1
|
Wang Q, Li Y, Wang S, Xiang Z, Dong W, Li X, Wei Y, Gao P, Dai L. A review of the historical records, chemistry, pharmacology, pharmacokinetics and edibility of Angelica dahurica. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
|
2
|
Xu R, Zhu Y, Jia J, Li WX, Lu Y. RIPK1/RIPK3-Mediated Necroptosis is Involved in Sevoflurane-Induced Neonatal Neurotoxicity in the Rat Hippocampus. Cell Mol Neurobiol 2022; 42:2235-2244. [PMID: 33991280 DOI: 10.1007/s10571-021-01098-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Recent studies have shown that exposure to sevoflurane in developing brains causes neuronal apoptosis and cognitive dysfunction. "Necroptosis" is a novel pathway of necrosis. We introduced the caspase-specific inhibitor Z-VAD in addition to the receptor-interacting protein kinase 1 (RIPK1) inhibitor Nec-1, to ascertain the existence and importance of necroptosis. Sprague-Dawley rat pups postnatal day 7 were randomly assigned into one of five groups: control, sevoflurane + Z-VAD, sevoflurane + Nec-1, sevoflurane + Z-VAD + Nec-1 and 3% sevoflurane group. Neuronal apoptosis was evaluated by hematoxylin and eosin staining. The MTT assay was performed to evaluate cell viability. Immunofluorescence was employed to measure expression of RIPK1 and RIPK3. Western blots showing expression of RIPK1, RIPK3 and phosphorylation of mixed lineage kinase domain-like (p-MLKL) were used to explore the role of necroptosis. Binding of RIPK1/RIPK3 was detected via co-immunoprecipitation. Finally, the Morris water maze test was used to determine cognitive function. Exposure to 3% sevoflurane for 6 h induced neurotoxicity and inhibited cell viability. Neuron viability was low in the SEV, SEV + Z-VAD and SEV + Nec-1 groups. The study revealed that RIPK1 and RIPK3 protein expression increased significantly, but there was no significant differences between the SEV and SEV + Z-VAD groups. The expression of p-MLKL significantly increased in the SEV and SEV + Z-VAD groups, but not in the SEV + Nec-1 group or SEV + Z-VAD + Nec-1 group compared to the control group. Co-immunoprecipitation results showed that sevoflurane exposure enhanced binding of RIPK1/RIPK3 protein significantly. Blockade of apoptosis and necroptosis alleviated sevoflurane-induced cognitive impairment. Sevoflurane exposure elicited neurotoxicity within neonatal hippocampal neurons and tissues. Blockade of apoptosis or necroptosis alone did not attenuate sevoflurane-induced neurotoxicity (SIN). RIPK1/RIPK3-mediated necroptosis was involved in SIN in hippocampal neurons. SIN could be attenuated only by inhibiting both apoptosis and necroptosis.
Collapse
Affiliation(s)
- Rui Xu
- Department of Anesthesiology, The Eye, Ear, Nose and Throat Hospital, Fudan University, Fenyang Road #83, Shanghai, 200031, People's Republic of China
| | - Yun Zhu
- Department of Oro-Maxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jie Jia
- Department of Anesthesiology, The Eye, Ear, Nose and Throat Hospital, Fudan University, Fenyang Road #83, Shanghai, 200031, People's Republic of China
| | - Wen Xian Li
- Department of Anesthesiology, The Eye, Ear, Nose and Throat Hospital, Fudan University, Fenyang Road #83, Shanghai, 200031, People's Republic of China.
| | - Yi Lu
- Department of Anesthesiology, The Eye, Ear, Nose and Throat Hospital, Fudan University, Fenyang Road #83, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
3
|
Gaio-Lima C, Castedo J, Cruz M, Candeias M, Camacho Ó. The role of hyperbaric oxygen therapy in the treatment of radiation lesions. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2466-2474. [PMID: 35976581 DOI: 10.1007/s12094-022-02892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Cancer remains one of the leading causes of death worldwide, with 50-60% of patients requiring radiotherapy during the course of treatment. Patients' survival rate has increased significantly, with an inevitable increase in the number of patients experiencing side effects from cancer therapy. One such effect is late radiation injuries in which hyperbaric oxygen therapy appears as complementary treatment. With this work we intend to divulge the results of applying hyperbaric oxygen therapy among patients presenting radiation lesions in our Hyperbaric Medicine Unit. MATERIALS AND METHODS Retrospective analysis of clinical records of patients with radiation lesions treated at the Hyperbaric Medicine Unit assessed by the scale Late Effects of Normal Tissues-Subjective, Objective, Management, Analytical (LENT-SOMA) before and after treatment, between October 2014 and September 2019 were included. Demographic characteristics, primary tumor site, subjective assessment of the LENT-SOMA scale before and after treatment were collected and a comparative analysis (Students t test) was done. RESULTS 88 patients included: 33 with radiation cystitis, 20 with radiation proctitis, 13 with osteoradionecrosis of the mandible and 22 with radiation enteritis. In all groups, there was a significant decrease (p < 0.005) in the subjective parameter of the LENT-SOMA scale. DISCUSSION Late radiation lesions have a major influence on patients' quality of life. In our study hyperbaric oxygen therapy presents as an effective therapy after the failure of conventional treatments. CONCLUSION Hyperbaric oxygen therapy is an effective complementary therapy in the treatment of refractory radiation lesions.
Collapse
Affiliation(s)
- Clara Gaio-Lima
- Serviço de Anestesiologia, ULSM (Unidade Local de Saúde de Matosinhos), Matosinhos, Portugal.
- ULSM (Unidade Local de Saúde de Matosinhos), Unidade de Medicina Hiperbárica, Matosinhos, Portugal.
| | - João Castedo
- Serviço de Anestesiologia, ULSM (Unidade Local de Saúde de Matosinhos), Matosinhos, Portugal
| | - Mafalda Cruz
- Serviço de Radioterapia, IPO Porto (Instituto Português de Oncologia do Porto Francisco Gentil), Porto, Portugal
| | | | - Óscar Camacho
- Serviço de Anestesiologia, ULSM (Unidade Local de Saúde de Matosinhos), Matosinhos, Portugal
- ULSM (Unidade Local de Saúde de Matosinhos), Unidade de Medicina Hiperbárica, Matosinhos, Portugal
| |
Collapse
|
4
|
Lv Z, Dong C, Zhang T, Zhang S. Hydrogels in Spinal Cord Injury Repair: A Review. Front Bioeng Biotechnol 2022; 10:931800. [PMID: 35800332 PMCID: PMC9253563 DOI: 10.3389/fbioe.2022.931800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 12/18/2022] Open
Abstract
Traffic accidents and falling objects are responsible for most spinal cord injuries (SCIs). SCI is characterized by high disability and tends to occur among the young, seriously affecting patients' lives and quality of life. The key aims of repairing SCI include preventing secondary nerve injury, inhibiting glial scarring and inflammatory response, and promoting nerve regeneration. Hydrogels have good biocompatibility and degradability, low immunogenicity, and easy-to-adjust mechanical properties. While providing structural scaffolds for tissues, hydrogels can also be used as slow-release carriers in neural tissue engineering to promote cell proliferation, migration, and differentiation, as well as accelerate the repair of damaged tissue. This review discusses the characteristics of hydrogels and their advantages as delivery vehicles, as well as expounds on the progress made in hydrogel therapy (alone or combined with cells and molecules) to repair SCI. In addition, we discuss the prospects of hydrogels in clinical research and provide new ideas for the treatment of SCI.
Collapse
Affiliation(s)
- Zhenshan Lv
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tianjiao Zhang
- Medical Insurance Management Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaokun Zhang
- The Department of Spinal Surgery, 1st Hospital, Jilin University, Jilin Engineering Research Center for Spine and Spine Cord Injury, Changchun, China
| |
Collapse
|
5
|
Ahmed AF, Wen ZH, Bakheit AH, Basudan OA, Ghabbour HA, Al-Ahmari A, Feng CW. A Major Diplotaxis harra-Derived Bioflavonoid Glycoside as a Protective Agent against Chemically Induced Neurotoxicity and Parkinson's Models; In Silico Target Prediction; and Biphasic HPTLC-Based Quantification. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050648. [PMID: 35270118 PMCID: PMC8912516 DOI: 10.3390/plants11050648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 05/15/2023]
Abstract
Oxidative stress and chronic inflammation have a role in developing neurodegenerative diseases such as Parkinson’s disease (PD) and inflammatory movement disorders such as rheumatoid arthritis that affect millions of populations. In searching for antioxidant and anti-inflammatory molecules from natural sources that can counteract neurodegenerative diseases and arthritis, the flavonoid-rich extract of Diplotaxis harra (DHE) was selected based on its in vitro antioxidant and anti-inflammatory activities. DHE could inhibit the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages from 100% to the level of 28.51 ± 18.67 and 30.19 ± 5.00% at 20 μg/mL, respectively. A TLC bioautography of DHE fractions using 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) led to the isolation of a major antioxidant compound which was identified by X-ray diffraction analysis as isorhamnetin-3-O-β-D-glucoside (IR3G). IR3G also exhibited a potent anti-inflammatory activity, particularly by suppressing the upregulation of iNOS expression, similar to that of dexamethasone (DEX) at 10 μM to the level of 35.96 ± 7.80 and 29.34 ± 6.34%, respectively. Moreover, IR3G displayed a strong neuroprotectivity (>60% at 1.0−4−1.0−3 μM) against 6-hydroxydopamine (6-OHDA)-challenged SHSY5Y neuroblastoma, an in vitro model of dopaminergic neurons for Parkinson’s disease (PD) research. Accordingly, the in vivo anti-Parkinson potentiality was evaluated, where it was found that IR3G successfully reversed the 6-OHDA-induced locomotor deficit in a zebrafish model. A study of molecular docking and molecular dynamic (MD) simulation of IR3G and its aglycone isorhamnetin (IR) against human acetylcholine esterase (AChE), monoamine oxidase B (MAO-B), and Polo-like kinase-2 (PLK2) was performed and further outlined a putative mechanism in modulating neurodegenerative diseases such as PD. The free radical scavenging, anti-inflammatory through anti-iNOS and anti-COX-2 expression, and neuroprotective activities assessed in this study would present partial evidence for the potentiality of D. harra-derived IR3G as a promising natural therapeutic agent against neurodegenerative diseases and inflammatory arthritis. Finally, a biphasic HPTLC method was developed to estimate the biomarker IR3G in D. harra quantitatively.
