1
|
Ogawa S, Parhar IS. Functions of habenula in reproduction and socio-reproductive behaviours. Front Neuroendocrinol 2022; 64:100964. [PMID: 34793817 DOI: 10.1016/j.yfrne.2021.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Habenula is an evolutionarily conserved structure in the brain of vertebrates. Recent reports have drawn attention to the habenula as a processing centre for emotional decision-making and its role in psychiatric disorders. Emotional decision-making process is also known to be closely associated with reproductive conditions. The habenula receives innervations from reproductive centres within the brain and signals from key reproductive neuroendocrine regulators such as gonadal sex steroids, gonadotropin-releasing hormone (GnRH), and kisspeptin. In this review, based on morphological, biochemical, physiological, and pharmacological evidence we discuss an emerging role of the habenula in reproduction. Further, we discuss the modulatory role of reproductive endocrine factors in the habenula and their association with socio-reproductive behaviours such as mating, anxiety and aggression.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Durand N, Aguilar P, Demondion E, Bourgeois T, Bozzolan F, Debernard S. Neuroligin 1 expression is linked to plasticity of behavioral and neuronal responses to sex pheromone in the male moth Agrotis ipsilon. J Exp Biol 2021; 224:273481. [PMID: 34647597 DOI: 10.1242/jeb.243184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and following a prior exposure to sex pheromone, whereas it is temporally inhibited after the onset of mating. This behavioral flexibility is paralleled with changes in neuronal sensitivity to pheromone signal within the primary olfactory centers, the antennal lobes. In the present study, we tested the hypothesis that neuroligins, post-synaptic transmembrane proteins known to act as mediators of neuronal remodeling, are involved in the olfactory modulation in A. ipsilon males. We cloned a full-length cDNA encoding neuroligin 1, which is expressed predominantly in brain and especially in antennal lobes. The level of neuroligin 1 expression in antennal lobes gradually raised from day-2 until day-4 of adult life, as well as at 24 h, 48 h and 72 h following pre-exposure to sex pheromone, and the temporal dynamic of these changes correlated with increased sex pheromone responsiveness. By contrast, there was no significant variation in antennal lobe neuroligin 1 expression during the post-mating refractory period. Taken together, these results highlight that age- and odor experience-related increase in sex pheromone responsiveness is linked to the overexpression of neuroligin 1 in antennal lobes, thus suggesting a potential role played by this post-synaptic cell-adhesion molecule in mediating the plasticity of the central olfactory system in A. ipsilon.
Collapse
Affiliation(s)
- Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
3
|
Reddy AP, Sawant N, Morton H, Kshirsagar S, Bunquin LE, Yin X, Reddy PH. Selective serotonin reuptake inhibitor citalopram ameliorates cognitive decline and protects against amyloid beta-induced mitochondrial dynamics, biogenesis, autophagy, mitophagy and synaptic toxicities in a mouse model of Alzheimer's disease. Hum Mol Genet 2021; 30:789-810. [PMID: 33791799 PMCID: PMC8161521 DOI: 10.1093/hmg/ddab091] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
In the current study, we investigated the protective role of citalopram against cognitive decline, impaired mitochondrial dynamics, defective mitochondrial biogenesis, defective autophagy, mitophagy and synaptic dysfunction in APP transgenic mouse model of Alzheimer's disease (ad). We treated 12-month-old wild-type (WT) and age-matched transgenic APP mice with citalopram for 2 months. Using Morris Water Maze and rotarod tests, quantitative RT-PCR, immunoblotting, biochemical methods and transmission electron microscopy methods, we assessed cognitive behavior, RNA and protein levels of mitochondrial dynamics, biogenesis, autophagy, mitophagy, synaptic, ad-related and neurogenesis genes in wild-type and APP mice treated and untreated with citalopram. Citalopram-treated APP mice relative to citalopram-untreated APP mice exhibited improved cognitive behavior. Increased levels of mRNA associated with mitochondrial fission and ad-related genes; decreased levels of fusion, biogenesis, autophagy, mitophagy, synaptic and neurogenesis genes were found in APP mice relative to WT mice. However, APP mice treated with citalopram compared to citalopram-untreated APP mice revealed reduced levels of the mitochondrial fission and ad-related genes and increased fusion, biogenesis, autophagy, mitophagy, synaptic and neurogenesis genes. Our protein data agree with the mRNA levels. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in APP mice; these were reversed in citalopram-treated APP mice. Further, Golgi-cox staining analysis revealed reduced dendritic spines in APP mice relative to WT mice. However, citalopram-treated APP mice showed significantly increased dendritic spines, indicating that citalopram enhances spine density, synaptic activity and improved cognitive function in APP mice. These findings suggest that citalopram reduces cognitive decline, Aβ levels and mitochondrial and synaptic toxicities and may have a strong protective role against mutant APP and Aβ-induced injuries in patients with depression, anxiety and ad.
