1
|
Zeng X, Bian W, Liu Z, Li J, Ren S, Zhang J, Zhang H, Tegeleqi B, He G, Guan M, Gao Z, Huang C, Liu J. Muscle-derived stem cell exosomes with overexpressed miR-214 promote the regeneration and repair of rat sciatic nerve after crush injury to activate the JAK2/STAT3 pathway by targeting PTEN. Front Mol Neurosci 2023; 16:1146329. [PMID: 37305554 PMCID: PMC10250677 DOI: 10.3389/fnmol.2023.1146329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction This study aimed to investigate the effect of muscle-derived stem cell (MDSC) exosomes with overexpressed miR-214 on the regeneration and repair of rat sciatic nerve after crush injury and its molecular mechanism. Methods First, primary MDSCs, Schwann cells (SCs) and dorsal root ganglion (DRG) neurons were isolated and cultured, and the characteristics of MDSCs-derived exosomes were identified by molecular biology and immunohistochemistry. NC mimics and miR-214 mimics were transfected to obtain exo-NC and exo-miR-214. An in vitro co-culture system was established to determine the effect of exo-miR-214 on nerve regeneration. The restoration of sciatic nerve function of rats by exo-miR-214 was evaluated by walking track analysis. Immunofluorescence for NF and S100 was used to detect the regeneration of axon and myelin sheath in injured nerve. The Starbase database was used to analyze the downstream target genes of miR-214. QRT-PCR and dual luciferase reporter assays were used to validate the miR-214 and PTEN interaction relationship. And the expression of the JAK2/STAT3 pathway-related proteins in sciatic nerve tissues were detected by western blot. Results The above experiments showed that MDSCs-derived exosomes with overexpressed miR-214 was found to promote the proliferation and migration of SCs, increase the expression of neurotrophic factors, promote axon extension of DRG neurons and positively affect the recovery of nerve structure and function. In addition, PTEN was a target gene of miR-214. Exo-miR-214 can significantly inhibit the expression level of PTEN, increase the protein expression levels of p-JAK2 and p-STAT3 and the ratio of p-JAK2/JAK2 and p-STAT3/STAT3, also MDSCs-derived exosomes with overexpressed miR-214 can reduce the occurrence of denervated muscle atrophy. Conclusion In summary, the MDSCs-derived exosomes with overexpressed miR-214 is involved in peripheral nerve regeneration and repair in rats after sciatic nerve crush injury to activate the JAK2/ STAT3 pathway by targeting PTEN.
Collapse
|
2
|
Reed CB, Feltri ML, Wilson ER. Peripheral glia diversity. J Anat 2022; 241:1219-1234. [PMID: 34131911 PMCID: PMC8671569 DOI: 10.1111/joa.13484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen an evolving appreciation for the role of glial cells in the nervous system. As we move away from the typical neurocentric view of neuroscience, the complexity and variability of central nervous system glia is emerging, far beyond the three main subtypes: astrocytes, oligodendrocytes, and microglia. Yet the diversity of the glia found in the peripheral nervous system remains rarely discussed. In this review, we discuss the developmental origin, morphology, and function of the different populations of glia found in the peripheral nervous system, including: myelinating Schwann cells, Remak Schwann cells, repair Schwann cells, satellite glia, boundary cap-derived glia, perineurial glia, terminal Schwann cells, glia found in the skin, olfactory ensheathing cells, and enteric glia. The morphological and functional heterogeneity of glia found in the periphery reflects the diverse roles the nervous system performs throughout the body. Further, it highlights a complexity that should be appreciated and considered when it comes to a complete understanding of the peripheral nervous system in health and disease.
Collapse
Affiliation(s)
- Chelsey B. Reed
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - M. Laura Feltri
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| | - Emma R. Wilson
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNew YorkUSA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
3
|
Yim AKY, Wang PL, Bermingham JR, Hackett A, Strickland A, Miller TM, Ly C, Mitra RD, Milbrandt J. Disentangling glial diversity in peripheral nerves at single-nuclei resolution. Nat Neurosci 2022; 25:238-251. [PMID: 35115729 PMCID: PMC9060899 DOI: 10.1038/s41593-021-01005-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
The peripheral nerve contains diverse cell types that support its proper function and maintenance. In this study, we analyzed multiple peripheral nerves using single-nuclei RNA sequencing, which allowed us to circumvent difficulties encountered in analyzing cells with complex morphologies via conventional single-cell methods. The resultant mouse peripheral nerve cell atlas highlights a diversity of cell types, including multiple subtypes of Schwann cells (SCs), immune cells and stromal cells. We identified a distinct myelinating SC subtype that expresses Cldn14, Adamtsl1 and Pmp2 and preferentially ensheathes motor axons. The number of these motor-associated Pmp2+ SCs is reduced in both an amyotrophic lateral sclerosis (ALS) SOD1G93A mouse model and human ALS nerve samples. Our findings reveal the diversity of SCs and other cell types in peripheral nerve and serve as a reference for future studies of nerve biology and disease.
Collapse
Affiliation(s)
- Aldrin K Y Yim
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter L Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - John R Bermingham
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amber Hackett
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy Strickland
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy M Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cindy Ly
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Waltz TB, Burand AJ, Sadler KE, Stucky CL. Sensory-specific peripheral nerve pathology in a rat model of Fabry disease. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100074. [PMID: 34541380 PMCID: PMC8437817 DOI: 10.1016/j.ynpai.2021.100074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 05/27/2023]
Abstract
Fabry disease (FD) causes life-long pain, the mechanisms of which are unclear. Patients with FD have chronic pain that mirrors symptoms of other painful peripheral neuropathies. However, it is unclear what underlying damage occurs in FD peripheral nerves that may contribute to chronic pain. Here, we characterized myelinated and unmyelinated fiber pathology in peripheral nerves of a rat model of FD. Decreased nerve fiber density and increased nerve fiber pathology were noted in unmyelinated and myelinated fibers from FD rats; both observations were dependent on sampled nerve fiber modality and anatomical location. FD myelinated axons exhibited lipid accumulations that were determined to be the FD-associated lipid globotriaosylceramide (Gb3), and to a lesser extent lysosomes. These findings suggest that axonal Gb3 accumulation may drive peripheral neuron dysfunction and subsequent pain in FD.
Collapse
Affiliation(s)
- Tyler B. Waltz
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anthony J. Burand
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Katelyn E. Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Zhang R, Chen Q, Huang L, Zhang Y, Wang X, Yi S. Single-cell analyses reveal the differentiation shifts of Schwann cells in neonatal rat sciatic nerves. J Cell Physiol 2021; 237:637-646. [PMID: 34287882 DOI: 10.1002/jcp.30533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022]
Abstract
Schwann cells provide essential physical and chemical support for neurons and play critical roles in the peripheral nervous system. To acquire an enhanced understanding of the genetic characteristics of Schwann cells, we analyzed single-cell transcriptional profiling of Schwann cells in neonatal rat sciatic nerves, ordered the pseudotemporal states of Schwann cells, and determined the magnitude of RNA velocity vectors as well as cell cycle stages of Schwann cell subtypes. We discovered the cellular heterogeneity of Schwann cells in neonatal rat sciatic nerves, revealed the dynamic changes of Schwann cell subtypes, and pointed out the differentiation trajectory from Timp3- and Col5a3-expressing Schwann cell subtype 3 to other Schwann cell subtypes. The functional interpretation further indicated that subtype 3 Schwann cells display genetic signatures of DNA replication and the acquisition of mesenchymal traits. Our study presents a transcriptional summarization of the differentiation states of Schwann cell subtypes in neonatal rat sciatic nerves at single-cell resolution and may serve as a foundation for a deeper comprehension of the involvement of Schwann cells in the development and regeneration of peripheral nerves.