Collapse
Affiliation(s)
- Atallah F. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (O.A.B.); (A.A.-A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, El-Mansoura 35516, Egypt
- Correspondence:
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Omer A. Basudan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (O.A.B.); (A.A.-A.)
| | - Hazem A. Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt;
| | - Abdullah Al-Ahmari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (O.A.B.); (A.A.-A.)
| | - Chien-Wei Feng
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| |
Collapse
|
6
|
Kang S, Piao Y, Kang YC, Lim S, Pak YK. DA-9805 protects dopaminergic neurons from endoplasmic reticulum stress and inflammation. Biomed Pharmacother 2022; 145:112389. [PMID: 34775235 DOI: 10.1016/j.biopha.2021.112389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
Parkinson's disease (PD) is a multifactorial neurodegenerative disease with damages to mitochondria and endoplasmic reticulum (ER), followed by neuroinflammation. We previously reported that a triple herbal extract DA-9805 in experimental PD toxin-models had neuroprotective effects by alleviating mitochondrial damage and oxidative stress. In the present study, we investigated whether DA-9805 could suppress ER stress and neuroinflammation in vitro and/or in vivo. Pre-treatment with DA-9805 (1 μg/ml) attenuated upregulation of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and cleaved caspase-3 in SH-SY5Y neuroblastoma cells treated with thapsigargin (1 µg/ml) or tunicamycin (2 µg/ml). In addition, DA-9805 prevented the production of IL-1β, IL-6, TNF-α and nitric oxide through inhibition of NF-κB activation in BV2 microglial cells stimulated with lipopolysaccharides (LPS). Intraperitoneal injection of LPS (10 mg/kg) into mice can induce acute neuroinflammation and dopaminergic neuronal cell death. Oral administration of DA-9805 (10 or 30 mg/kg/day for 3 days before LPS injection) prevented loss of dopaminergic neurons and activation of microglia and astrocytes in the substantia nigra in LPS-injected mouse models. Taken together, these results indicate that DA-9805 can effectively prevent ER stress and neuroinflammation, suggesting that DA-9805 is a multitargeting and disease-modifying therapeutic candidate for PD.
Collapse
Affiliation(s)
- Sora Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Ying Piao
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Young Cheol Kang
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Suyeol Lim
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Youngmi Kim Pak
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, South Korea; Department of Physiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
7
|
Wu X, Yan Y, Zhang Q. Neuroinflammation and Modulation Role of Natural Products After Spinal Cord Injury. J Inflamm Res 2021; 14:5713-5737. [PMID: 34764668 PMCID: PMC8576359 DOI: 10.2147/jir.s329864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic injury of the central nervous system, characterized by neurological dysfunction and locomotor disability. Although the underlying pathological mechanism of SCI is complex and remains unclear, the important role of neuroinflammation has been gradually unveiled in recent years. The inflammation process after SCI involves disruption of the blood–spinal cord barrier (BSCB), activation of gliocytes, infiltration of peripheral macrophages, and feedback loops between different cells. Thus, our first aim is to illustrate pathogenesis, related cells and factors of neuroinflammation after SCI in this review. Due to the good bioactivity of natural products derived from plants and medicinal herbs, these widely exist as food, health-care products and drugs in our lives. In the inflammation after SCI, multiple natural products exert satisfactory effects. Therefore, the second aim of this review is to sum up the effects and mechanisms of 25 natural compounds and 7 extracts derived from plants or medicinal herbs on neuroinflammation after SCI. Clarification of the SCI inflammation mechanism and a summary of the related natural products is helpful for in-depth research and drug development.
Collapse
Affiliation(s)
- Xue Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| | - Qian Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, The People's Republic of China
| |
Collapse
|
8
|
Zeng J, Zhao Y, Li K, Long D, Li W, Liang L. A coordinated ruthenium-rifampicin complex reprogramming the colon carcinoma micro-environment mediated by modulation of p53/AkT/mTOR/VEGF pathway. Toxicol Appl Pharmacol 2021; 426:115618. [PMID: 34126112 DOI: 10.1016/j.taap.2021.115618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 01/03/2023]
Abstract
WHO suggests that colon cancer incidences are rising steadily, propelling researchers to search for novel chemotherapeutic options. Metal-based chemotherapy is a potential forte to explore ruthenium-based complexes, exhibiting the capability to influence a variety of cellular targets. We discovered the chemotherapeutic effects of ruthenium-rifampicin complex on HT-29 and HCT-116 human colorectal cell lines and on a chemically developed murine colorectal cancer model. Complex was synthesized and characterized by analytical techniques and evaluation of antioxidant potential along with DNA binding capabilities. The complex minimizes cellular propagation and initiates apoptotic events in the colon cancer cell lines of HT-29 and HCT-116. The results of the in vivo study suggest that the complex has been successful in minimizing the wide spectrum of aberrant crypt foci and hyperplastic lesions, as well as encouraging elevated amounts of CAT, SOD and glutathione. Along with that, p53 could be modulated by the ruthenium-rifampicin complex to interfere with apoptosis in colon carcinoma, initiated by the intrinsic apoptotic trail facilitated through Bcl2 and Bax, thus controlling the Akt/mTOR/VEGF pathway coupled through the WNT/β-catenin trail. Ruthenium-rifampicin chemotherapy could interrupt, retract or interrupt the progression of colorectal cancer through modifying intrinsic apoptosis including the antiangiogenic pathway, thereby achieving the function of a potential contender in chemotherapy in the near future.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan ProvinciA People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
| | - Yu Zhao
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan ProvinciA People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
| | - Kexun Li
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan ProvinciA People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
| | - Daoling Long
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan ProvinciA People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
| | - Wei Li
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan ProvinciA People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China.
| | - Liang Liang
- Department of Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China.
| |
Collapse
|
9
|
Silva JM, Nobre MSC, Albino SL, Lócio LL, Nascimento APS, Scotti L, Scotti MT, Oshiro-Junior JA, Lima MCA, Mendonça-Junior FJB, Moura RO. Secondary Metabolites with Antioxidant Activities for the Putative Treatment of Amyotrophic Lateral Sclerosis (ALS): "Experimental Evidences". OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5642029. [PMID: 33299526 PMCID: PMC7707995 DOI: 10.1155/2020/5642029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder that is characterized by progressive loss of the upper and lower motor neurons at the spinal or bulbar level. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain are factors that contribute to neurodegeneration and perform a potential role in the pathogenesis of ALS. Natural antioxidant molecules have been proposed as an alternative form of treatment for the prevention of age-related neurological diseases, in which ALS is included. Researches support that regulations in cellular reduction/oxidation (redox) processes are being increasingly implicated in this disease, and antioxidant drugs are aimed at a promising pathway to treatment. Among the strategies used for obtaining new drugs, we can highlight the isolation of secondary metabolite compounds from natural sources that, along with semisynthetic derivatives, correspond to approximately 40% of the drugs found on the market. Among these compounds, we emphasize oxygenated and nitrogenous compounds, such as flavonoids, coumarins, and alkaloids, in addition to the fatty acids, that already stand out in the literature for their antioxidant properties, consisting in a part of the diets of millions of people worldwide. Therefore, this review is aimed at presenting and summarizing the main articles published within the last years, which represent the therapeutic potential of antioxidant compounds of natural origin for the treatment of ALS.
Collapse
Affiliation(s)
- Jamire M. Silva
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Michelangela S. C. Nobre
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Sonaly L. Albino
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Lucas L. Lócio
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Agnis P. S. Nascimento
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Luciana Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - Marcus T. Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa PB, Brazil
| | - João A. Oshiro-Junior
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| | - Maria C. A. Lima
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, Federal University of Pernambuco, 50670-901 Recife PB, Brazil
| | - Francisco J. B. Mendonça-Junior
- Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, 58071-160 João Pessoa PB, Brazil
| | - Ricardo O. Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Postgraduate Program in Pharmaceutical Sciences-PPGCF, Department of Pharmacy, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
- Graduate Program in Chemistry-PPGQ, Department of Chemistry, State University of Paraiba, 58429-500 Campina Grande PB, Brazil
| |
Collapse
|
10
|
Zhang J, Cheng T, Chen Y, Gao F, Guan F, Yao M. A chitosan-based thermosensitive scaffold loaded with bone marrow-derived mesenchymal stem cells promotes motor function recovery in spinal cord injured mice. Biomed Mater 2020; 15:035020. [DOI: 10.1088/1748-605x/ab785f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Liu J, Peng L, Li J. The Lipoxin A4 Receptor Agonist BML-111 Alleviates Inflammatory Injury and Oxidative Stress in Spinal Cord Injury. Med Sci Monit 2020; 26:e919883. [PMID: 31971927 PMCID: PMC6996263 DOI: 10.12659/msm.919883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Spinal cord injury (SCI) has a high incidence and causes serious harm. Lipoxin A4 (LXA4) receptor agonist BML-111 was reported to regulate inflammation and oxidative stress. The goal of this study was to assess whether BML-111 could protect against SCI by suppressing inflammation and oxidative stress. Material/Methods We developed a rat SCI model, then BML-111 was intraperitoneally injected into SCI rats to observe the BML-111 function. The pathological changes of SCI were observed with hematoxylin and eosin (HE) staining. Motor function of rats were assessed by the modified Tarlov’s scale. ELISA was used to assess the changes in levels of TNF-α, IL-1β, and IL-6. Western blot analysis was performed to assess the expressions of TNF-α, IL-1β, IL-6, Bcl2, Bax, and cleaved caspase3 in spinal cord tissue. TOS and TAS in rat serum were detected by xylenol orange method and ABTS method, respectively. The apoptotic cells in spinal cord tissue were observed with TUNEL assay. Results The results indicated that BML-111 effectively improved the SCI and motor function of rats. BML-111 treatment decreased the levels of TNF-α, IL-1β, and IL-6 in serum and spinal cord tissue, as well as decreasing the levels of TOS and TAS and cell apoptosis. Conclusions BML-111 alleviated inflammation and oxidative stress in SCI rats.