Collapse
Affiliation(s)
- Arubala P Reddy
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX 79409-1270, USA
| | - Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Hallie Morton
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Lloyd E Bunquin
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX 79409-1270, USA
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4 Street, Lubbock, TX 79430, USA
- Neurology Department, Texas Tech University Health Sciences Center, 3601 4 Street, Lubbock, TX 79430, USA
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4 Street, Lubbock, TX 79430, USA
- Public Health Department, Texas Tech University Health Sciences Center, 3601 4 Street, Lubbock, TX 79430, USA
| |
Collapse
|
4
|
Bregin A, Kaare M, Jagomäe T, Karis K, Singh K, Laugus K, Innos J, Leidmaa E, Heinla I, Visnapuu T, Oja EM, Kõiv K, Lilleväli K, Harro J, Philips MA, Vasar E. Expression and impact of Lsamp neural adhesion molecule in the serotonergic neurotransmission system. Pharmacol Biochem Behav 2020; 198:173017. [PMID: 32828972 DOI: 10.1016/j.pbb.2020.173017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Limbic system associated membrane protein (Lsamp) is a neural adhesion protein which has been recently found to be differentially expressed between serotonergic neuron subtypes. We have previously shown elevated serotonin (5-HT) turnover rate in Lsamp-deficient mice. The purpose of the current study was to elucidate the role of Lsamp in serotonergic neurotransmission. Chronic (18 days) administration of serotonin reuptake inhibitor (SSRI) escitalopram (10 mg/kg) significantly increased general activity in wild-type mice in the open field and protected exploration in Lsamp-/- mice in the elevated-plus maze. An important psychopathology-related endophenotype, elevated 5-HT turnover in the brain of Lsamp-deficient mice, was reproduced in the saline group. Escitalopram restored the elevated 5-HT turnover of Lsamp-deficient mice to a level comparable with their wild-type littermates, suggesting that high 5-HT turnover in mutants is mediated by the increased activity of serotonin transporter (SERT protein encoded by Slc6a4 gene). The baseline level of Slc6a4 transcript was not changed in Lsamp-deficient mice, however, our immunohistochemical analysis showed partial co-expression of Lsamp with both SERT and Tph2 proteins in raphe. Overactivity of SERT in Lsamp-/- mice is further supported by significant elevation of Maoa transcript and increase of DOPAC, another Mao A product, specifically in the raphe. Again, elevation of DOPAC was reduced to the level of wild-type by chronic SSRI treatment. The activity of Lsamp gene promoters varied in 5-HT producing nuclei: both Lsamp 1a and 1b promoters were active in the dorsal raphe; most of the expression in the median raphe was from 1b promoter, whereas Lsamp 1a promoter was almost exclusively active in the caudal subgroup of raphe nuclei. We suggest that Lsamp may have an impact on the integrity of serotonergic synapses, which is possibly the neurochemical basis of the anxiety- and sociability-related phenotype in Lsamp-deficient mice.
Collapse
Affiliation(s)
- Aleksandr Bregin
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Maria Kaare
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Karina Karis
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Karita Laugus
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Estonia
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Indrek Heinla
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Tanel Visnapuu
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Eva-Maria Oja
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kadri Kõiv
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia.