Collapse
Affiliation(s)
- Ruirui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Qi Chen
- School of Life Sciences Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Li Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yunsong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
6
|
Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:295-335. [PMID: 33593147 DOI: 10.1089/ten.teb.2020.0355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides, remains questionable, and it is inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim at reinstating the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as three-dimensional (3D) bioprinting, are capable of biofabricating 3D-engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed.
Collapse
Affiliation(s)
- Omar A Selim
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Saad Lakhani
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Swati Midha
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Afshin Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Deepak M Kalaskar
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London (UCL), Stanmore, United Kingdom
| |
Collapse
|
7
|
Wang K, Qin B. [Research progress of peripheral nerve mismatch regeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:387-391. [PMID: 33719250 DOI: 10.7507/1002-1892.202008085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To review the research progress of peripheral nerve mismatch regeneration, and to provide reference for its related basic research and clinical treatment. Methods The pathophysiology of peripheral nerve after injury, several main factors affecting the mismatch regeneration of peripheral nerve, and the fate of axon after mismatch regeneration were summarized by referring to the relevant literature at home and abroad in recent years. Results Distal pathways and target organs can selectively affect the mismatch regeneration of peripheral nerves; different phenotypes of Schwann cells have different effects on the mismatch regeneration of peripheral nerves; studying the mechanism of action of exosomes from different Schwann cells on different types of axons can provide a new direction for solving the mismatch regeneration of peripheral nerves. Conclusion Peripheral nerve mismatch regeneration is affected by various factors. However, the specific mechanism and characteristics of these factors remain to be further studied.
Collapse
Affiliation(s)
- Kunliang Wang
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, 510080, P.R.China
| | - Bengang Qin
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, 510080, P.R.China
| |
Collapse
|
8
|
Schwann Cell Role in Selectivity of Nerve Regeneration. Cells 2020; 9:cells9092131. [PMID: 32962230 PMCID: PMC7563640 DOI: 10.3390/cells9092131] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries result in the loss of the motor, sensory and autonomic functions of the denervated segments of the body. Neurons can regenerate after peripheral axotomy, but inaccuracy in reinnervation causes a permanent loss of function that impairs complete recovery. Thus, understanding how regenerating axons respond to their environment and direct their growth is essential to improve the functional outcome of patients with nerve lesions. Schwann cells (SCs) play a crucial role in the regeneration process, but little is known about their contribution to specific reinnervation. Here, we review the mechanisms by which SCs can differentially influence the regeneration of motor and sensory axons. Mature SCs express modality-specific phenotypes that have been associated with the promotion of selective regeneration. These include molecular markers, such as L2/HNK-1 carbohydrate, which is differentially expressed in motor and sensory SCs, or the neurotrophic profile after denervation, which differs remarkably between SC modalities. Other important factors include several molecules implicated in axon-SC interaction. This cell–cell communication through adhesion (e.g., polysialic acid) and inhibitory molecules (e.g., MAG) contributes to guiding growing axons to their targets. As many of these factors can be modulated, further research will allow the design of new strategies to improve functional recovery after peripheral nerve injuries.
Collapse
|
9
|
Shen M, Tang W, Cheng Z, Zhang Q, Chen Z, Tian Y, Zhang Y, He Q, Shi H, Zhu H, Wu H, Ji Y, Ding F. A proteomic view on the differential phenotype of Schwann cells derived from mouse sensory and motor nerves. J Comp Neurol 2020; 529:1240-1254. [DOI: 10.1002/cne.25018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University Nantong China
| | - Wei Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Zhenghui Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Zixin Chen
- Department of Immunobiology, College of Life Science and Technology Jinan University Guangzhou China
| | - Yingchao Tian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Yawen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Haiyan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
| | - Hui Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University Nantong China
| | - Han Wu
- Department of General Surgery Affiliated Hospital of Nantong University Nantong China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
- Department of Immunobiology, College of Life Science and Technology Jinan University Guangzhou China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of Neuroregeneration Nantong University Nantong China
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University Nantong China
| |
Collapse
|
10
|
Hercher D, Redl H, Schuh CMAP. Motor and sensory Schwann cell phenotype commitment is diminished by extracorporeal shockwave treatment in vitro. J Peripher Nerv Syst 2020; 25:32-43. [PMID: 31983073 DOI: 10.1111/jns.12365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Abstract
The gold standard for peripheral nerve regeneration uses a sensory autograft to bridge a motor/sensory defect site. For motor nerves to regenerate, Schwann cells (SC) myelinate the newly grown axon. Sensory SCs have a reduced ability to produce myelin, partially explaining low success rates of autografts. This issue is masked in pre-clinical research by the excessive use of the rat sciatic nerve defect model, utilizing a mixed nerve with motor and sensory SCs. Aim of this study was to utilize extracorporeal shockwave treatment as a novel tool to influence SC phenotype. SCs were isolated from motor, sensory and mixed rat nerves and in vitro differences between them were assessed concerning initial cell number, proliferation rate, neurite outgrowth as well as ability to express myelin. We verified the inferior capacity of sensory SCs to promote neurite outgrowth and express myelin-associated proteins. Motor Schwann cells demonstrated low proliferation rates, but strongly reacted to pro-myelination stimuli. It is noteworthy for pre-clinical research that sciatic SCs are a strongly mixed culture, not representing one or the other. Extracorporeal shockwave treatment (ESWT), induced in motor SCs an increased proliferation profile, while sensory SCs gained the ability to promote neurite outgrowth and express myelin-associated markers. We demonstrate a strong phenotype commitment of sciatic, motor, and sensory SCs in vitro, proposing the experimental use of SCs from pure cultures to better mimic clinical situations. Furthermore we provide arguments for using ESWT on autografts to improve the regenerative capacity of sensory SCs.
Collapse
Affiliation(s)
- David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christina M A P Schuh
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
11
|
Rbia N, Bulstra LF, Friedrich PF, Bishop AT, Nijhuis TH, Shin AY. Gene expression and growth factor analysis in early nerve regeneration following segmental nerve defect reconstruction with a mesenchymal stromal cell-enhanced decellularized nerve allograft. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e2579. [PMID: 32095395 PMCID: PMC7015582 DOI: 10.1097/gox.0000000000002579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to evaluate the molecular mechanisms underlying nerve repair by a decellularized nerve allograft seeded with adipose-derived mesenchymal stromal cells (MSCs) and compare it to the unseeded allograft and autograft nerve. METHODS Undifferentiated MSCs were seeded onto decellularized nerve allografts and used to reconstruct a 10 mm gap in a rat sciatic nerve model. Gene expression profiles of genes essential for nerve regeneration and immunohistochemical staining (IHC) for PGP9.5, NGF, RECA-1, and S100 were obtained 2 weeks postoperatively. RESULTS Semi-quantitative RT-PCR analysis showed that the angiogenic molecule VEGFA was significantly increased in seeded allografts, and transcription factor SOX2 was downregulated in seeded allografts. Seeded grafts showed a significant increase in immunohistochemical markers NGF and RECA-1, when compared with unseeded allografts. CONCLUSIONS MSCs contributed to the secretion of trophic factors. A beneficial effect of the MSCs on angiogenesis was found when compared with the unseeded nerve allograft, but implanted MSCs did not show evidence of differentiation into Schwann cell-like cells.