Collapse
Affiliation(s)
- Jian Liu
- Department of Orthopedics, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Lei Peng
- Department of Orthopedics, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| | - Jie Li
- Department of Orthopedics, Chongqing Emergency Medical Center, Chongqing, China (mainland)
| |
Collapse
|
12
|
Xie XK, Xu ZK, Xu K, Xiao YX. DUSP19 mediates spinal cord injury-induced apoptosis and inflammation in mouse primary microglia cells via the NF-kB signaling pathway. Neurol Res 2019; 42:31-38. [PMID: 31813339 DOI: 10.1080/01616412.2019.1685068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Objective: Spinal cord injury (SCI) is a common injury that seriously threatens human health. NF-κB may be involved in the secondary injury of SCI that is mediated by inflammation and aggravates damage. Our study was aimed to investigate the role of NF-κB signaling in DUSP19-mediated cleaved Caspase-3 expression and the release of inflammatory factors in vivo and in vitro.Materials and Methods: DUSP19 mRNA expression and the content of IL-6 and IL-8 in patients with traumatic SCI (TSCI) were measured by real-time PCR and ELISA, respectively. The levels of p-NF-κBp65, NF-κBp65 and cleaved Caspase-3 expression and the concentrations of IL-6 and IL-8 were measured by western blotting and ELISA, respectively.Results: Patients with TSCI showed lower DUSP19 expression and higher concentration of IL-6 and IL-8 compared with healthy controls. DUSP19 overexpression inhibited p-NF-κBp65 level, cleaved Caspase-3 expression, and production of IL-8 and IL-6 in the mice induced by TSCI. DUSP19 silencing increased p-NF-κBp65 level, cleaved Caspase-3 expression, and concentration of IL-6 and IL-8 in mouse primary microglia cells. DUSP19 overexpression had an inverse effect. Importantly, DUSP19 silencing and overexpression mediated p-NF-κBp65 level, cleaved Caspase-3 expression, and concentration of IL-6 and IL-8 in mouse primary microglia cells were reversed by NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) and NF-κB activator 12-myristate 13-acetate (PMA), respectively.Conclusion: These results suggested that DUSP19-mediated SCI-induced apoptosis and inflammation via NF-κB signaling and might therefore serve as a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Xian-Kuan Xie
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hang Zhou, Zhejiang, PR China
| | - Zheng-Kuan Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hang Zhou, Zhejiang, PR China
| | - Kan Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hang Zhou, Zhejiang, PR China
| | - Yu-Xiang Xiao
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hang Zhou, Zhejiang, PR China
| |
Collapse
|
13
|
Luo D, Zhang JB, Peng YX, Liu JB, Han DX, Wang Y, Zhang Z, Yuan B, Gao Y, Chen CZ, Jiang H. Imperatorin improves in vitro porcine embryo development by reducing oxidative stress and autophagy. Theriogenology 2019; 146:145-151. [PMID: 31831188 DOI: 10.1016/j.theriogenology.2019.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/04/2019] [Accepted: 11/24/2019] [Indexed: 12/19/2022]
Abstract
Imperatorin (IMP), a furanocoumarin derivative with many biological properties and pharmacological activities, is widely used as an antibacterial, anti-inflammatory, antiviral, anticancer, cardiovascular and neuroprotective agent. The purpose of this study was to explore the effects of IMP on early embryo development in pigs as well as the potential mechanisms. Our results showed that IMP can enhance the developmental competence of porcine early embryos. Supplementation of in vitro culture medium with 40 μM IMP significantly increased the blastocyst rate and total cell number. At the same time, apoptosis of blastocysts was also significantly decreased in the supplemented group compared with the control group, in accordance with the subsequent results of FAS and CASP3 gene expression analysis. Furthermore, IMP attenuated intracellular reactive oxygen species (ROS) generation, increased fluorescein diacetate (FDA) and glutathione (GSH) levels. Importantly, IMP not only improved the activity of mitochondria but also inhibited the occurrence of autophagy. In addition, pluripotency-related genes (OCT4, NANOG, and SOX2) and a growth and metabolism regulatory gene (mTOR) were upregulated after IMP supplementation on Day 7. These results demonstrate that IMP exerts a beneficial effect on preimplantation embryo development by reducing oxidative stress and autophagy.
Collapse
Affiliation(s)
- Dan Luo
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Jia-Bao Zhang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yan-Xia Peng
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Jian-Bo Liu
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Dong-Xu Han
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Ying Wang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Zhe Zhang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Bao Yuan
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Yan Gao
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Cheng-Zhen Chen
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Hao Jiang
- College of Animal Sciences, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
14
|
Fan H, Tang HB, Shan LQ, Liu SC, Huang DG, Chen X, Chen Z, Yang M, Yin XH, Yang H, Hao DJ. Quercetin prevents necroptosis of oligodendrocytes by inhibiting macrophages/microglia polarization to M1 phenotype after spinal cord injury in rats. J Neuroinflammation 2019; 16:206. [PMID: 31699098 PMCID: PMC6839267 DOI: 10.1186/s12974-019-1613-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background Oligodendrocytes (OLs) death after spinal cord injury (SCI) contributes to demyelination, even leading to a permanent neurological deficit. Besides apoptosis, our previous study demonstrated that OLs underwent receptor-interacting serine-threonine kinase 3(RIP3)/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis. Considering that necroptosis is always accompanied with pro-inflammatory response and quercetin has long been used as anti-inflammatory agent, in the present study we investigated whether quercetin could inhibit necroptosis of OLs and suppress the M1 macrophages/microglia-mediated immune response after SCI as well as the possible mechanism. Methods In this study, we applied quercetin, an important flavonoid component of various herbs, to treat rats with SCI and rats injected with saline were employed as the control group. Locomotor functional recovery was evaluated using Basso-Beattie-Bresnahan (BBB) scoring and rump-height Index (RHI) assay. In vivo, the necroptosis, apoptosis, and regeneration of OLs were detected by immunohistochemistry, 5′-bromo-2′-deoxyuridine (BrdU) incorporation. The loss of myelin and axons after SCI were evaluated by Luxol fast blue (LFB) staining, immunohistochemistry, and electron microscopic study. The polarization of macrophages/microglia after SCI and the underlying mechanisms were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. In vitro, the ATP and reactive oxygen species (ROS) level examination, propidium iodide (PI) labeling, and Western blotting were used to analyze the necroptosis of cultured OLs, while the signaling pathways-mediated polarization of cultured macrophages/microglia was detected by qRT-PCR and Western blotting. Results We demonstrated that quercetin treatment improved functional recovery in rats after SCI. We then found that quercetin significantly reduced necroptosis of OLs after SCI without influencing apoptosis and regeneration of OLs. Meanwhile, myelin loss and axon loss were also significantly reduced in quercetin-treated rats, as compared to SCI + saline control. Further, we revealed that quercetin could suppress macrophages/microglia polarized to M1 phenotype through inhibition of STAT1 and NF-κB pathway in vivo and in vitro, which contributes to the decreased necroptosis of OLs. Conclusions Quercetin treatment alleviated necroptosis of OLs partially by inhibiting M1 macrophages/microglia polarization after SCI. Our findings suggest that necroptosis of OLs may be a potential therapeutic target for clinical SCI.
Collapse
Affiliation(s)
- Hong Fan
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 555 You Yi Dong Road, Xi'an, 710054, Shaanxi, China.,Institute of Neurosciences, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hai-Bin Tang
- Department of Laboratory Medicine, Xi'an Central Hospital, Xi'an Jiaotong University, 161 Xi Wu Road, Xi'an, 710003, Shaanxi, China
| | - Le-Qun Shan
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 555 You Yi Dong Road, Xi'an, 710054, Shaanxi, China
| | - Shi-Chang Liu
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 555 You Yi Dong Road, Xi'an, 710054, Shaanxi, China
| | - Da-Geng Huang
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 555 You Yi Dong Road, Xi'an, 710054, Shaanxi, China
| | - Xun Chen
- Department of Bone Microsurgery, Hong Hui Hospital, Xi'an Jiaotong University, 555 You Yi Dong Road, Xi'an, 710054, Shaanxi, China
| | - Zhe Chen
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 555 You Yi Dong Road, Xi'an, 710054, Shaanxi, China
| | - Ming Yang
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 555 You Yi Dong Road, Xi'an, 710054, Shaanxi, China
| | - Xin-Hua Yin
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 555 You Yi Dong Road, Xi'an, 710054, Shaanxi, China
| | - Hao Yang
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 555 You Yi Dong Road, Xi'an, 710054, Shaanxi, China.
| | - Ding-Jun Hao
- Shaanxi Spine Medicine Research Center, Translational Medicine Center, Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, 555 You Yi Dong Road, Xi'an, 710054, Shaanxi, China.
| |
Collapse
|
15
|
Li C, Jiao G, Wu W, Wang H, Ren S, Zhang L, Zhou H, Liu H, Chen Y. Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Neuronal Apoptosis and Promote Motor Function Recovery via the Wnt/β-catenin Signaling Pathway. Cell Transplant 2019; 28:1373-1383. [PMID: 31423807 PMCID: PMC6802144 DOI: 10.1177/0963689719870999] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Severe spinal cord injury (SCI) is caused by external mechanical injury, resulting in
unrecoverable neurological injury. Recent studies have shown that exosomes derived from
bone marrow mesenchymal stem cells (BMSCs-Exos) might be valuable paracrine molecules in
the treatment of SCI. In this study, we designed SCI models in vivo and in vitro and then
investigated the possible mechanism of successful repair by BMSCs-Exos. In vivo, we
established one Sham group and two SCI model groups. The Basso, Beattie, Bresnahan (BBB)
scores showed that BMSCs-Exos could effectively promote the recovery of spinal cord
function. The results of the Nissl staining, immunohistochemistry, and TUNEL/NeuN/DAPI
double staining showed that BMSCs-Exos inhibited neuronal apoptosis. Western blot analysis
showed that the protein expression level of Bcl-2 was significantly increased in the
BMSCs-Exos group compared with the PBS group, while the protein expression levels of Bax,
cleaved caspase-3, and cleaved caspase-9 were significantly decreased. The results of
western bolt and qRT-PCR demonstrated that BMSCs-Exos could activate the Wnt/β-catenin
signaling pathway effectively. In vitro, we found that inhibition of the Wnt/β-catenin
signaling pathway could promote neuronal apoptosis following lipopolysaccharide (LPS)
induction. These results demonstrated that BMSCs-Exos may be a promising therapeutic for
SCI by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ci Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Wenliang Wu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Shanwu Ren
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Hongming Zhou
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Haichun Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| |
Collapse
|
16
|
Bi J, Chen C, Sun P, Tan H, Feng F, Shen J. Neuroprotective effect of omega-3 fatty acids on spinal cord injury induced rats. Brain Behav 2019; 9:e01339. [PMID: 31225705 PMCID: PMC6710194 DOI: 10.1002/brb3.1339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION In this study, the effects of omega-3 fatty acids were examined in a rat model of spinal cord injury. METHODS The rats were classified into sham, control, spinal cord injury plus 50 mg/kg Omega-3 fatty acids and spinal cord injury plus 100 mg/kg Omega-3 fatty acids. The levels of oxidative, apoptotic, and inflammatory markers were examined in each of these groups. RESULTS Altered lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (Gpx), and catalase were normalized. Omega-3 fatty acid supplementation decreased tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels by >50%. TNF-α and IL-6 mRNA expression were reduced. Caspase-3, p53, bax, and pro-NGF mRNA expression levels were increased by 1.3-, 1.4-, 1.2-, and 0.9-fold, respectively, whereas bcl-2 mRNA expression was decreased by 0.77-fold in control rats. Omega-3 fatty acid supplementation decreased p53, caspase-3, bax, and pro-NGF mRNA expression by >40%, while the level of bcl-2 mRNA expression was increased by 286.9%. Omega-3 fatty acid supplementation decreased caspase-3 and p53 protein expression by >30%. CONCLUSION Taken together, our results suggested that omega-3 fatty acid supplementation reduced oxidative stress, apoptosis, and the levels of inflammatory markers in ischemia-reperfusion-induced rats.
