein. (PLP) immunostaining and immunoblotting in hypothermia compared to normothermia. Additionally, using an in vitro hypoxic-ischemia model-oxygen glucose deprivation (OGD), we demonstrated that hypothermia decreased preOL accumulation and promoted OPC differentiation and maturation. Further data indicated that OPC death was significantly suppressed by hypothermia in vitro. The myelinated axons and animal behavior both markedly increased in hypothermic- compared to normothermic-animals after HI. In summary, these data suggest that hypothermia has the effects to protect OPC and to promote OL maturation and myelin repair in hypoxic-ischemic events in the neonatal rat brain. This study proposed new aspects that may contribute to elucidate the mechanism of hypothermic neuroprotection for white matter injury in neonatal rat brain injury.
Collapse
|
20
|
Xiong M, Chen LX, Ma SM, Yang Y, Zhou WH. Short-term effects of hypothermia on axonal injury, preoligodendrocyte accumulation and oligodendrocyte myelination after hypoxia-ischemia in the hippocampus of immature rat brain. Dev Neurosci 2013; 35:17-27. [PMID: 23446161 DOI: 10.1159/000346324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Hypothermia is known to improve neurological recovery of animals and humans exposed to hypoxic-ischemic (HI) injury. However, the underlying mechanisms of the neuroprotective effects of hypothermia are only partially understood, including decreased excitotoxicity and apoptosis, and suppressed inflammation. There are few studies about the hypothermic effects on axonal injury and oligodendrocyte (OL) lineage degeneration, which are important components of neonatal brain injuries that cause cognitive disability. We hypothesized that mild hypothermia would reduce axonal injury and increase myelination in the hippocampus after HI. We performed left carotid artery ligation followed by 8% oxygen for 2 h in 7-day-old rats. Animals were divided into a hypothermic group (rectal temperature 32-33°C for 24 h) and a normothermic group (36-37°C for 24 h) immediately after HI. Animals were sacrificed at 1, 3 and 7 days for immunohistochemistry or Western blot analysis. We detected neuron loss by microtubule-associated protein 2 labeling and axonal injury by non-phosphorylated neurofilament (SMI32) with neurofilament 200 (NF200) double staining. We examined early OL progenitors by A2B5 or NG2, preoligodendrocytes (preOLs) by O4, and mature OLs by 2,3-cyclic nucleotide 3-phosphodiesterase (CNPase) and glutathione S-transferase (GST)-pi staining. Apoptosis was studied by active caspase-3. Hypothermia was associated with a significant elevation of neurons and axons in the hippocampal CA1 region after HI. Early OL progenitors (A2B5(+)) were elevated, but preOLs (O4(+)) and active caspase-3 were dramatically reduced in the hypothermic rat brain. Further study showed that the apoptotic rate of preOLs (caspase-3(+)-O4(+)/O4(+)) was markedly attenuated by hypothermic treatment compared to normothermic animals. The immunoreactivity of CNPase and GST-pi and the protein level of the myelin basic protein significantly increased in the hippocampus of hypothermia-treated rat brain. Axonal myelination also increased in hypothermic animals, which were tested by myelin basic protein and NF200 double staining and electron microscopy. These results showed that hypothermia reduced HI damage to axons and OL myelination coincided with increased early OL progenitor proliferation and decreased preOL accumulation and apoptosis. This study suggested new aspects that may contribute to elucidate the mechanism of hypothermic neuroprotection in neonatal rat brain.
Collapse
Affiliation(s)
- Man Xiong
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
21
|
Zgavc T, De Geyter D, Ceulemans AG, Stoop W, Hachimi-Idrissi S, Michotte Y, Sarre S, Kooijman R. Mild hypothermia reduces activated caspase-3 up to 1 week after a focal cerebral ischemia induced by endothelin-1 in rats. Brain Res 2013; 1501:81-8. [PMID: 23357472 DOI: 10.1016/j.brainres.2013.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/15/2013] [Accepted: 01/19/2013] [Indexed: 12/27/2022]
Abstract
Hypothermia is a promising neuroprotective therapy that has been shown to reduce apoptosis after an ischemic insult. This study evaluated the effect of mild hypothermia on activated caspase-3 up to 1 week after the induction of a stroke. Endothelin-1 (Et-1) was used to elicit transient focal cerebral ischemia in rats. Twenty minutes after the ischemic insult, a state of mild hypothermia (33°C) was imposed for a duration of 2h. The functional outcome, infarct volume and activated caspase-3 immunoreactivity (IR) were assessed at 8, 24 and 72h, and one week after the insult. During the experiment the cerebral blood flow (CBF) was measured via Laser Doppler Flowmetry. Hypothermia improved the neurological outcome at all of the time points studied compared to the normothermic group, and was associated with a reduction in infarct volume. In both groups, activated caspase-3 IR peaked 24h after the Et-1 induced insult and hypothermia significantly reduced the number of apoptotic cells at 8h, 24h and 1 week after ischemia. Furthermore, the hypothermic treatment did not affect the CBF in the Et-1 model. These findings indicate that in the Et-1 model, hypothermia exerts a long lasting effect on stroke-induced apoptosis.