Collapse
Affiliation(s)
- Nadia Rbia
- From the Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minn
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Liselotte F. Bulstra
- From the Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minn
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Allen T. Bishop
- From the Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minn
| | - Tim H.J. Nijhuis
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexander Y. Shin
- From the Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minn
| |
Collapse
|
12
|
Ghanavatinejad F, Fard Tabrizi ZP, Omidghaemi S, Sharifi E, Møller SG, Jami MS. Protein biomarkers of neural system. J Otol 2019; 14:77-88. [PMID: 31467504 PMCID: PMC6712353 DOI: 10.1016/j.joto.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022] Open
Abstract
The utilization of biomarkers for in vivo and in vitro research is growing rapidly. This is mainly due to the enormous potential of biomarkers in evaluating molecular and cellular abnormalities in cell models and in tissue, and evaluating drug responses and the effectiveness of therapeutic intervention strategies. An important way to analyze the development of the human body is to assess molecular markers in embryonic specialized cells, which include the ectoderm, mesoderm, and endoderm. Neuronal development is controlled through the gene networks in the neural crest and neural tube, both components of the ectoderm. The neural crest differentiates into several different tissues including, but not limited to, the peripheral nervous system, enteric nervous system, melanocyte, and the dental pulp. The neural tube eventually converts to the central nervous system. This review provides an overview of the differentiation of the ectoderm to a fully functioning nervous system, focusing on molecular biomarkers that emerge at each stage of the cellular specialization from multipotent stem cells to completely differentiated cells. Particularly, the otic placode is the origin of most of the inner ear cell types such as neurons, sensory hair cells, and supporting cells. During the development, different auditory cell types can be distinguished by the expression of the neurogenin differentiation factor1 (Neuro D1), Brn3a, and transcription factor GATA3. However, the mature auditory neurons express other markers including βIII tubulin, the vesicular glutamate transporter (VGLUT1), the tyrosine receptor kinase B and C (Trk B, C), BDNF, neurotrophin 3 (NT3), Calretinin, etc.
Collapse
Affiliation(s)
- Fatemeh Ghanavatinejad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Zahra Pourteymour Fard Tabrizi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Shadi Omidghaemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Simon Geir Møller
- Department of Biological Sciences, St John's University, New York, NY, USA
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Norway
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, CA, 90095, USA
| |
Collapse
|
13
|
GDNF pretreatment overcomes Schwann cell phenotype mismatch to promote motor axon regeneration via sensory graft. Exp Neurol 2019; 318:258-266. [PMID: 31100319 DOI: 10.1016/j.expneurol.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 12/11/2022]
Abstract
In the clinic, severe motor nerve injury is commonly repaired by autologous sensory nerve bridging, but the ability of Schwann cells (SCs) in sensory nerves to support motor neuron axon growth is poor due to phenotype mismatch. In vitro experiments have demonstrated that sensory-derived SCs overcome phenotypic mismatch-induced growth inhibition after pretreatment with exogenous glial cell-derived neurotrophic factor (GDNF) and induce motor neuron axonal growth. Thus, we introduced a novel staging surgery: In the first stage of surgery, the denervated sensory nerve was pretreated with sustained-release GDNF, which was encapsulated into a self-assembling peptide nanofiber scaffold (SAPNS) RADA-16I in the donor area in vivo. In the second stage of surgery, the pretreated sensory grafts were transplanted to repair motor nerve injury. Motor axon regeneration and remyelination and muscle functional recovery after the second surgery was compared to those in the control groups. The expression of genes previously shown to be differently expressed in motor and sensory SCs was also analyzed in pretreated sensory grafts by qRT-PCR to explore possible changes after exogenous GDNF application. Exogenous GDNF acted directly on the denervated sensory nerve graft in vivo, increasing the expression of endogenous GDNF and sensory SC-derived marker brain-derived neurotrophic factor (BDNF). After transplantation to repair motor nerve injury, exogenous GDNF pretreatment promoted the regeneration and remyelination of proximal motor axons and the recovery of muscle function. Further research into how phenotype, gene expression and changes in neurotrophic factors in SCs are affected by GDNF will help us design more effective methods to treat peripheral nerve injury.
Collapse
|
14
|
Hercher D, Kerbl M, Schuh CMAP, Heinzel J, Gal L, Stainer M, Schmidhammer R, Hausner T, Redl H, Nógrádi A, Hacobian A. Spatiotemporal Differences in Gene Expression Between Motor and Sensory Autografts and Their Effect on Femoral Nerve Regeneration in the Rat. Front Cell Neurosci 2019; 13:182. [PMID: 31139050 PMCID: PMC6519304 DOI: 10.3389/fncel.2019.00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
To improve the outcome after autologous nerve grafting in the clinic, it is important to understand the limiting variables such as distinct phenotypes of motor and sensory Schwann cells. This study investigated the properties of phenotypically different autografts in a 6 mm femoral nerve defect model in the rat, where the respective femoral branches distally of the inguinal bifurcation served as homotopic, or heterotopic autografts. Axonal regeneration and target reinnervation was analyzed by gait analysis, electrophysiology, and wet muscle mass analysis. We evaluated regeneration-associated gene expression between 5 days and 10 weeks after repair, in the autografts as well as the proximal, and distal segments of the femoral nerve using qRT-PCR. Furthermore we investigated expression patterns of phenotypically pure ventral and dorsal roots. We identified highly significant differences in gene expression of a variety of regeneration-associated genes along the central – peripheral axis in healthy femoral nerves. Phenotypically mismatched grafting resulted in altered spatiotemporal expression of neurotrophic factor BDNF, GDNF receptor GFRα1, cell adhesion molecules Cadm3, Cadm4, L1CAM, and proliferation associated Ki67. Although significantly higher quadriceps muscle mass following homotopic nerve grafting was measured, we did not observe differences in gait analysis, and electrophysiological parameters between treatment paradigms. Our study provides evidence for phenotypic commitment of autologous nerve grafts after injury and gives a conclusive overview of temporal expression of several important regeneration-associated genes after repair with sensory or motor graft.