Collapse
Affiliation(s)
- Jiaqi Bi
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Orthopedic Surgery, The First Hospital of Harbin City, Harbin, Heilongjiang, China
| | - Chong Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiyu Sun
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Orthopedics, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Haining Tan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Feng
- Department of Orthopedics Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxiong Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
zhang H, Xiang Z, Duan X, Jiang JL, Xing YM, Zhu C, Song Q, Yu QR. Antitumor and anti-inflammatory effects of oligosaccharides from Cistanche deserticola extract on spinal cord injury. Int J Biol Macromol 2019; 124:360-367. [DOI: 10.1016/j.ijbiomac.2018.11.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
|
18
|
Abstract
Previous studies have indicated that spinal cord injury can induce autophagy. To a certain extent, increased autophagy has a protective effect on neurons. Early hormone therapy is well recognized as a treatment for spinal cord injury. However, whether the protective effect of autophagy is important in recovery from spinal cord injury remains unclear. In this study, we established an in-vitro model of spinal cord injury to study the effects of dexamethasone on mechanical injury, autophagy, and apoptosis in spinal cord neurons. The results showed that dexamethasone inhibited the level of autophagy in the injured nerve cells in a dose-dependent manner. High doses of dexamethasone protected the damaged spinal cord neurons by inhibiting apoptosis, but a protective effect from low hormone concentrations was not obvious. When autophagy was inhibited in damaged spinal cord neurons, apoptosis decreased significantly; in contrast, impairment of autophagy-induced activation of spinal cord neurons and apoptosis levels were significantly increased.
Collapse
|
19
|
He Z, Zang H, Zhu L, Huang K, Yi T, Zhang S, Cheng S. An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury. Int J Nanomedicine 2019; 14:721-732. [PMID: 30705588 PMCID: PMC6342221 DOI: 10.2147/ijn.s187854] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Traumatic spinal cord injury (SCI) causes neuronal death, demyelination, axonal degeneration, inflammation, glial scar formation, and cystic cavitation resulting in interruption of neural signaling and loss of nerve function. Multifactorial targeted therapy is a promising strategy for SCI. Methods The anti-inflammatory peptide KAFAKLAARLYRKALARQLGVAA (KAFAK) and brain-derived neurotrophic factor (BDNF)-modified hyaluronan-methylcellulose (HAMC) hydrogel was designed for minimally invasive, localized, and sustained intrathecal protein delivery. The physical and biological characteristics of HAMC-KAFAK/BDNF hydrogel were measured in vitro. SCI model was performed in rats and HAMC-KAFAK/BDNF hydrogel was injected into the injured site of spinal cord. The neuronal regeneration effect was evaluated by inflammatory cytokine levels, behavioral test and histological analysis at 8 weeks post operation. Results HAMC-KAFAK/BDNF hydrogel showed minimally swelling property and sustained release of the KAFAK and BDNF. HAMC-KAFAK/BDNF hydrogel significantly improved the proliferation of PC12 cells in vitro without cytotoxicity. Significant recovery in both neurological function and nerve tissue morphology in SCI rats were observed in HAMC-KAFAK/BDNF group. HAMC-KAFAK/BDNF group showed significant reduction in proinflammatory cytokines expression and cystic cavitation, decreased glial scar formation, and improved neuronal survival in the rat SCI model compared to HAMC group and SCI group. Conclusion The HAMC-KAFAK/BDNF hydrogel promotes functional recovery of rats with spinal cord injury by regulating inflammatory cytokine levels and improving axonal regeneration.
Collapse
Affiliation(s)
- Zhijiang He
- Logistics University of Chinese People's Armed Police Force (PAP), Tianjin 300309, China
| | - Hongxin Zang
- Department of Nursing, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin 300162, China
| | - Lei Zhu
- Department of Orthopaedics Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin 300162, China
| | - Kui Huang
- Logistics University of Chinese People's Armed Police Force (PAP), Tianjin 300309, China
| | - Tailong Yi
- Institute of TBI and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China, ;
| | - Sai Zhang
- Institute of TBI and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China, ;
| | - Shixiang Cheng
- Institute of TBI and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force (PAP), Tianjin Key Laboratory of Neurotrauma Repair, Tianjin 300162, China, ;
| |
Collapse
|
20
|
Noh P, Kim WJ, Yang S, Park I, Moon BC. Authentication of the Herbal Medicine Angelicae Dahuricae Radix Using an ITS Sequence-Based Multiplex SCAR Assay. Molecules 2018; 23:E2134. [PMID: 30149558 PMCID: PMC6225120 DOI: 10.3390/molecules23092134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 01/13/2023] Open
Abstract
The accurate identification of plant species is of great concern for the quality control of herbal medicines. The Korean Pharmacopoeia and the Pharmacopoeia of the People's Republic of China define Angelicae Dahuricae Radix (Baek-Ji in Korean and Bai-zhi in Chinese) as the dried roots of Angelica dahurica or A. dahurica var. formosana belonging to the family Apiaceae. Discrimination among Angelica species on the basis of morphological characteristics is difficult due to their extremely polymorphic traits and controversial taxonomic history. Furthermore, dried roots processed for medicinal applications are indistinguishable using conventional methods. DNA barcoding is a useful and reliable method for the identification of species. In this study, we sequenced the internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes in A. dahurica, A. dahurica var. formosana, and the related species A. anomala and A. japonica. Using these sequences, we designed species-specific primers, and developed and optimized a multiplex sequence-characterized amplified region (SCAR) assay that can simply and rapidly identify respective species, and verify the contamination of adulterant depending on the polymerase chain reaction (PCR) amplification without sequencing analysis in a single PCR reaction. This assay successfully identified commercial samples of Angelicae Dahuricae Radix collected from Korean and Chinese herbal markets, and distinguished them from adulterants. This multiplex SCAR assay shows a great potential in reducing the time and cost involved in the identification of genuine Angelicae Dahuricae Radix and adulterant contamination.
Collapse
Affiliation(s)
- Pureum Noh
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Wook Jin Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Sungyu Yang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Inkyu Park
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Byeong Cheol Moon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
21
|
Kwon MH, Jeong JS, Ryu J, Cho YW, Kang HE. Pharmacokinetics and Brain Distribution of the Active Components of DA-9805, Saikosaponin A, Paeonol, and Imperatorin in Rats. Pharmaceutics 2018; 10:pharmaceutics10030133. [PMID: 30127277 PMCID: PMC6160927 DOI: 10.3390/pharmaceutics10030133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 12/20/2022] Open
Abstract
DA-9805 is a botanical anti-Parkinson’s drug candidate formulated from ethanol extracts of the root of Bupleurum falcatum, the root cortex of Paeonia suffruticosa, and the root of Angelica dahurica. The pharmacokinetics (PKs) and brain distribution of active/representative ingredients of DA-9805, Saikosaponin a (SSa; 1.1–4.6 mg/kg), Paeonol (PA; 14.8–59.2 mg/kg), and Imperatorin (IMP; 1.4–11.5 mg/kg) were evaluated following the intravenous or oral administration of each pure component and the equivalent dose of DA-9805 in rats. All three components had greater dose-normalized areas under the plasma concentration-time curve (AUC) and slower clearance with higher doses, following intravenous administration. By contrast, dose-proportional AUC values of SSa, PA, and IMP were observed following the oral administration of each pure component (with the exception of IMP at the highest dose) or DA-9805. Compared to oral administration of each pure compound, DA-9805 administration showed an increase in the AUC of SSa (by 96.1–163%) and PA (by 155–164%), possibly due to inhibition of their metabolism by IMP or other component(s) in DA-9805. A delay in the absorption of PA and IMP was observed when they were administered as DA-9805. All three components of DA-9805 showed greater binding values in brain homogenates than in plasma, possibly explaining why the brain-to-plasma ratios were greater than unity following multiple oral administrations of DA-9805. By contrast, their levels in cerebrospinal fluid were negligible. Our results further our understanding of the comprehensive PK characteristics of SSa, PA, and IMP in rats and the comparative PKs between each pure component and DA-9805.
Collapse
Affiliation(s)
- Mi Hye Kwon
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| | - Jin Seok Jeong
- Research Center, Dong-A ST Co., Ltd., 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin 17073, Korea.
| | - Jayoung Ryu
- Research Center, Dong-A ST Co., Ltd., 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin 17073, Korea.
| | - Young Woong Cho
- Research Center, Dong-A ST Co., Ltd., 21 Geumhwa-ro, 105beon-gil, Giheung-gu, Yongin 17073, Korea.
| | - Hee Eun Kang
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| |
Collapse
|
22
|
Protective role of β-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. Int Immunopharmacol 2018; 61:92-99. [DOI: 10.1016/j.intimp.2018.05.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 12/25/2022]
|
23
|
Meng HY, Shao DC, Li H, Huang XD, Yang G, Xu B, Niu HY. Resveratrol improves neurological outcome and neuroinflammation following spinal cord injury through enhancing autophagy involving the AMPK/mTOR pathway. Mol Med Rep 2018; 18:2237-2244. [PMID: 29956767 DOI: 10.3892/mmr.2018.9194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/27/2017] [Indexed: 11/05/2022] Open
Abstract
Resveratrol, a natural phenolic compound, provides neuroprotective effects, however, the specific mechanisms of action remain to be elucidated. The purpose of the present study was to examine the neuroprotective effect of resveratrol on spinal cord injury (SCI) and the potential molecular mechanisms of action. A rat model of SCI was induced using Allen's method, and resveratrol (100 mg/kg) was intraperitoneally injected 1 day following surgery. The recovery of neurological function was assessed using the Basso, Beattie, Bresnahan scoring system and an inclined plane test. The concentrations of pro‑ and anti‑inflammatory factors were measured using ELISA. The expression and location of autophagy markers were measured using western blot and immunofluorescence analyses. The results suggested that resveratrol administration resulted in functional improvement of locomotor activity and reduced neuroinflammation following the induction of SCI. In addition, autophagy was activated following SCI, as demonstrated by the significantly increased ratio of microtubule‑associated protein light chain 3 (LC3)‑II/LC3‑I and expression of Beclin‑1 in the injured spinal cord. Of note, the enhancement of phosphorylated (p)‑AMP‑activated protein kinase (AMPK) and the reduction of p‑mammalian target of rapamycin (mTOR) following SCI indicated that the SCI‑induced activation of autophagy was associated with the AMPK/mTOR signaling pathway. Resveratrol treatment further enhanced the activation of autophagy via the AMPK/mTOR pathway following SCI. By contrast, the autophagic inhibitor, 3‑methyladenine, partially inhibited the neuroprotective effects of resveratrol treatment. Together, these findings suggested that resveratrol promoted functional recovery and inhibited neuroinflammation through the activation of autophagy mediated by the AMPK/mTOR pathway following SCI.