Collapse
Affiliation(s)
- Tine Zgavc
- Department of Pharmaceutical Chemistry and Drug Analysis, Center for Neuroscience, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhan R, Yamamoto M, Ueki T, Yoshioka N, Tanaka K, Morisaki H, Seiwa C, Yamamoto Y, Kawano H, Tsuruo Y, Watanabe K, Asou H, Aiso S. A DEAD-box RNA helicase Ddx54 protein in oligodendrocytes is indispensable for myelination in the central nervous system. J Neurosci Res 2012; 91:335-48. [PMID: 23239230 DOI: 10.1002/jnr.23162] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/22/2012] [Accepted: 10/02/2012] [Indexed: 02/05/2023]
Abstract
We recently reported that a new monoclonal antibody, 4F2, which labels oligodendroglial lineage cells, recognizes a DEAD-box RNA helicase Ddx54 and that Ddx54 binds to myelin basic protein (MBP) in brain and cultured oligodendrocytes. To elucidate the biological function of Ddx54, we generated a recombinant adenovirus, Ad-shRNA:Ddx54, expressing a short hairpin RNA to silence endogenous Ddx54 protein. The virus was intraventricularly injected into the brains of mice on postnatal day (PD) 2. The brains at PD 9 were then analyzed by immunohistochemistry. In untreated normal brain sections, as well as control brains that had been injected with Ad-β-Gal, myelination of axons occurred in the corpus callosum with filamentous patterns of immunosignals of myelin-associated glycoprotein (MAG) and MBP. In Ad-shRNA:Ddx54-injected brain, substantial amounts of MAG and MBP immunosignals were present, but MBP immunosignals accumulated in the subplate layer and did not intrude into the emerging white matter. Immunoblot analysis revealed that Ddx54 knockdown caused a significant decrease in the level of 21.5 kDa MBP isoform and Ddx54, but the amount of Olig2; 2',3'-cyclic nucleotide 3' phosphodiesterase; MAG; three MBP isoforms (14, 17.5, and 18 kDa); and QKI-5, QKI-6, and QKI-7 proteins remained unchanged. Transfection of the Ddx54 expression vector into luciferase reporter-introduced neuroepithelial cells resulted in upregulated MBP promoter activity. Immunoprecipitation of Ddx54 protein in MBP-transfected HEK293 cells indicated that Ddx54 may directly interact with MBP mRNA. These results suggest that Ddx54 protein play an important role in central nervous system myelination, presumably in myelin sheath formation after the differentiation of oligodendrocytes.
Collapse
Affiliation(s)
- Rui Zhan
- Center for Kampo Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Han HS, Park J, Kim JH, Suk K. Molecular and cellular pathways as a target of therapeutic hypothermia: pharmacological aspect. Curr Neuropharmacol 2012; 10:80-7. [PMID: 22942881 PMCID: PMC3286850 DOI: 10.2174/157015912799362751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/08/2011] [Accepted: 09/08/2011] [Indexed: 11/22/2022] Open
Abstract
Induced therapeutic hypothermia is the one of the most effective tools against brain injury and inflammation. Even though its beneficial effects are well known, there are a lot of pitfalls to overcome, since the potential adverse effects of systemic hypothermia are still troublesome. Without the knowledge of the precise mechanisms of hypothermia, it will be difficult to tackle the application of hypothermia in clinical fields. Better understanding of the characteristics and modes of hypothermic actions may further extend the usage of hypothermia by developing novel drugs based on the hypothermic mechanisms or by combining hypothermia with other therapeutic modalities such as neuroprotective drugs. In this review, we describe the potential therapeutic targets for the development of new drugs, with a focus on signal pathways, gene expression, and structural changes of cells. Theapeutic hypothermia has been shown to attenuate neuroinflammation by reducing the production of reactive oxygen species and proinflammatory mediators in the central nervous system. Along with the mechanism-based drug targets, applications of therapeutic hypothermia in combination with drug treatment will also be discussed in this review.
Collapse
Affiliation(s)
- Hyung Soo Han
- Department of Physiology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, 700-422, Korea
| | | | | | | |
Collapse
|
24
|
Yang S, Pilgaard L, Chase LG, Boucher S, Vemuri MC, Fink T, Zachar V. Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells. Tissue Eng Part C Methods 2012; 18:593-602. [PMID: 22364177 DOI: 10.1089/ten.tec.2011.0592] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Development and implementation of therapeutic protocols based on stem cells or tissue-engineered products relies on methods that enable the production of substantial numbers of cells while complying with stringent quality and safety demands. In the current study, we aimed to assess the benefits of maintaining cultures of adipose-derived stem cells (ASCs) in a defined culture system devoid of xenogeneic components (xeno-free) and hypoxia over a 49-day growth period. Our data provide evidence that conditions involving StemPro mesenchymal stem cells serum-free medium (SFM) Xeno-Free and hypoxia (5% oxygen concentration) in the culture atmosphere provide a superior proliferation rate compared to a standard growth environment comprised of alpha-modified Eagle medium (A-MEM) supplemented with fetal calf serum (FCS) and ambient air (20% oxygen concentration) or that of A-MEM supplemented with FCS and hypoxia. Furthermore, a flow cytometric analysis and in vitro differentiation assays confirmed the immunophenotype stability and maintained multipotency of ASCs when expanded under xeno-free conditions and hypoxia. In conclusion, our data demonstrate that growth conditions utilizing a xeno-free and hypoxic environment not only provide an improved environment for the expansion of ASCs, but also set the stage as a culture system with the potential broad spectrum utility for regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Sufang Yang
- Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark
| | | | | | | | | | | | | |
Collapse
|
25
|
Yenari MA, Han HS. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat Rev Neurosci 2012; 13:267-78. [DOI: 10.1038/nrn3174] [Citation(s) in RCA: 411] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|