Collapse
Affiliation(s)
- David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Markus Kerbl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christina M A P Schuh
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Johannes Heinzel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - László Gal
- Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
| | - Michaela Stainer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Robert Schmidhammer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Thomas Hausner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Antal Nógrádi
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Anatomy, Histology and Embryology, University of Szeged, Szeged, Hungary
| | - Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
15
|
He Q, Shen M, Tong F, Cong M, Zhang S, Gong Y, Ding F. Differential Gene Expression in Primary Cultured Sensory and Motor Nerve Fibroblasts. Front Neurosci 2019; 12:1016. [PMID: 30686982 PMCID: PMC6333708 DOI: 10.3389/fnins.2018.01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Fibroblasts (Fbs) effectively promote Schwann cells (SCs) migration, proliferation, and neurite regeneration. Whether Fbs express different motor and sensory phenotypes that regulate the cell behavior and peripheral nerve function has not been elucidated. The present study utilized the whole rat genome microarray analysis and identified a total of 121 differentially expressed genes between the primary cultured motor and sensory Fbs. The genes with high expression in sensory Fbs were related to proliferation, migration, chemotaxis, motility activation, protein maturation, defense response, immune system, taxis, and regionalization, while those with high expression in motor Fbs were related to neuron differentiation, segmentation, and pattern specification. Thus, the significant difference in the expression of some key genes was found to be associated with cell migration and proliferation, which was further validated by quantitative real-time PCR (qPCR). The cell proliferation or migration analysis revealed a higher rate of cell migration and proliferation of sensory Fbs than motor Fbs. Moreover, the downregulated expression of chemokine (C-X-C motif) ligand 10 (CXCL10) and chemokine (C-X-C motif) ligand 3 (CXCL3) suppressed the proliferation rate of sensory Fbs, while it enhanced that of the motor Fbs. However, the migration rate of both Fbs was suppressed by the downregulated expression of CXCL10 or CXCL3. Furthermore, a higher proportion of motor or sensory SCs migrated toward their respective (motor or sensory) Fbs; however, few motor or sensory SCs co-cultured with the other type of Fbs (sensory or motor, respectively), migrated toward the Fbs. The current findings indicated that Fbs expressed the distinct motor and sensory phenotypes involved in different patterns of gene expression, biological processes, and effects on SCs. Thus, this study would provide insights into the biological differences between motor and sensory Fbs, including the role in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Fang Tong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Shibo Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yanpei Gong
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
16
|
Wang H, Zhou Y, Cong M, Zhang L, Gu X, Tang X. Comparative transcriptomic profiling of peripheral efferent and afferent nerve fibres at different developmental stages in mice. Sci Rep 2018; 8:11990. [PMID: 30097601 PMCID: PMC6086926 DOI: 10.1038/s41598-018-30463-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Peripheral nerve injury impairs motor and sensory function in humans, and its functional recovery largely depends on the axonal outgrowth required for the accurate reinnervation of appropriate targets. To better understand how motor and sensory nerve fibres select their terminal pathways, an unbiased cDNA microarray analysis was conducted to examine differential gene expression patterns in peripheral efferent and afferent fibres at different developmental stages in mice. Gene ontology (GO) and Kyoto Enrichment of Genes and Genomes (KEGG) analyses revealed common and distinct features of enrichment for differentially expressed genes during motor and sensory nerve fibre development. Ingenuity Pathway Analysis (IPA) further indicated that the key differentially expressed genes were associated with trans-synaptic neurexin-neuroligin signalling components and a variety of gamma-aminobutyric acid (GABA) receptors. The aim of this study was to generate a framework of gene networks regulated during motor and sensory neuron differentiation/maturation. These data may provide new clues regarding the underlying cellular and molecular mechanisms that determine the intrinsic capacity of neurons to regenerate after peripheral nerve injury. Our findings may thus facilitate further development of a potential intervention to manipulate the therapeutic efficiency of peripheral nerve repair in the clinic.
Collapse
Affiliation(s)
- Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Youlang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, JS, 226001, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Li Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| |
Collapse
|
17
|
Nascimento AI, Mar FM, Sousa MM. The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function. Prog Neurobiol 2018; 168:86-103. [PMID: 29729299 DOI: 10.1016/j.pneurobio.2018.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/26/2022]
Abstract
Dorsal root ganglion (DRG) neurons are the first neurons of the sensory pathway. They are activated by a variety of sensory stimuli that are then transmitted to the central nervous system. An important feature of DRG neurons is their unique morphology where a single process -the stem axon- bifurcates into a peripheral and a central axonal branch, with different functions and cellular properties. Distinctive structural aspects of the two DRG neuron branches may have important implications for their function in health and disease. However, the link between DRG axonal branch structure, polarity and function has been largely neglected in the field, and relevant information is rather scattered across the literature. In particular, ultrastructural differences between the two axonal branches are likely to account for the higher transport and regenerative ability of the peripheral DRG neuron axon when compared to the central one. Nevertheless, the cell intrinsic factors contributing to this central-peripheral asymmetry are still unknown. Here we critically review the factors that may underlie the functional asymmetry between the peripheral and central DRG axonal branches. Also, we discuss the hypothesis that DRG neurons may assemble a structure resembling the axon initial segment that may be responsible, at least in part, for their polarity and electrophysiological features. Ultimately, we suggest that the clarification of the axonal ultrastructure of DRG neurons using state-of-the-art techniques will be crucial to understand the physiology of this peculiar cell type.
Collapse
Affiliation(s)
- Ana Isabel Nascimento
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fernando Milhazes Mar
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, Instituto de Biologia Molecular e Celular-IBMC and Instituto de Inovação e Investigação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|
18
|
Del Valle J, Santos D, Delgado-Martínez I, de la Oliva N, Giudetti G, Micera S, Navarro X. Segregation of motor and sensory axons regenerating through bicompartmental tubes by combining extracellular matrix components with neurotrophic factors. J Tissue Eng Regen Med 2018; 12:e1991-e2000. [PMID: 29266822 DOI: 10.1002/term.2629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/30/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
Segregation of regenerating motor and sensory axons may be a good strategy to improve selective functionality of regenerative interfaces to provide closed-loop commands. Provided that extracellular matrix components and neurotrophic factors exert guidance effects on different neuronal populations, we assessed in vivo the potential of separating sensory and motor axons regenerating in a bicompartmental Y-type tube, with each branch prefilled with an adequate combination of extracellular matrix and neurotrophic factors. The severed rat sciatic nerve was repaired using a bicompartmental tube filled with a collagen matrix enriched with fibronectin (FN) and brain-derived neurotrophic factor (BDNF) encapsulated in poly-lactic co-glycolic acid microspheres (FN + MP.BDNF) in one compartment to preferentially attract motor axons and collagen enriched with laminin (LM) and nerve growth factor (NGF) and neurotrophin-3 (NT-3) in microspheres (LM + MP.NGF/NT-3) in the other compartment for promoting sensory axons regeneration. Control animals were implanted with the same Y-tube with a collagen matrix with microspheres (MP) containing PBS (Col + MP.PBS). By using retrotracer labelling, we found that LM + MP.NGF/NT-3 did not attract higher number of regenerated sensory axons compared with controls, and no differences were observed in sensory functional recovery. However, FN + MP.BDNF guided a higher number of regenerating motor axons compared with controls, improving also motor recovery. A small proportion of sensory axons with large soma size, likely proprioceptive neurons, was also attracted to the FN + MP.BDNF compartment. These results demonstrate that muscular axonal guidance can be modulated in vivo by the addition of fibronectin and BDNF.