Collapse
Affiliation(s)
- Hong-Yu Meng
- Department of Orthopedics, and Key Laboratory of Orthopedic Biomechanics of Hebei Province, Orthopedic Research Institution of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - De-Cheng Shao
- Department of Orthopedics, and Key Laboratory of Orthopedic Biomechanics of Hebei Province, Orthopedic Research Institution of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Han Li
- Department of Orthopedics, and Key Laboratory of Orthopedic Biomechanics of Hebei Province, Orthopedic Research Institution of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiao-Dan Huang
- Department of Orthopedics, and Key Laboratory of Orthopedic Biomechanics of Hebei Province, Orthopedic Research Institution of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Guang Yang
- Department of Orthopedics, and Key Laboratory of Orthopedic Biomechanics of Hebei Province, Orthopedic Research Institution of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Bing Xu
- Department of Orthopedics, and Key Laboratory of Orthopedic Biomechanics of Hebei Province, Orthopedic Research Institution of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Hai-Yun Niu
- Department of Orthopedics, and Key Laboratory of Orthopedic Biomechanics of Hebei Province, Orthopedic Research Institution of Hebei Province, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
24
|
Gupta M, Kaur G. Withania somnifera as a Potential Anxiolytic and Anti-inflammatory Candidate Against Systemic Lipopolysaccharide-Induced Neuroinflammation. Neuromolecular Med 2018; 20:343-362. [DOI: 10.1007/s12017-018-8497-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/24/2018] [Indexed: 12/14/2022]
|
25
|
Xu HL, Tian FR, Xiao J, Chen PP, Xu J, Fan ZL, Yang JJ, Lu CT, Zhao YZ. Sustained-release of FGF-2 from a hybrid hydrogel of heparin-poloxamer and decellular matrix promotes the neuroprotective effects of proteins after spinal injury. Int J Nanomedicine 2018; 13:681-694. [PMID: 29440894 PMCID: PMC5798566 DOI: 10.2147/ijn.s152246] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction The short lifetime of protein-based therapies has largely limited their therapeutic efficacy in injured nervous post-spinal cord injury (post-SCI). Methods In this study, an affinity-based hydrogel delivery system provided sustained-release of proteins, thereby extending the efficacy of such therapies. The affinity-based hydrogel was constructed using a novel polymer, heparin-poloxamer (HP), as a temperature-sensitive bulk matrix and decellular spinal cord extracellular matrix (dscECM) as an affinity depot of drug. By tuning the concentration of HP in formulation, the cold ternary fibroblast growth factor-2 (FGF2)-dscECM-HP solution could rapidly gelatinize into a hydrogel at body temperature. Due to the strong affinity for FGF2, hybrid FGF2-dscECM-HP hydrogel enabled sustained-release of encapsulated FGF2 over an extended period in vitro. Results Compared to free FGF2, it was observed that both neuron functions and tissue morphology after SCI were clearly recovered in rats treated with FGF2-dscECM-HP hydrogel. Moreover, the expression of neurofilament protein and the density of axons were increased after treatment with hybrid FGF2-dscECM-HP. In addition, the neuroprotective effects of FGF2-dscECM-HP were related to inhibition of chronic endoplasmic reticulum stress-induced apoptosis. Conclusion The results revealed that a hybrid hydrogel system may be a potential carrier to deliver macromolecular proteins to the injured site and enhance the therapeutic effects of proteins.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Fu-Rong Tian
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Jian Xiao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Pian-Pian Chen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Jie Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Zi-Liang Fan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Jing-Jing Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Cui-Tao Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou.,Hainan Medical College, Haikou, China
| |
Collapse
|
26
|
Wang YL, Qi YN, Wang W, Dong CK, Yi P, Yang F, Tang XS, Tan MS. Effects of decompression joint Governor Vessel electro-acupuncture on rats with acute upper cervical spinal cord injury. Neural Regen Res 2018; 13:1241-1246. [PMID: 30028333 PMCID: PMC6065222 DOI: 10.4103/1673-5374.235062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Decompression is the major therapeutic strategy for acute spinal cord injury, but there is some debate about the time window for decompression following spinal cord injury. An important goal and challenge in the treatment of spinal cord injury is inhibiting or reversing secondary injury. Governor Vessel electroacupuncture can improve symptoms of spinal cord injury by inhibiting cell apoptosis and improving the microenvironment of the injured spinal cord. In this study, Governor Vessel electroacupuncture combined with decompression at different time points was used to treat acute spinal cord injury. The rat models were established by inserting a balloon catheter into the atlanto-occipital space. The upper cervical spinal cord was compressed for 12 or 48 hours prior to decompression. Electroacupuncture was conducted at the acupoints Dazhui (GV14) and Baihui (GV 20) (2 Hz, 15 minutes) once a day for 14 consecutive days. Compared with decompression alone, hind limb motor function recovery was superior after decompression for 12 and 48 hours combined with electroacupuncture. However, the recovery of motor function was not significantly different at 14 days after treatment in rats receiving decompression for 12 hours. Platelet-activating factor levels and caspase-9 protein expression were significantly reduced in rats receiving electroacupuncture compared with decompression alone. These findings indicate that compared with decompression alone, Governor Vessel electroacupuncture combined with delayed decompression (48 hours) is more effective in the treatment of upper cervical spinal cord injury. Governor Vessel electroacupuncture combined with early decompression (12 hours) can accelerate the recovery of nerve movement in rats with upper cervical spinal cord injury. Nevertheless, further studies are necessary to confirm whether it is possible to obtain additional benefit compared with early decompression alone.
Collapse
Affiliation(s)
- Yan-Lei Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Ying-Na Qi
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Ke Dong
- Beijing University of Chinese Medicine, Beijing, China
| | - Ping Yi
- Department of Spine Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Yang
- Department of Spine Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiang-Sheng Tang
- Department of Spine Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ming-Sheng Tan
- Department of Spine Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
27
|
Kwon MH, Jeong JS, Ryu J, Cho YW, Kang HE. Simultaneous determination of saikosaponin a, paeonol, and imperatorin, components of DA-9805, in rat plasma by LC–MS/MS and application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:289-296. [DOI: 10.1016/j.jchromb.2017.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 01/22/2023]
|
28
|
Chen J, Wang Z, Zheng Z, Chen Y, Khor S, Shi K, He Z, Wang Q, Zhao Y, Zhang H, Li X, Li J, Yin J, Wang X, Xiao J. Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury. Cell Death Dis 2017; 8:e3090. [PMID: 28981091 PMCID: PMC5682656 DOI: 10.1038/cddis.2017.490] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/07/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Abstract
Therapeutics used to treat central nervous system (CNS) injury were designed to repair neurites and inhibit cell apoptosis. Previous studies have shown that neuron-derived FGF10 exerts potential neuroprotective effects after cerebral ischemia injury. However, little is known about the role of endogenous FGF10 in the recovery process after spinal cord injury (SCI). In this study, we found that FGF10 is mainly produced by neuron and microglia/macrophages, and its expression is increased after SCI. Exogenous treatment of FGF10 improved functional recovery after injury by reducing apoptosis, as well as repairing neurites via FGFR2/PI3K/Akt pathway. On another hand, inhibiting the PI3K/Akt pathway with LY294002 partially reversed the therapeutic effects of FGF10. In addition, small interfering RNA knockdown of FGFR2 suppressed PI3K/Akt pathway activation by FGF10 and abolished its anti-apoptotic and neurite repair effects in vitro. Furthermore, FGF10 treatment inhibited the activation and proliferation of microglia/macrophages through regulation of TLR4/NF-κB pathway, and attenuated the release of pro-inflammatory cytokines after SCI. Thus, the increased expression of FGF10 after acute SCI is an endogenous self-protective response, suggesting that FGF10 could be a potential treatment for CNS injury.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - ZengMing Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - KeSi Shi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - ZiLi He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingzheng Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayu Yin
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Chen J, Wang Z, Mao Y, Zheng Z, Chen Y, Khor S, Shi K, He Z, Li J, Gong F, Liu Y, Hu A, Xiao J, Wang X. Liraglutide activates autophagy via GLP-1R to improve functional recovery after spinal cord injury. Oncotarget 2017; 8:85949-85968. [PMID: 29156769 PMCID: PMC5689659 DOI: 10.18632/oncotarget.20791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
Therapeutics used to treat central nervous system (CNS) injury are designed to promote axonal regeneration and inhibit cell death. Previous studies have shown that liraglutide exerts potent neuroprotective effects after brain injury. However, little is known if liraglutide treatment has neuroprotective effects after spinal cord injury (SCI). This study explores the neuroprotective effects of liraglutide and associated underlying mechanisms. Our results showed that liraglutide could improve recovery after injury by decreasing apoptosis as well as increasing microtubulin acetylation, and autophagy. Autophagy inhibition with 3-methyladenine (3-MA) partially reversed the preservation of spinal cord tissue and decreased microtubule acetylation and polymerization. Additionally, siRNA knockdown of GLP-1R suppressed autophagy and reversed mTOR inhibition induced by liraglutide in vitro, indicating that GLP-1R regulates autophagic flux. GLP-1R knockdown ameliorated the mTOR inhibition and autophagy induction seen with liraglutide treatment in PC12 cells under H2O2 stimulation. Taken together, our study demonstrated that liraglutide could reduce apoptosis, improve functional recovery, and increase microtubule acetylation via autophagy stimulation after SCI. GLP-1R was associated with both the induction of autophagy and suppression of apoptosis in neuronal cultures.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqin Mao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zengming Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Kesi Shi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zili He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fanghua Gong
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanlong Liu
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aiping Hu
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Effects of Angelica Extract on Schwann Cell Proliferation and Expressions of Related Proteins. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6358392. [PMID: 28804503 PMCID: PMC5540469 DOI: 10.1155/2017/6358392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/25/2017] [Indexed: 12/23/2022]
Abstract
The present study investigated the effects of Angelica extract (AE) on Schwann cell proliferation and expressions of related proteins, including brain derived neurotrophic factor (BDNF), neural cell adhesion molecule (NCAM), and proliferating cell nuclear antigen (PCNA). Proliferation activity and cell cycles of SCs were evaluated by MTT assay and flow cytometry methods, respectively, after 12 h treatment of AE at different concentrations (62.5, 125, 250, 1000, 2000, 4000, and 8000 mg/L). SCs were treated by 500, 1000, and 2000 mg/L AE for 24 h or 48 h; the related genes mRNA and proteins expressions in SCs were detected by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) kit. At the concentration range of 125–2000 mg/L, the SC proliferation was induced by AE in a dose-dependent manner, especially 1000 and 2000 mg/L; cells in drug-treated groups showed the most increase. Cells counts were ascended significantly in (G2/M + S) phase compared to control group. BDNF, NCAM, and PCNA protein expressions significantly increased at drug-treated groups. Relative genes mRNA expressions levels were also significantly higher compared to control group. The results indicated that AE facilitated SC proliferation and related genes and proteins expressions, which provided a basic guideline for nerve injury repair in clinic.