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; Centre of Excellence in Genomics and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Zancan M, Moura DJ, Morás AM, Steffens L, de Moura AC, Giovenardi M, Rasia-Filho AA. Neurotrophic factors in the posterodorsal medial amygdala of male and cycling female rats. Brain Res Bull 2019; 155:92-101. [PMID: 31812781 DOI: 10.1016/j.brainresbull.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
The posterodorsal medial amygdala (MePD) has a high concentration of receptors for gonadal hormones, is a sexually dimorphic region and dynamically controls the reproductive behavior of both males and females. Neurotrophic factors can promote dendritic spine remodeling and change synaptic input strength in a region-specific manner. Here, we analyzed the gene and protein expression of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-1), polysialylated neural cell adhesion molecule (PSA-NCAM) and Ephrin-A4 in the MePD of adult males and females in diestrus, proestrus and estrus using real-time qPCR and fluorescent immunohistochemistry. The first approach showed their amplification except for Igf1 and the latter revealed that BDNF, IGF-1, PSA-NCAM and Ephrin-A4 are expressed in the MePD of the adult rats. Protein expression of these neurotrophic factors showed no differences between groups. However, proestrus females displayed a higher number of labelled puncta than males for BDNF expression and diestrus females for IGF-1 expression. In conjunction, results indicate that IGF-1 might be released rather than synthetized in the MePD, and the expression of specific neurotrophic factors varies specifically during proestrus. The dynamic modulation of BDNF and IGF-1 during this cyclic phase is coincident with synaptic changes and spine density remodeling in the MePD, the disinhibition of gonadotrophin secretion for ovulation and the display of sexual behavior.
Collapse
Affiliation(s)
- Mariana Zancan
- Federal University of Health Sciences/DCBS-Physiology, Porto Alegre, RS, Brazil; Federal University of Rio Grande do Sul/Graduate Program in Neurosciences, Porto Alegre, RS, Brazil
| | - Dinara J Moura
- Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil
| | - Ana Moira Morás
- Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil
| | - Luiza Steffens
- Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil
| | - Ana Carolina de Moura
- Federal University of Health Sciences/ Graduate Program in Health Sciences, Porto Alegre, RS, Brazil
| | - Márcia Giovenardi
- Federal University of Health Sciences/ Graduate Program in Health Sciences, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Federal University of Health Sciences/DCBS-Physiology, Porto Alegre, RS, Brazil; Federal University of Rio Grande do Sul/Graduate Program in Neurosciences, Porto Alegre, RS, Brazil; Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil.
| |
Collapse
|
6
|
Reddy AP, Ravichandran J, Carkaci-Salli N. Neural regeneration therapies for Alzheimer's and Parkinson's disease-related disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165506. [PMID: 31276770 DOI: 10.1016/j.bbadis.2019.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases are devastating mental illnesses without a cure. Alzheimer's disease (AD) characterized by memory loss, multiple cognitive impairments, and changes in personality and behavior. Although tremendous progress has made in understanding the basic biology in disease processes in AD and PD, we still do not have early detectable biomarkers for these diseases. Just in the United States alone, federal and nonfederal funding agencies have spent billions of dollars on clinical trials aimed at finding drugs, but we still do not have a drug or an agent that can slow the AD or PD disease process. One primary reason for this disappointing result may be that the clinical trials enroll patients with AD or PD at advances stages. Although many drugs and agents are tested preclinical and are promising, in human clinical trials, they are mostly ineffective in slowing disease progression. One therapy that has been promising is 'stem cell therapy' based on cell culture and pre-clinical studies. In the few clinical studies that have investigated therapies in clinical trials with AD and PD patients at stage I. The therapies, such as stem cell transplantation - appear to delay the symptoms in AD and PD. The purpose of this article is to describe clinical trials using 1) stem cell transplantation methods in AD and PD mouse models and 2) regenerative medicine in AD and PD mouse models, and 3) the current status of investigating preclinical stem cell transplantation in patients with AD and PD.
Collapse
Affiliation(s)
- Arubala P Reddy
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States.
| | - Janani Ravichandran
- Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, El Paso, TX 79905, United States.
| | - Nurgul Carkaci-Salli
- Department of Pharmacology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033.