Collapse
Affiliation(s)
- Jaume Del Valle
- Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and BIST, Bellaterra, Spain
| | - Daniel Santos
- Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Ignacio Delgado-Martínez
- Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Natàlia de la Oliva
- Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Guido Giudetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Silvestro Micera
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy.,Translational Neural Engineering Laboratory, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology, and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
19
|
Kim HJ, Heo DN, Lee YJ, Lee SJ, Kang JY, Lee SH, Kwon IIK, Do SH. Biological assessments of multifunctional hydrogel-decorated implantable neural cuff electrode for clinical neurology application. Sci Rep 2017; 7:15245. [PMID: 29127334 PMCID: PMC5681553 DOI: 10.1038/s41598-017-15551-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/30/2017] [Indexed: 01/11/2023] Open
Abstract
The implantable cuff electrode is an effective neuroprosthetic device in current nerve tissue engineering. However, biocompatibility and stability are still a serious dispute in terms of in vivo function and continuous monitoring. In this regard, assessing the host's biological response to biomaterials is one of the key factors of chronic implantation. In this article, we analyzed the peripheral nerve specific-biological responses to the application of multi-functional hydrogel-coated electrodes. The surface of the cuff electrode was modified using a multifunctional hydrogel composed of PEG hydrogel, cyclosporin A(CsA)-microsphere(MS) and electrodeposited PEDOT:PSS. Through our approach, we have found that the multifunctional hydrogel coatings improve the neural electrode function, such as peak-to-peak amplitude increase. Additionally, the multifunctional hydrogel coated electrodes exhibited improved biocompatibility, such as reduced apoptotic properties and increased axonal myelination. Furthermore, 12 genes (BDNF, Gfra1, IL-6, Sox 10, S100B, P75 NTR , GAP43, MBP, MPZ, NrCAM, NE-FL, CB1) were upregulated at 5 weeks post-implant. Finally, double immunofluorescence revealed the effect of endocannabinoid system on neuroprotective properties and tissue remodeling of peripheral nerves during cuff electrode implantation. These results clearly confirmed that multifunctional hydrogel coatings could improve electrode function and biocompatibility by enhancing neuroprotective properties, which may provide a valuable paradigm for clinical neurology application.
Collapse
Affiliation(s)
- Han-Jun Kim
- Konkuk University, Department of Clinical Pathology, College of Veterinary Medicine, Seoul, 05029, Republic of Korea
| | - Dong Nyoung Heo
- Kyung Hee University, Department of Dental Materials, School of Dentistry, Seoul, 02477, Republic of Korea
| | - Yi Jae Lee
- Korea Institute of Science and Technology, Center for BioMicrosystems, Seoul, 02792, Republic of Korea
| | - Sang Jin Lee
- Kyung Hee University, Department of Dental Materials, School of Dentistry, Seoul, 02477, Republic of Korea
| | - Ji Yoon Kang
- Korea Institute of Science and Technology, Center for BioMicrosystems, Seoul, 02792, Republic of Korea
| | - Soo Hyun Lee
- Korea Institute of Science and Technology, Center for BioMicrosystems, Seoul, 02792, Republic of Korea.
| | - I I Keun Kwon
- Kyung Hee University, Department of Dental Materials, School of Dentistry, Seoul, 02477, Republic of Korea.
| | - Sun Hee Do
- Konkuk University, Department of Clinical Pathology, College of Veterinary Medicine, Seoul, 05029, Republic of Korea.
| |
Collapse
|
20
|
Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors. Int J Mol Sci 2016; 18:ijms18010065. [PMID: 28036084 PMCID: PMC5297700 DOI: 10.3390/ijms18010065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/28/2016] [Accepted: 12/24/2016] [Indexed: 11/29/2022] Open
Abstract
After peripheral nerve injury, motor and sensory axons are able to regenerate but inaccuracy of target reinnervation leads to poor functional recovery. Extracellular matrix (ECM) components and neurotrophic factors (NTFs) exert their effect on different neuronal populations creating a suitable environment to promote axonal growth. Here, we assessed in vitro and in vivo the selective effects of combining different ECM components with NTFs on motor and sensory axons regeneration and target reinnervation. Organotypic cultures with collagen, laminin and nerve growth factor (NGF)/neurotrophin-3 (NT3) or collagen, fibronectin and brain-derived neurotrophic factor (BDNF) selectively enhanced sensory neurite outgrowth of DRG neurons and motor neurite outgrowth from spinal cord slices respectively. For in vivo studies, the rat sciatic nerve was transected and repaired with a silicone tube filled with a collagen and laminin matrix with NGF/NT3 encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres (MP) (LM + MP.NGF/NT3), or a collagen and fibronectin matrix with BDNF in PLGA MPs (FN + MP.BDNF). Retrograde labeling and functional tests showed that LM + MP.NGF/NT3 increased the number of regenerated sensory neurons and improved sensory functional recovery, whereas FN + MP.BDNF preferentially increased regenerated motoneurons and enhanced motor functional recovery. Therefore, combination of ECM molecules with NTFs may be a good approach to selectively enhance motor and sensory axons regeneration and promote appropriate target reinnervation.
Collapse
|
21
|
Aikeremujiang Muheremu, Ao Q, Wang Y, Cao P, Peng J. Femoral nerve regeneration and its accuracy under different injury mechanisms. Neural Regen Res 2015. [PMID: 26692867 DOI: 10.4103/1673-5374.167768.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.
Collapse
Affiliation(s)
- Aikeremujiang Muheremu
- Medical Center, Tsinghua University, Beijing, China ; Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Peng Cao
- Department of Orthopedics, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiang Peng
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
22
|
Aikeremujiang Muheremu, Ao Q, Wang Y, Cao P, Peng J. Femoral nerve regeneration and its accuracy under different injury mechanisms. Neural Regen Res 2015; 10:1669-73. [PMID: 26692867 PMCID: PMC4660763 DOI: 10.4103/1673-5374.167768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.
Collapse
Affiliation(s)
- Aikeremujiang Muheremu
- Medical Center, Tsinghua University, Beijing, China ; Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Qiang Ao
- Department of Tissue Engineering, China Medical University, Shenyang, Liaoning, China
| | - Yu Wang
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| | - Peng Cao
- Department of Orthopedics, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiang Peng
- Institute of Orthopaedics, General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
23
|
Chen SL, Chen ZG, Dai HL, Ding JX, Guo JS, Han N, Jiang BG, # HJ, Li J, Li SP, Li WJ, Liu J, Liu Y, Ma JX, Peng J, Shen YD, Sun GW, Tang PF, Wang GH, Wang XH, Xiang LB, Xie RG, Xu JG, Yu B, Zhang LC, Zhang PX, Zhou SL. Repair, protection and regeneration of peripheral nerve injury. Neural Regen Res 2015; 10:1777-98. [PMID: 26807113 PMCID: PMC4705790 DOI: 10.4103/1673-5374.170301] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
24
|
Update in facial nerve paralysis: tissue engineering and new technologies. Curr Opin Otolaryngol Head Neck Surg 2015; 22:291-9. [PMID: 24979369 DOI: 10.1097/moo.0000000000000062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW To present the recent advances in the treatment of facial paralysis, emphasizing the emerging technologies. This review will summarize the current state of the art in the management of facial paralysis and discuss the advances in nerve regeneration, facial reanimation, and use of novel biomaterials. This review includes surgical innovations in reinnervation and reanimation as well as progress with bioelectrical interfaces. RECENT FINDINGS The last decade has witnessed major advances in the understanding of nerve injury and approaches for management. Key innovations include strategies to accelerate nerve regeneration, provide tissue-engineered constructs that may replace nonfunctional nerves, approaches to influence axonal guidance, limiting of donor-site morbidity, and optimization of functional outcomes. Approaches to muscle transfer continue to evolve, and new technologies allow for electrical nerve stimulation and use of artificial tissues. SUMMARY The fields of biomedical engineering and facial reanimation increasingly intersect, with innovative surgical approaches complementing a growing array of tissue engineering tools. The goal of treatment remains the predictable restoration of natural facial movement, with acceptable morbidity and long-term stability. Advances in bioelectrical interfaces and nanotechnology hold promise for widening the window for successful treatment intervention and for restoring both lost neural inputs and muscle function.