Collapse
|
31
|
Wang Z, Zhou L, Zheng X, Chen G, Pan R, Li J, Liu W. Autophagy protects against PI3K/Akt/mTOR-mediated apoptosis of spinal cord neurons after mechanical injury. Neurosci Lett 2017; 656:158-164. [DOI: 10.1016/j.neulet.2017.07.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/25/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022]
|
32
|
The Neuroprotective Effects of Muscle-Derived Stem Cells via Brain-Derived Neurotrophic Factor in Spinal Cord Injury Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1972608. [PMID: 28758111 PMCID: PMC5516736 DOI: 10.1155/2017/1972608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/17/2022]
Abstract
Muscle-derived stem cells (MDSCs) possess multipotent differentiation and self-renewal capacities; however, the effects and mechanism in neuron injury remain unclear. The aim of this study was to investigate the effects of MDSCs on neuron secondary injury, oxidative stress-induced apoptosis. An in vivo study showed the Basso, Beattie, and Bresnahan (BBB) score and number of neurons significantly increased after MDSCs' transplantation in spinal cord injury (SCI) rats. An in vitro study demonstrated that MDSCs attenuated neuron apoptosis, and the expression of antioxidants was upregulated as well as the ratio of Bcl-2 and Bax in the MNT (MDSCs cocultured with injured neurons) group compared with the NT (injured neurons) group. Both LC3II/LC3I and β-catenin were enhanced in the MNT group, while XAV939 (a β-catenin inhibitor) decreased the expression of nuclear erythroid-related factor 2 (Nrf2) and LC3II/LC3I. Moreover, MDSCs became NSE- (neuron-specific enolase-) positive neuron-like cells with brain-derived neurotrophic factor (BDNF) treatment. The correlation analysis indicated that there was a significant relation between the level of BDNF and neuron injury. These findings suggest that MDSCs may protect the spinal cord from injury by inhibiting apoptosis and replacing injured neurons, and the increased BDNF and β-catenin could contribute to MDSCs' effects.
Collapse
|
33
|
Bell JE, Seifert JL, Shimizu EN, Sucato DJ, Romero-Ortega MI. Atraumatic Spine Distraction Induces Metabolic Distress in Spinal Motor Neurons. J Neurotrauma 2017; 34:2034-2044. [DOI: 10.1089/neu.2016.4779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jennifer E.S. Bell
- Bioengineering Department, University of Texas at Dallas, Richardson, Texas
| | | | - Eileen N. Shimizu
- Bioengineering Department, University of Texas at Dallas, Richardson, Texas
| | - Daniel J. Sucato
- Department of Orthopedic Surgery, Texas Scottish Rite Hospital for Children, Dallas, Texas
| | - Mario I. Romero-Ortega
- Bioengineering Department, University of Texas at Dallas, Richardson, Texas
- Surgery Department, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
34
|
RIPK1/RIPK3/MLKL-mediated necroptosis contributes to compression-induced rat nucleus pulposus cells death. Apoptosis 2017; 22:626-638. [DOI: 10.1007/s10495-017-1358-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
KOFF MARCOANTONIOEDUARDO, AJIBOYE LUKMANOLALEKAN, LISBOA NATÁLIADIEL, FALAVIGNA ASDRUBAL. SYSTEMATIC REVIEW OF RECOVERY OF SPINAL CORD INJURY WITH ANTIOXIDANT THERAPY. COLUNA/COLUMNA 2017. [DOI: 10.1590/s1808-1851201716011171639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The objective of the paper is to analyze the frequency and efficacy of experimental studies with antioxidant therapy. A search was conducted in the pubmed.gov database using the keywords "antioxidants" AND "spinal cord injury", from January 2000 to December 2015, resulting in 686 articles. Studies of non-traumatic injuries, non-antioxidant therapies, absence of neurological and functional evaluation, and non-experimental studies were excluded, leaving a total of 43 articles. The most used therapies were melatonin (16.2%), quercetin (9.3%), epigallocatechin and edaravone (6.9%). The most frequent route of administration was intraperitoneal (72.09%). The dose and mode of administration varied greatly, with a single dose being the most commonly used (39.53%). The time elapsed from trauma to treatment was 0-15 minutes (41.8%), 15-60 minutes (30%) and over 60 minutes (10.6%). Histological analysis was performed in 32 studies (74.41%). The BBB scale was the main functional measure applied (55.8%), followed by the inclined plane test (16.2%) and the Tarlov scale (13.9%). Positive outcomes were observed in 37 studies (86.04%). The heterogeneity of antioxidant therapy, with different types, doses, and measurements observed, limits the comparison of efficacy. Standardized protocols are required to make clinical translation possible.
Collapse
|
36
|
Protective effects of a herbal extract combination of Bupleurum falcatum , Paeonia suffruticosa , and Angelica dahurica against MPTP-induced neurotoxicity via regulation of nuclear receptor-related 1 protein. Neuroscience 2017; 340:166-175. [DOI: 10.1016/j.neuroscience.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 01/19/2023]
|
37
|
Effects of Electroacupuncture at Governor Vessel Acupoints on Neurotrophin-3 in Rats with Experimental Spinal Cord Injury. Neural Plast 2016; 2016:2371875. [PMID: 27597902 PMCID: PMC4997063 DOI: 10.1155/2016/2371875] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/27/2016] [Accepted: 07/17/2016] [Indexed: 12/12/2022] Open
Abstract
In an effort to explore new, noninvasive treatment options for spinal cord injuries (SCI), this study investigated the effects of electroacupuncture (EA) for SCI rat models. SCI was induced by a modified Allen's weight-drop method. We investigated the response of EA at Dazhui (GV 14) and Mingmen (GV 4) acupoints to understand the effects and mechanisms of EA in neuroprotection and neuronal function recovery after SCI. BBB testing was used to detect motor function of rats' hind limbs among groups, and EA was shown to promote the recovery of SCI rats' motor function. Nissl staining showed a restored neural morphology and an increase in the quantity of neurons after EA. Also, the antiapoptosis role was exposed by TUNEL staining. Western blotting analysis was used to determine the protein expression of neurotrophin-3 (NT-3) in spinal cord tissue. Compared to the sham group, the expression levels of NT-3 were significantly decreased and EA was shown to upregulate the expression of NT-3. The present study suggests that the role of EA in neuroprotection and dorsal neuronal function recovery after SCI in rats, especially EA stimulation at GV 14 and GV 4, can greatly promote neuronal function recovery, which may result from upregulating the expression of NT-3.
Collapse
|
38
|
Zhu X, Zhou Y, Tao R, Zhao J, Chen J, Liu C, Xu Z, Bao G, Zhang J, Chen M, Shen J, Cheng C, Zhang D. Upregulation of PTP1B After Rat Spinal Cord Injury. Inflammation 2016; 38:1891-902. [PMID: 25894283 DOI: 10.1007/s10753-015-0169-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B), a member of the protein tyrosine phosphatase family, attaches to the endoplasmic reticulum (ER) via its C-terminal tail. Previous studies have reported that PTP1B participates in various signal transduction pathways in many human diseases, including diabetes, cancers, osteoporosis, and obesity. It also plays an important role in the ER stress. ER stress induced by spinal cord injury (SCI) was reported to result in cell apoptosis. Till now, the role of PTP1B in the injury of the central nervous system remains unknown. In the present study, we built an adult rat SCI model to investigate the potential role of PTP1B in SCI. Western blot analysis detected a notable alteration of PTP1B expression after SCI. Immunohistochemistry indicated that PTP1B expressed at a low level in the normal spinal cord and greatly increased after SCI. Double immunofluorescence staining revealed that PTP1B immunoreactivity was predominantly increased in neurons following SCI. In addition, SCI resulted in a significant alteration in the level of active caspase-3, caspase-12, and 153/C/EBP homologous transcription factor protein, which were correlated with the upregulation of PTP1B. Co-localization of PTP1B/active caspase-3 was also detected in neurons. Taken together, our findings elucidated the PTP1B expression in the SCI for the first time. These results suggested that PTP1B might be deeply involved in the injury response and probably played an important role in the neuro-pathological process of SCI.