| |
Collapse
|
7
|
Bethea CL, Mueller K, Reddy AP, Kohama SG, Urbanski HF. Effects of obesogenic diet and estradiol on dorsal raphe gene expression in old female macaques. PLoS One 2017; 12:e0178788. [PMID: 28628658 PMCID: PMC5476244 DOI: 10.1371/journal.pone.0178788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/18/2017] [Indexed: 12/19/2022] Open
Abstract
The beneficial effects of bioidentical ovarian steroid hormone therapy (HT) during the perimenopause are gaining recognition. However, the positive effects of estrogen (E) plus or minus progesterone (P) administration to ovariectomized (Ovx) lab animals were recognized in multiple systems for years before clinical trials could adequately duplicate the results. Moreover, very large numbers of women are often needed to find statistically significant results in clinical trials of HT; and there are still opposing results being published, especially in neural and cardiovascular systems. One of the obvious differences between human and animal studies is diet. Laboratory animals are fed a diet that is low in fat and refined sugar, but high in micronutrients. In the US, a large portion of the population eats what is known as a "western style diet" or WSD that provides calories from 36% fat, 44% carbohydrates (includes 18.5% sugars) and 18% protein. Unfortunately, obesity and diabetes have reached epidemic proportions and the percentage of obese women in clinical trials may be overlooked. We questioned whether WSD and obesity could decrease the positive neural effects of estradiol (E) in the serotonin system of old macaques that were surgically menopausal. Old ovo-hysterectomized female monkeys were fed WSD for 2.5 years, and treated with placebo, Immediate E (ImE) or Delayed E (DE). Compared to old Ovx macaques on primate chow and treated with placebo or E, the WSD-fed monkeys exhibited greater individual variance and blunted responses to E-treatment in the expression of genes related to serotonin neurotransmission, CRH components in the midbrain, synapse assembly, DNA repair, protein folding, ubiquitylation, transport and neurodegeneration. For many of the genes examined, transcript abundance was lower in WSD-fed than chow-fed monkeys. In summary, an obesogenic diet for 2.5 years in old surgically menopausal macaques blunted or increased variability in E-induced gene expression in the dorsal raphe. These results suggest that with regard to function and viability in the dorsal raphe, HT may not be as beneficial for obese women as normal weight women.
Collapse
Affiliation(s)
- Cynthia L. Bethea
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, United States of America
| | - Kevin Mueller
- Division of Reproductive and Developmental Science, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Arubala P. Reddy
- Department of Internal Medicine, Texas Technical University Health Sciences Center School of Medicine, Lubbock, TX, United States of America
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States of America
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States of America
| |
Collapse
|
8
|
Bethea CL, Reddy AP, Christian FL. How Studies of the Serotonin System in Macaque Models of Menopause Relate to Alzheimer's Disease1. J Alzheimers Dis 2017; 57:1001-1015. [PMID: 27662311 PMCID: PMC5575917 DOI: 10.3233/jad-160601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Serotonin plays a key role in mood or affect, and dysfunction of the serotonin system has been linked to depression in humans and animal models. Depression appears prior to or coincident with overt symptoms of Alzheimer's disease (AD) in about 50% of patients, and some experts consider it a risk factor for the development of AD. In addition, AD is more prevalent in women, who also show increased incidence of depression. Indeed, it has been proposed that mechanisms underlying depression overlap the mechanisms thought to hasten AD. Women undergo ovarian failure and cessation of ovarian steroid production in middle age and the postmenopausal period correlates with an increase in the onset of depression and AD. This laboratory has examined the many actions of ovarian steroids in the serotonin system of non-human primates using a rhesus macaque model of surgical menopause with short or long-term estradiol (E) or estradiol plus progesterone (E+P) replacement therapy. In this mini-review, we present a brief synopsis of the relevant literature concerning AD, depression, and serotonin. We also present some of our data on serotonin neuron viability, the involvement of the caspase-independent pathway, and apoptosis-inducing factor in serotonin-neuron viability, as well as gene expression related to neurodegeneration and neuron viability in serotonin neurons from adult and aged surgical menopausal macaques. We show that ovarian steroids, particularly E, are crucial for serotonin neuron function and health. In the absence of E, serotonin neurons are endangered and deteriorating toward apoptosis. The possibility that this scenario may proceed or accompany AD in postmenopausal women seems likely.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97229 and Department of Obstetrics and Gynecology, Oregon Health and Sciences University, Portland, OR 97239