Collapse
|
25
|
Wood MD, Mackinnon SE. Pathways regulating modality-specific axonal regeneration in peripheral nerve. Exp Neurol 2015; 265:171-5. [PMID: 25681572 DOI: 10.1016/j.expneurol.2015.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/08/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Following peripheral nerve injury, the distal nerve is primed for regenerating axons by generating a permissive environment replete with glial cells, cytokines, and neurotrophic factors to encourage axonal growth. However, increasing evidence demonstrates that regenerating axons within peripheral nerves still encounter axonal-growth inhibitors, such as chondroitin sulfate proteoglycans. Given the generally poor clinical outcomes following peripheral nerve injury and reconstruction, the use of pharmacological therapies to augment axonal regeneration and overcome inhibitory signals has gained considerable interest. Joshi et al. (2014) have provided evidence for preferential or modality-specific (motor versus sensory) axonal growth and regeneration due to inhibitory signaling from Rho-associated kinase (ROCK) pathway regulation. By providing inhibition to the ROCK signaling pathway through Y-27632, they demonstrate that motor neurons regenerating their axons are impacted to a greater extent compared to sensory neurons. In light of this evidence, we briefly review the literature regarding modality-specific axonal regeneration to provide context to their findings. We also describe potential and novel barriers, such as senescent Schwann cells, which provide additional axonal-growth inhibitory factors for future consideration following peripheral nerve injury.
Collapse
Affiliation(s)
- Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
26
|
Marquardt LM, Sakiyama-Elbert SE. GDNF preconditioning can overcome Schwann cell phenotypic memory. Exp Neurol 2014; 265:1-7. [PMID: 25496841 DOI: 10.1016/j.expneurol.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 01/26/2023]
Abstract
While it is known that Schwann cells (SCs) provide cues to enhance regeneration following peripheral nerve injury, the effect of SC phenotypic memory (muscle or cutaneous nerve-derived) on enhancing axonal regeneration and functional recovery has been unclear in the literature. In particular, differences between muscle and cutaneous nerve-derived SC may encourage specific motor or sensory axonal guidance in cell/tissue transplantation therapies. Thus, the goal of this study was to determine whether phenotypically matched combinations of neurons and SCs stimulate greater axonal extension compared to mismatched combinations (i.e. motor neurons/muscle nerve-derived SCs vs. motor neurons/cutaneous nerve-derived SCs). Additionally, the effect of glial cell line-derived neurotrophic factor (GDNF) treatment on SC-neuron interaction was also evaluated. In order to examine these interactions, microfluidic devices were used to assess the effects of soluble factors secreted from SCs on neurons. Unlike traditional co-culture methods, the devices allow for easier quantification of single neurite extension over long periods of time, as well as easy cell and media sampling of pure populations for biochemical analyses. Results demonstrated longer neurite growth when neurons are cultured with phenotype matched SCs, suggesting that SCs are capable of retaining phenotypic memory despite a prolonged absence of axonal contact. Furthermore, the negative effect of mismatched cultures can be overcome when mismatched SCs are preconditioned with GDNF. These results suggest that treatment of SCs with GDNF could enhance their ability to promote regeneration through mismatched grafts frequently used in clinical settings.
Collapse
Affiliation(s)
- Laura M Marquardt
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA; Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
27
|
Corell M, Wicher G, Radomska KJ, Dağlıkoca ED, Godskesen RE, Fredriksson R, Benedikz E, Magnaghi V, Fex Svenningsen Å. GABA and its B-receptor are present at the node of Ranvier in a small population of sensory fibers, implicating a role in myelination. J Neurosci Res 2014; 93:285-95. [DOI: 10.1002/jnr.23489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Mikael Corell
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - Grzegorz Wicher
- Department of Neuroscience; Uppsala University; Uppsala Sweden
- Department of Genetics and Pathology; Uppsala University; Uppsala Sweden
| | | | - E. Duygu Dağlıkoca
- Department of Molecular Biology and Genetics; Bogazici University; Istanbul Turkey
| | | | | | - Eirikur Benedikz
- IMM-Neurobiology Research; University of Southern Denmark; Odense Denmark
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences; University of Milan; Milan Italy
| | - Åsa Fex Svenningsen
- Department of Neuroscience; Uppsala University; Uppsala Sweden
- IMM-Neurobiology Research; University of Southern Denmark; Odense Denmark
| |
Collapse
|
28
|
Jesuraj NJ, Marquardt LM, Kwasa JA, Sakiyama-Elbert SE. Glial cell line-derived neurotrophic factor promotes increased phenotypic marker expression in femoral sensory and motor-derived Schwann cell cultures. Exp Neurol 2014; 257:10-8. [PMID: 24731946 PMCID: PMC4065822 DOI: 10.1016/j.expneurol.2014.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/06/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
Schwann cells (SCs) secrete growth factors and extracellular matrix molecules that promote neuronal survival and help guide axons during regeneration. Transplantation of SCs is a promising strategy for enhancing peripheral nerve regeneration. However, we and others have shown that after long-term in vitro expansion, SCs revert to a de-differentiated state similar to the phenotype observed after injury. In vivo, glial cell-line derived neurotrophic factor (GDNF) may guide the differentiation of SCs to remyelinate regenerating axons. Therefore, we hypothesized that exogenous GDNF may guide the differentiation of SCs into their native phenotypes in vitro through stimulation of GDNF family receptor (GFR)α-1. When activated in SCs, GFRα-1 promotes phosphorylation of Fyn, a Src family tyrosine kinase responsible for mediating downstream signaling for differentiation and proliferation. In this study, SCs harvested from the sensory and motor branches of rat femoral nerve were expanded in vitro and then cultured with 50 or 100ng/mL of GDNF. The exogenous GDNF promoted differentiation of sensory and motor-derived SCs back to their native phenotypes, as demonstrated by decreased proliferation after 7days and increased expression of S100Ββ and phenotype-specific markers. Furthermore, inhibiting Fyn with Src family kinase inhibitors, PP2 and SU6656, and siRNA-mediated knockdown of Fyn reduced GDNF-stimulated differentiation of sensory and motor-derived SCs. These results demonstrate that activating Fyn is necessary for GDNF-stimulated differentiation of femoral nerve-derived SCs into their native phenotypes in vitro. Therefore GDNF could be incorporated into SC-based therapies to promote differentiation of SCs into their native phenotype to improve functional nerve regeneration.