Collapse
Affiliation(s)
- Xinhui Zhu
- Department of Osteology, The Second Affiliated Hospital, Nantong University, Nantong, 226001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Therapeutic Efficacy of Topically Applied Antioxidant Medicinal Plant Extracts in a Mouse Model of Experimental Dry Eye. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4727415. [PMID: 27313829 PMCID: PMC4899589 DOI: 10.1155/2016/4727415] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/05/2016] [Indexed: 01/07/2023]
Abstract
Purpose. To investigate the therapeutic effects of topical administration of antioxidant medicinal plant extracts in a mouse model of experimental dry eye (EDE). Methods. Eye drops containing balanced salt solution (BSS) or 0.001%, 0.01%, and 0.1% extracts were applied for the treatment of EDE. Tear volume, tear film break-up time (BUT), and corneal fluorescein staining scores were measured 10 days after desiccating stress. In addition, we evaluated the levels of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, interferon- (IFN-) γ, and IFN-γ associated chemokines, percentage of CD4+C-X-C chemokine receptor type 3 positive (CXCR3+) T cells, goblet cell density, number of 4-hydroxy-2-nonenal (4-HNE) positive cells, and extracellular reactive oxygen species (ROS) production. Results. Compared to the EDE and BSS control groups, the mice treated with topical application of the 0.1% extract showed significant improvements in all clinical parameters, IL-1β, IL-6, TNF-α, and IFN-γ levels, percentage of CD4+CXCR3+ T cells, goblet cell density, number of 4-HNE-positive cells, and extracellular ROS production (P < 0.05). Conclusions. Topical application of 0.1% medicinal plant extracts improved clinical signs, decreased inflammation, and ameliorated oxidative stress marker and ROS production on the ocular surface of the EDE model mice.
Collapse
|
40
|
Wang X, Xu J, Wang Y, Yang L, Li Z. Protective effects of BMP‐7 against tumor necrosis factor α‐induced oligodendrocyte apoptosis. Int J Dev Neurosci 2016; 53:10-17. [DOI: 10.1016/j.ijdevneu.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Xin Wang
- Department of AnesthesiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Anesthesia Research InstituteCentral South UniversityChangshaHunanChina
| | - Jun‐Mei Xu
- Department of AnesthesiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Anesthesia Research InstituteCentral South UniversityChangshaHunanChina
| | - Ya‐Ping Wang
- Department of AnesthesiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Anesthesia Research InstituteCentral South UniversityChangshaHunanChina
| | - Lin Yang
- Department of AnesthesiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Anesthesia Research InstituteCentral South UniversityChangshaHunanChina
| | - Zhi‐Jian Li
- Department of AnesthesiologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Anesthesia Research InstituteCentral South UniversityChangshaHunanChina
| |
Collapse
|
41
|
Lin CW, Chen B, Huang KL, Dai YS, Teng HL. Inhibition of Autophagy by Estradiol Promotes Locomotor Recovery after Spinal Cord Injury in Rats. Neurosci Bull 2016; 32:137-44. [PMID: 26924807 DOI: 10.1007/s12264-016-0017-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
17β-estradiol (E2) has been shown to have neuroprotective effects in different central nervous system diseases. The mechanisms underlying estrogen neuroprotection in spinal cord injury (SCI) remain unclear. Previous studies have shown that autophagy plays a crucial role in the course of nerve injury. In this study, we showed that E2 treatment improved the restoration of locomotor function and decreased the loss of motor neurons in SCI rats. Real-time PCR and western blot analysis revealed that the protective function of E2 was related to the suppression of LC3II and beclin-1 expression. Immunohistochemical study further confirmed that the immunoreactivity of LC3 in the motor neurons was down-regulated when treated with E2. In vitro studies demonstrated similar results that E2 pretreatment decreased the autophagic activity induced by rapamycin (autophagy sensitizer) and increased viability in a PC12 cell model. These results indicated that the neuroprotective effects of E2 in SCI are partly related to the suppression of excessive autophagy.
Collapse
Affiliation(s)
- Chao-Wei Lin
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Bi Chen
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ke-Lun Huang
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yu-Sen Dai
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hong-Lin Teng
- Department of Spine Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
42
|
Zhao YZ, Jiang X, Xiao J, Lin Q, Yu WZ, Tian FR, Mao KL, Yang W, Wong HL, Lu CT. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury. Acta Biomater 2016; 29:71-80. [PMID: 26472614 PMCID: PMC7517710 DOI: 10.1016/j.actbio.2015.10.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/22/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Nerve growth factor (NGF) has potential in spinal cord injury (SCI) therapy, but limited by the poor physicochemical stability and low ability to cross the blood spinal cord barrier. Novel heparin-poloxamer (HP) thermo-sensitive hydrogel was constructed to enhance the NGF regeneration on SCI. METHOD NGF-HP thermo-sensitive hydrogel was prepared and related characteristics including gelation temperature, rheological behavior and micromorphology were measured. Local NGF delivery to the injured spinal cord was achieved by in situ injection in the injured space. The cellular uptake of NGF-HP hydrogel was evaluated with PC12 cells in vitro. Pathologic characteristics and neuron regeneration effects on the SCI rats were studied to evaluate the enhanced therapy of NGF-HP hydrogel. Endoplasmic reticulum (ER) stress-induced apoptosis was analyzed to explore the related mechanism in SCI regeneration. RESULTS NGF-HP hydrogel showed good morphology and stable bioactivity of NGF in vitro. NGF-HP hydrogel combined treatment significantly enhanced the efficiency of NGF cellular uptake (P<0.05) without obvious cytotoxicity. Significant improvements in both neuron functions and tissue morphology on the SCI rats were observed in NGF-HP hydrogel group. Compared with free HP hydrogel and NGF treatment groups, NGF-HP hydrogel group showed significant inhibition on the formation of glial scars in the extreme crushed rat SCI model. The neuroprotective effects of NGF-HP were related to the inhibition of chronic ER stress-induced apoptosis. CONCLUSIONS HP hydrogel combined with orthotopic injection technique might be an effective method to deliver NGF into the injured site, which will provide an effective strategy for SCI regeneration. STATEMENT OF SIGNIFICANCE Spinal cord injury (SCI) is a devastating condition that can lead to sudden loss of sensory and autonomic function. Current treatment includes decompression surgery, injury stabilization, secondary complications prevention and rehabilitation. However, neurological recovery is limited. Nerve growth factor (NGF) has potential in SCI therapy, but limited by the poor physicochemical stability and low ability to cross the blood spinal cord barrier. Hydrogels have good affinity and compatibility to biological tissue. In this study, we developed a novel heparin-poloxamer (HP) thermo-sensitive hydrogel to enhance the spinal cord regeneration of NGF. From SCI rat experiment, HP hydrogel combined with orthotopic injection technique showed best neuroprotective effects among experimental groups. This novel combined technique will provide an effective strategy for SCI regeneration.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; Hainan Medical College, Haikou City, Hainan Province 571000, China
| | - Xi Jiang
- Zhejiang University Mingzhou Hospital, Zhejiang Province 315104, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Qian Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Wen-Ze Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Fu-Rong Tian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Kai-Li Mao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Wei Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Ho Lun Wong
- School of Pharmacy, Temple University, Philadelphia, PA 19140, USA.
| | - Cui-Tao Lu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
43
|
Wu K, Zhou K, Wang Y, Zhou Y, Tian N, Wu Y, Chen D, Zhang D, Wang X, Xu H, Zhang X. Stabilization of HIF-1α by FG-4592 promotes functional recovery and neural protection in experimental spinal cord injury. Brain Res 2015; 1632:19-26. [PMID: 26707978 DOI: 10.1016/j.brainres.2015.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that inhibition of prolyl hydroxylase(PHD) stabilizes Hypoxia-inducible factor 1, alpha subunit(HIF-1α), increases tolerance to hypoxia, and improves the prognosis of many diseases. However, the role of PHD inhibitor (PHDI) in the recovery of spinal cord injury remains controversial. In this study, we investigated the protective role of a novel PHDI FG-4592 both in vivo and in vitro. FG-4592 treatment stabilized HIF1α expression both in PC12 cells and in spinal cord. FG-4592 treatment significantly inhibited tert-Butyl hydroperoxide(TBHP)-induced apoptosis and increases the survival of neuronal PC-12 cells. FG-4592 administration also improved recovery and increased the survival of neurons in spinal cord lesions in the mice model. Combination therapy including the specific HIF-1α blocker YC-1 down-regulated the HIF-1α expression and partially abolished the protective effect of FG-4592. Taken together, our results revealed that the role of FG-4592 in SCI recovery is related to the stabilization of HIF-1α and inhibition of apoptosis. Overall, our study suggests that PHDIs may be feasible candidates for therapeutic intervention after SCI and central nervous system disorders in humans.
Collapse
Affiliation(s)
- Kai Wu
- Department of Orthopaedics, The Second affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key laboratory of orthopaedics, Wenzhou, Zhejiang Province, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key laboratory of orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yongli Wang
- Department of Orthopaedics, The Second affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key laboratory of orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key laboratory of orthopaedics, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key laboratory of orthopaedics, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key laboratory of orthopaedics, Wenzhou, Zhejiang Province, China
| | - Deheng Chen
- Department of Orthopaedics, The Second affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key laboratory of orthopaedics, Wenzhou, Zhejiang Province, China
| | - Di Zhang
- Department of Orthopaedics, The Second affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key laboratory of orthopaedics, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key laboratory of orthopaedics, Wenzhou, Zhejiang Province, China
| | - Huazi Xu
- Department of Orthopaedics, The Second affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key laboratory of orthopaedics, Wenzhou, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second affiliated hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key laboratory of orthopaedics, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
44
|
MMP-3 secreted from endothelial cells of blood vessels after spinal cord injury activates microglia, leading to oligodendrocyte cell death. Neurobiol Dis 2015; 82:141-151. [DOI: 10.1016/j.nbd.2015.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
|
45
|
Mahmoud AM, Abdella EM, El-Derby AM, Abdella EM. Protective Effects of Turbinaria ornata and Padina pavonia against Azoxymethane-Induced Colon Carcinogenesis through Modulation of PPAR Gamma, NF-κB and Oxidative Stress. Phytother Res 2015; 29:737-48. [PMID: 25676613 DOI: 10.1002/ptr.5310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 12/16/2023]
Abstract
The aim of this study was to investigate the antiproliferative and protective effects of the brown seaweeds, Turbinaria ornata and Padina pavonia, against azoxymethane (AOM)-induced colon carcinogenesis in mice. Both algal extracts showed anti-proliferative effects on the human carcinoma cell line HCT-116 in vitro, with T. ornata demonstrating a more potent effect. Male albino Swiss mice received intraperitoneal injections of AOM (10 mg/kg) once a week for two consecutive weeks and 100 mg/kg of either T. ornata or P. pavonia extracts. AOM-induced mice exhibited alterations in the histological structure of the colon, elevated lipid peroxidation and nitric oxide, declined glutathione content and reduced activity of superoxide dismutase and glutathione peroxidase. In addition, AOM induced downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and p53 mRNA expression, with concomitant upregulation of nuclear factor-kappa B (NF-κB) in colon tissue. Administration of either algal extract markedly alleviated the recorded alterations. In conclusion, the current study suggests that T. ornata and P. pavonia, through their antioxidant and anti-inflammatory effects, are able to attenuate colon inflammation by downregulating NF-κB expression. Furthermore, the protective effects of both algae against AOM-initiated carcinogenesis were attributed, at least in part, to their ability to upregulate colonic PPARγ and p53 expression.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | | | | | | |
Collapse
|
46
|
Mira A, Yamashita S, Katakura Y, Shimizu K. In vitro neuroprotective activities of compounds from Angelica shikokiana Makino. Molecules 2015; 20:4813-32. [PMID: 25786165 PMCID: PMC6272295 DOI: 10.3390/molecules20034813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/03/2015] [Accepted: 03/09/2015] [Indexed: 01/27/2023] Open
Abstract
Angelica shikokiana is widely marketed in Japan as a dietary food supplement. With a focus on neurodegenerative conditions such as Alzheimer's disease, the aerial part was extracted and through bio-guided fractionation, fifteen compounds [α-glutinol, β-amyrin, kaempferol, luteolin, quercetin, kaempferol-3-O-glucoside, kaempferol-3-O-rutinoside, methyl chlorogenate, chlorogenic acid, hyuganin E, 5-(hydroxymethyl)-2-furaldehyde, β-sitosterol-3-O-glucoside, adenosine (isolated for the first time from A. shikokiana), isoepoxypteryxin and isopteryxin] were isolated. Isolated compounds were evaluated for in vitro neuroprotection using acetylcholine esterase inhibitory, protection against hydrogen peroxide and amyloid β peptide (Aβ25-35)-induced neurotoxicity in neuro-2A cells, scavenging of hydroxyl radicals and intracellular reactive oxygen species and thioflavin T assays. Quercetin showed the strongest AChE inhibition (IC50 value = 35.5 µM) through binding to His-440 and Tyr-70 residues at the catalytic and anionic sites of acetylcholine esterase, respectively. Chlorogenic acid, its methyl ester, quercetin and luteolin could significantly protect neuro-2A cells against H2O2-induced neurotoxicity and scavenge hydroxyl radical and intracellular reactive oxygen species. Kaempferol-3-O-rutinoiside, hyuganin E and isoepoxypteryxin significantly decreased Aβ25-35-induced neurotoxicity and Th-T fluorescence. To the best of our knowledge, this is the first report about neuroprotection of hyuganin E and isoepoxypteryxin against Aβ25-35-induced neurotoxicity.