Collapse
Affiliation(s)
- Nithya J Jesuraj
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Laura M Marquardt
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Jasmine A Kwasa
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Schmid D, Zeis T, Schaeren-Wiemers N. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells. ASN Neuro 2014; 6:137-57. [PMID: 24641305 PMCID: PMC4834722 DOI: 10.1042/an20130031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/16/2014] [Accepted: 02/05/2014] [Indexed: 12/23/2022] Open
Abstract
In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be modulated by forskolin. One of the strongest differentially regulated gene transcripts was the transcription factor Olig1 (oligodendrocyte transcription factor 1), whose mRNA expression levels were reduced in treated Schwann cells. Olig1 protein was localized in myelinating and nonmyelinating Schwann cells within the sciatic nerve as well as in primary Schwann cells, proposing it as a novel transcription factor of the Schwann cell lineage. Data analysis further revealed that a number of differentially expressed genes in forskolin-treated Schwann cells were associated with the ECM (extracellular matrix), underlining its importance during Schwann cell differentiation in vitro. Comparison of samples derived from postnatal sciatic nerves and from both treated and untreated Schwann cell cultures showed considerable differences in gene expression between in vivo and in vitro, allowing us to separate Schwann cell autonomous from tissue-related changes. The whole data set of the cell culture microarray study is provided to offer an interactive search tool for genes of interest.
Collapse
Key Words
- camp
- forskolin
- in vitro
- microarray
- schwann cell differentiation
- bmp, bone morphogenetic protein
- camp, cyclic adenosine monophosphate
- cns, central nervous system
- creb, camp-response-element-binding protein
- david, database for annotation, visualization and integrated discovery
- dgc, dystrophin–glycoprotein complex
- ecm, extracellular matrix
- fdr, false discovery rate
- go, gene ontology
- ipa, ingenuity pathway analysis
- mag, myelin-associated glycoprotein
- mapk, mitogen-activated protein kinase
- mbp, myelin basic protein
- mpz/p0, myelin protein zero
- nf-κb, nuclear factor κb
- olig1, oligodendrocyte transcription factor 1
- pca, principal component analysis
- pfa, paraformaldehyde
- pka, protein kinase a
- pns, peripheral nervous system
- qrt–pcr, quantitative rt–pcr
- s.d., standard deviation
Collapse
Affiliation(s)
- Daniela Schmid
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Thomas Zeis
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| | - Nicole Schaeren-Wiemers
- *Neurobiology, Department of Biomedicine, University Hospital Basel,
University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
| |
Collapse
|
30
|
Novel roles for osteopontin and clusterin in peripheral motor and sensory axon regeneration. J Neurosci 2014; 34:1689-700. [PMID: 24478351 DOI: 10.1523/jneurosci.3822-13.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous studies demonstrated that Schwann cells (SCs) express distinct motor and sensory phenotypes, which impact the ability of these pathways to selectively support regenerating neurons. In the present study, unbiased microarray analysis was used to examine differential gene expression in denervated motor and sensory pathways in rats. Several genes that were significantly upregulated in either denervated sensory or motor pathways were identified and two secreted factors were selected for further analysis: osteopontin (OPN) and clusterin (CLU) which were upregulated in denervated motor and sensory pathways, respectively. Sciatic nerve transection induced upregulation of OPN and CLU and expression of both returned to baseline levels with ensuing regeneration. In vitro analysis using exogenously applied OPN induced outgrowth of motor but not sensory neurons. CLU, however, induced outgrowth of sensory neurons, but not motor neurons. To assess the functional importance of OPN and CLU, peripheral nerve regeneration was examined in OPN and CLU(-/-) mice. When compared with OPN(+/+) mice, motor neuron regeneration was reduced in OPN(-/-) mice. Impaired regeneration through OPN(-/-) peripheral nerves grafted into OPN(+/+) mice indicated that loss of OPN in SCs was responsible for reduced motor regeneration. Sensory neuron regeneration was impaired in CLU(-/-) mice following sciatic nerve crush and impaired regeneration nerve fibers through CLU(-/-) nerve grafts transplanted into CLU(+/+) mice indicated that reduced sensory regeneration is likely due to SC-derived CLU. Together, these studies suggest unique roles for SC-derived OPN and CLU in regeneration of peripheral motor and sensory axons.
Collapse
|
31
|
Dumont CM, Karande P, Thompson DM. Rapid assessment of migration and proliferation: a novel 3D high-throughput platform for rational and combinatorial screening of tissue-specific biomaterials. Tissue Eng Part C Methods 2014; 20:620-9. [PMID: 24256302 DOI: 10.1089/ten.tec.2013.0362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Designing an ideal biomaterial supportive of multicellular tissue repair is challenging, especially with a poor understanding of the synergy between constituent proteins and growth factors. A brute-force approach, based on screening all possible combinations of proteins and growth factors, is inadequate due to the prohibitively large experimental space coupled with current low-throughput screening techniques. A high-throughput screening platform based on rational and combinatorial strategies for design and testing of proteins and growth factors can significantly impact the discovery of novel tissue-specific biomaterials. Here, we report the development of a flexible high-throughput screening platform, Rapid Assessment of Migration and Proliferation (RAMP), to rapidly investigate cell viability, proliferation, and migration in response to highly miniaturized three-dimensional biomaterial cultures (4-20 μL) with sparingly low cell densities (63-1000 cells per μL for cell arrays; 1 μL of 1000-10,000 cells per μL for migration arrays). The predictions made by RAMP on the efficacy and potency of the biomaterials are in agreement with the predictions made by conventional assays but at a throughput that is at least 100-1000-fold higher. The RAMP assay is therefore a novel approach for the rapid discovery of tissue-specific biomaterials for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Courtney M Dumont
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| | | | | |
Collapse
|
32
|
Jesuraj NJ, Santosa KB, Macewan MR, Moore AM, Kasukurthi R, Ray WZ, Flagg ER, Hunter DA, Borschel GH, Johnson PJ, Mackinnon SE, Sakiyama-Elbert SE. Schwann cells seeded in acellular nerve grafts improve functional recovery. Muscle Nerve 2013; 49:267-76. [PMID: 23625513 DOI: 10.1002/mus.23885] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 12/14/2022]
Abstract
INTRODUCTION This study evaluated whether Schwann cells (SCs) from different nerve sources transplanted into cold-preserved acellular nerve grafts (CP-ANGs) would improve functional regeneration compared with nerve isografts. METHODS SCs isolated and expanded from motor and sensory branches of rat femoral and sciatic nerves were seeded into 14mm CP-ANGs. Growth factor expression, axonal regeneration, and functional recovery were evaluated in a 14-mm rat sciatic injury model and compared with isografts. RESULTS At 14 days, motor or sensory-derived SCs increased expression of growth factors in CP-ANGs versus isografts. After 42 days, histomorphometric analysis found CP-ANGs with SCs and isografts had similar numbers of regenerating nerve fibers. At 84 days, muscle force generation was similar for CP-ANGs with SCs and isografts. SC source did not affect nerve fiber counts or muscle force generation. CONCLUSIONS SCs transplanted into CP-ANGs increase functional regeneration to isograft levels; however SC nerve source did not have an effect.
Collapse
Affiliation(s)
- Nithya J Jesuraj
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, Missouri, 63130, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Torres-Martin M, Lassaletta L, de Campos JM, Isla A, Gavilan J, Pinto GR, Burbano RR, Latif F, Melendez B, Castresana JS, Rey JA. Global profiling in vestibular schwannomas shows critical deregulation of microRNAs and upregulation in those included in chromosomal region 14q32. PLoS One 2013; 8:e65868. [PMID: 23776562 PMCID: PMC3679163 DOI: 10.1371/journal.pone.0065868] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/29/2013] [Indexed: 12/21/2022] Open
Abstract
Background Vestibular schwannomas are benign tumors that arise from Schwann cells in the VIII cranial pair and usually present NF2 gene mutations and/or loss of heterozygosity on chromosome 22q. Deregulation has also been found in several genes, such as ERBB2 and NRG1. MicroRNAs are non-coding RNAs approximately 21 to 23 nucleotides in length that regulate mRNAs, usually by degradation at the post-transcriptional level. Methods We used microarray technology to test the deregulation of miRNAs and other non-coding RNAs present in GeneChip miRNA 1.0 (Affymetrix) over 16 vestibular schwannomas and 3 control-nerves, validating 10 of them by qRT-PCR. Findings Our results showed the deregulation of 174 miRNAs, including miR-10b, miR-206, miR-183 and miR-204, and the upregulation of miR-431, miR-221, miR-21 and miR-720, among others. The results also showed an aberrant expression of other non-coding RNAs. We also found a general upregulation of the miRNA cluster located at chromosome 14q32. Conclusion Our results suggest that several miRNAs are involved in tumor formation and/or maintenance and that global upregulation of the 14q32 chromosomal site contains miRNAs that may represent a therapeutic target for this neoplasm.
Collapse
Affiliation(s)
- Miguel Torres-Martin
- Neuro-Oncology Laboratory, Research Unit, La Paz University Hospital, IdiPAZ, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Brushart TM, Aspalter M, Griffin JW, Redett R, Hameed H, Zhou C, Wright M, Vyas A, Höke A. Schwann cell phenotype is regulated by axon modality and central-peripheral location, and persists in vitro. Exp Neurol 2013; 247:272-81. [PMID: 23707299 DOI: 10.1016/j.expneurol.2013.05.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 04/04/2013] [Accepted: 05/12/2013] [Indexed: 12/25/2022]
Abstract
Myelinating Schwann cells express distinct sensory and motor phenotypes as defined by their differing patterns of growth factor production (Hoke et al., 2006). The heterogeneous growth factor requirements of sensory and motor neurons, however, suggest that Schwann cell phenotype might vary across a broad spectrum. To explore this possibility, we selectively denervated six discrete Schwann cell populations: dorsal root, cutaneous nerve, cutaneous unmyelinated axons, muscle nerve afferents, muscle nerve efferents, and ventral root. Real-time RT-PCR for 11 growth factors was performed on the 6 target Schwann cell populations 5, 15, and 30 days after their denervation, and on normal cutaneous nerve, muscle nerve, ventral root, and dorsal root to establish baseline expression levels. Within the denervated axon populations, IGF-1 and VEGF were expressed most prominently in cutaneous nerve, HGF, NGF, and BDNF in cutaneous nerve and dorsal root, GDNF in dorsal root and ventral root, PTN in the ventral root and muscle nerve efferents, and IGF-2 in both afferents and efferents within muscle nerve; expression of CNTF, FGF-2 and NT-3 was not modality or location specific. ELISA for NGF, BDNF, and GDNF confirmed that gene expression correlated with protein concentration. These findings demonstrate that growth factor expression by denervated Schwann cells is not only subject to further regulation within the previously-defined sensory and motor groups, but also varies along a central-peripheral axis. The traditional view of myelinating Schwann cells as a homogenous population is modified by the realization that complex regulation produces a wide variety of Schwann cell phenotypes. Additionally, we found that Schwann cell phenotype is maintained for 2 weeks in vitro, demonstrating that it may survive several cell divisions without instructive cues from either axons or basal lamina.
Collapse
Affiliation(s)
- T M Brushart
- Johns Hopkins Dept of Orthopaedics, 601N. Caroline St., Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
D'Antonio M, Musner N, Scapin C, Ungaro D, Del Carro U, Ron D, Feltri ML, Wrabetz L. Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. ACTA ACUST UNITED AC 2013; 210:821-38. [PMID: 23547100 PMCID: PMC3620355 DOI: 10.1084/jem.20122005] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reduction of the CHOP target Gadd34 restores motor function in P0S63del mice with demyelinating neuropathy. P0 glycoprotein is an abundant product of terminal differentiation in myelinating Schwann cells. The mutant P0S63del causes Charcot-Marie-Tooth 1B neuropathy in humans, and a very similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum of Schwann cells, where it promotes unfolded protein stress and elicits an unfolded protein response (UPR) associated with translational attenuation. Ablation of Chop, a UPR mediator, from S63del mice completely rescues their motor deficit and reduces active demyelination by half. Here, we show that Gadd34 is a detrimental effector of CHOP that reactivates translation too aggressively in myelinating Schwann cells. Genetic or pharmacological limitation of Gadd34 function moderates translational reactivation, improves myelination in S63del nerves, and reduces accumulation of P0S63del in the ER. Resetting translational homeostasis may provide a therapeutic strategy in tissues impaired by misfolded proteins that are synthesized during terminal differentiation.
Collapse
Affiliation(s)
- Maurizio D'Antonio
- Division of Genetics and Cell Biology and 2 Division of Neuroscience, San Raffaele Scientific Institute, DIBIT, 20132 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res 2012; 349:5-14. [PMID: 22476657 DOI: 10.1007/s00441-012-1389-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/23/2012] [Indexed: 12/11/2022]
Abstract
The ability of injured peripheral nerves to regenerate and reinnervate their original targets is a characteristic feature of the peripheral nervous system (PNS). On the other hand, neurons of the central nervous system (CNS), including retinal ganglion cell (RGC) axons, are incapable of spontaneous regeneration. In the adult PNS, axonal regeneration after injury depends on well-orchestrated cellular and molecular processes that comprise a highly reproducible series of degenerative reactions distal to the site of injury. During this fine-tuned process, named Wallerian degeneration, a remodeling of the distal nerve fragment prepares a permissive microenvironment that permits successful axonal regrowth originating from the proximal nerve fragment. Therefore, a multitude of adjusted intrinsic and extrinsic factors are important for surviving neurons, Schwann cells, macrophages and fibroblasts as well as endothelial cells in order to achieve successful regeneration. The aim of this review is to summarize relevant extrinsic cellular and molecular determinants of successful axonal regeneration in rodents that contribute to the regenerative microenvironment of the PNS.
Collapse
|
37
|
Shoffstall AJ, Taylor DM, Lavik EB. Engineering therapies in the CNS: what works and what can be translated. Neurosci Lett 2012; 519:147-54. [PMID: 22330751 DOI: 10.1016/j.neulet.2012.01.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 01/01/2023]
Abstract
Engineering is the art of taking what we know and using it to solve problems. As engineers, we build tool chests of approaches; we attempt to learn as much as possible about the problem at hand, and then we design, build, and test our approaches to see how they impact the system. The challenge of applying this approach to the central nervous system (CNS) is that we often do not know the details of what is needed from the biological side. New therapeutic options for treating the CNS range from new biomaterials to make scaffolds, to novel drug-delivery techniques, to functional electrical stimulation. However, the reality is that translating these new therapies and making them widely available to patients requires collaborations between scientists, engineers, clinicians, and patients to have the greatest chance of success. Here we discuss a variety of new treatment strategies and explore the pragmatic challenges involved with engineering therapies in the CNS.
Collapse
Affiliation(s)
- Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-1712, USA
| | | | | |
Collapse
|