Collapse
Affiliation(s)
- Amira Mira
- Division of Systematic Forest and Forest Products Sciences, Department of agroenvironmental sciences, Faculty of Agriculture, Graduate School of Kyushu University, Fukouka 812-8581, Japan.
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Shuntaro Yamashita
- Department of Bioscience & Biotechnology, Graduate School of Bioresource and Bioenvironmental sciences, Kyushu University, Fukouka 812-8581, Japan.
| | - Yoshinori Katakura
- Department of Bioscience & Biotechnology, Graduate School of Bioresource and Bioenvironmental sciences, Kyushu University, Fukouka 812-8581, Japan.
| | - Kuniyoshi Shimizu
- Division of Systematic Forest and Forest Products Sciences, Department of agroenvironmental sciences, Faculty of Agriculture, Graduate School of Kyushu University, Fukouka 812-8581, Japan.
| |
Collapse
|
47
|
Hydrogen peroxide administered into the rat spinal cord at the level elevated by contusion spinal cord injury oxidizes proteins, DNA and membrane phospholipids, and induces cell death: attenuation by a metalloporphyrin. Neuroscience 2014; 285:81-96. [PMID: 25451281 DOI: 10.1016/j.neuroscience.2014.10.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 01/23/2023]
Abstract
We previously demonstrated that hydrogen peroxide concentration ([H2O2]) significantly increases after spinal cord injury (SCI). The present study explored (1) whether SCI-elevated [H2O2] is sufficient to induce oxidation and cell death, (2) if apoptosis is a pathway of H2O2-induced cell death, and (3) whether H2O2-induced oxidation and cell death could be reversed by treatment with the catalytic antioxidant Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP). H2O2 was perfused through a microcannula into the uninjured rat spinal cord to mimic the conditions induced by SCI. Protein and DNA oxidation, membrane phospholipids peroxidation (MLP), cell death and apoptosis were characterized by histochemical and immunohistochemical staining with antibodies against markers of oxidation and apoptosis. Stained cells were quantified in sections of H2O2-, or artificial cerebrospinal fluid (ACSF)-exposed with vehicle-, or MnTBAP-treated groups. Compared with ACSF-exposed animals, SCI-elevated [H2O2] significantly increased intracellular protein and DNA oxidation by threefold and MLP by eightfold in neurons, respectively. H2O2-elevated extracellular malondialdehyde was measured by microdialysis sampling. We demonstrated that SCI-elevated [H2O2] significantly increased extracellular malondialdehyde above pre-injury levels. H2O2 also significantly increased cell loss and the numbers of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate-(dUTP)-biotin nick end labeling (TUNEL)-positive and active caspase-3-positive neurons by 2.3-, 2.8-, and 5.6-fold compared to ACSF controls, respectively. Our results directly and unequivocally demonstrate that SCI-elevated [H2O2] contributes to post-SCI MLP, protein, and DNA oxidation to induce cell death. Therefore, we conclude that (1) the role of H2O2 in secondary SCI is pro-oxidation and pro-cell death, (2) apoptosis is a pathway for SCI-elevated [H2O2] to induce cell death, (3) caspase activation is a mechanism of H2O2-induced apoptosis after SCI, and (4) MnTBAP treatment significantly decreased H2O2-induced oxidation, cell loss, and apoptosis to the levels of ACSF controls, further supporting MnTBAP's ability to scavenge H2O2 by in vivo evidence.
Collapse
|
48
|
Maldonado Bouchard S, Hook MA. Psychological stress as a modulator of functional recovery following spinal cord injury. Front Neurol 2014; 5:44. [PMID: 24782818 PMCID: PMC3988397 DOI: 10.3389/fneur.2014.00044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/23/2014] [Indexed: 12/28/2022] Open
Abstract
There is strong evidence indicating that the social environment triggers changes to the psychological stress response and glucocorticoid receptor function. Considerable literature links the subsequent changes in stress resiliency to physical health. Here, converging evidence for the modulatory role of chronic psychological stress in the recovery process following spinal cord injury (SCI) is presented. Despite the considerable advances in SCI research, we are still unable to identify the causes of variability in patients' recovery following injury. We propose that individuals' past and present life experiences (in the form of stress exposure) may significantly modulate patients' outcome post-SCI. We propose a theoretical model to explain the negative impact of chronic psychological stress on physical and psychological recovery. The stress experienced in life prior to SCI and also as a result of the traumatic injury, could compromise glucocorticoid receptor sensitivity and function, and contribute to high levels of inflammation and apoptosis post-SCI, decreasing the tissue remaining at the injury site and undermining recovery of function. Both stress-induced glucocorticoid resistance and stress-induced epigenetic changes to the glucocorticoid receptor can modulate the nuclear factor-kappa B regulated inflammatory pathways and the Bcl-2 regulated apoptosis pathways. This model not only contributes to the theoretical understanding of the recovery process following injury, but also provides concrete testable hypotheses for future studies.
Collapse
Affiliation(s)
- Sioui Maldonado Bouchard
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Texas A&M Institute for Neuroscience, College of Medicine , College Station, TX , USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Texas A&M Institute for Neuroscience, College of Medicine , College Station, TX , USA
| |
Collapse
|
49
|
Neuroprotective effects of different modalities of acupuncture on traumatic spinal cord injury in rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:431580. [PMID: 24803946 PMCID: PMC3996864 DOI: 10.1155/2014/431580] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/29/2014] [Accepted: 02/16/2014] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) can induce a series of histological, biochemical, and functional changes. Acupuncture is commonly used for SCI patients. Using male rats of spinal cord injury with the New York University (NYU) Impactor, we investigated the response of electroacupuncture (EA), manual acupuncture (MA), and transcutaneous acupoint electrical stimulation (TAES) at Shuigou (DU26) and Fengfu (DU16) acupoints to understand the effects and mechanisms of acupuncture in neuroprotection and neuronal function recovery after SCI. Histological study showed a restored neural morphology and an increase in the quantity of neurons after EA, MA, and TAES administrations. Acupuncture's antioxidation effects were demonstrated by alleviation of the post-SCI superoxide dismutase (SOD) activity increase and malondialdehyde (MDA) level decrease. The anti-inflammation effect of acupuncture was shown as the reduced expression of inflammatory cytokines including interleukin-1 β (IL-1 β ), interleukin-6 (IL-6), and tumor necrosis factor- α (TNF- α ) when SCI was treated. And the antiapoptosis role was approved by TUNEL staining. Our data confirmed that the role of acupuncture in neuroprotection and dorsal neuronal function recovery after rat SCI, especially, EA stimulating at Shuigou (DU26) and Fengfu (DU16) can greatly promote neuronal function recovery, which may result from antioxidation, anti-inflammation, and antiapoptosis effects of acupuncture.
Collapse
|
50
|
Wang Y, Wang H, Tao Y, Zhang S, Wang J, Feng X. Necroptosis inhibitor necrostatin-1 promotes cell protection and physiological function in traumatic spinal cord injury. Neuroscience 2014; 266:91-101. [PMID: 24561219 DOI: 10.1016/j.neuroscience.2014.02.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 01/30/2014] [Accepted: 02/06/2014] [Indexed: 11/29/2022]
Abstract
Spinal cord injury (SCI) is a common and serious trauma which lacks efficient treatment. Inhibition of cell death in the trauma area is important for spinal cord protection during this process. In this study, necroptosis inhibitor necrostatin-1 (Nec-1) was used to treat SCI rats, to investigate the role of Nec-1 in the recovery of SCI. Nec-1 was found to reduce lesions, cytokines and reactive oxygen species (ROS), improve pathological conditions and blood supply in the spinal cord trauma area. Further study indicated that Nec-1 could inhibit necroptosis by inhibiting RIP1/3-MLKL recruitment and inhibit apoptosis by inhibiting Caspase 3 and Bax while activating Bcl-2. Ethological performance of SCI rats confirmed improvement and protection of physiological function by Nec-1. Nec-1 as a potential treatment for SCI warrants further study. To our knowledge, this is the first study on the role of Nec-1 in the treatment of traumatic SCI. Our research also found inhibition effects of Nec-1 on apoptosis, not only necroptosis - as reported by most publications.
Collapse
Affiliation(s)
- Y Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - H Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Y Tao
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - S Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - J Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China.
| | - X Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China.
| |
Collapse
|