| | - Arubala P Reddy
- Department of Internal Medicine, Texas Tech Health Science Center, Lubbock, Texas 79430
| | - Fernanda Lima Christian
- Federal University of Santa Catarina, Center of Biological Sciences, Department of Physiological Sciences, Florianópolis, SC - Brazil 88040-900
| |
Collapse
|
9
|
Bethea CL, Reddy AP. Ovarian steroids regulate gene expression related to DNA repair and neurodegenerative diseases in serotonin neurons of macaques. Mol Psychiatry 2015; 20:1565-78. [PMID: 25600110 PMCID: PMC4508249 DOI: 10.1038/mp.2014.178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/28/2014] [Accepted: 11/13/2014] [Indexed: 12/26/2022]
Abstract
Depression often accompanies the perimenopausal transition and it often precedes overt symptomology in common neurodegenerative diseases (NDDs, such as Alzheimer's, Parkinson's, Huntington, amyotrophic lateral sclerosis). Serotonin dysfunction is frequently found in the different etiologies of depression. We have shown that ovariectomized (Ovx) monkeys treated with estradiol (E) for 28 days supplemented with placebo or progesterone (P) on days 14-28 had reduced DNA fragmentation in serotonin neurons of the dorsal raphe nucleus, and long-term Ovx monkeys had fewer serotonin neurons than intact controls. We questioned the effect of E alone or E+P (estradiol supplemented with progesterone) on gene expression related to DNA repair, protein folding (chaperones), the ubiquitin-proteosome, axon transport and NDD-specific genes in serotonin neurons. Ovx macaques were treated with placebo, E or E+P (n=3 per group) for 1 month. Serotonin neurons were laser captured and subjected to microarray analysis and quantitative real-time PCR (qRT-PCR). Increases were confirmed with qRT-PCR in five genes that code for proteins involved in repair of strand breaks and nucleotide excision. NBN1, PCNA (proliferating nuclear antigen), GADD45A (DNA damage-inducible), RAD23A (DNA damage recognition) and GTF2H5 (gene transcription factor 2H5) significantly increased with E or E+P treatment (all analysis of variance (ANOVA), P<0.01). Chaperone genes HSP70 (heat-shock protein 70), HSP60 and HSP27 significantly increased with E or E+P treatment (all ANOVA, P<0.05). HSP90 showed a similar trend. Ubiquinase coding genes UBEA5, UBE2D3 and UBE3A (Parkin) increased with E or E+P (all ANOVA, P<0.003). Transport-related genes coding kinesin, dynein and dynactin increased with E or E+P treatment (all ANOVA, P<0.03). SCNA (α-synuclein) and ADAM10 (α-secretase) increased (both ANOVA, P<0.02) but PSEN1 (presenilin1) decreased (ANOVA, P<0.02) with treatment. APP decreased 10-fold with E or E+P administration. Newman-Keuls post hoc comparisons indicated variation in the response to E alone versus E+P across the different genes. In summary, E or E+P increased gene expression for DNA repair mechanisms in serotonin neurons, thereby rendering them less vulnerable to stress-induced DNA fragmentation. In addition, E or E+P regulated four genes encoding proteins that are often misfolded or malfunctioning in neuronal populations subserving overt NDD symptomology. The expression and regulation of these genes in serotonergic neurons invites speculation that they may mediate an underlying disease process in NDDs, which in turn may be ameliorated or delayed with timely hormone therapy in women.
Collapse
Affiliation(s)
- Cynthia L. Bethea
- Division of Reproductive Sciencesm, Oregon National Primate Research Center Beaverton, OR 97006, Division of Neuroscience Oregon National Primate Research Center Beaverton, OR 97006, Department of Obstetrics and Gynecology Oregon Health and Science University Portland, OR 97201
| | - Arubala P. Reddy
- Division of Reproductive Sciencesm, Oregon National Primate Research Center Beaverton, OR 97006
| |
Collapse
|
10
|
Wang F, Shi X, Qin X, Wen Z, Zhao X, Li C. Expression of CD56 in patients with adenomyosis and its correlation with dysmenorrhea. Eur J Obstet Gynecol Reprod Biol 2015; 194:101-5. [DOI: 10.1016/j.ejogrb.2015.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 11/30/2022]
|
11
|
Bethea CL, Kohama SG, Reddy AP, Urbanski HF. Ovarian steroids regulate gene expression in the dorsal raphe of old female macaques. Neurobiol Aging 2015; 37:179-191. [PMID: 26686671 DOI: 10.1016/j.neurobiolaging.2015.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 09/18/2015] [Accepted: 10/05/2015] [Indexed: 11/18/2022]
Abstract
With extended life spans in modern humans, menopause has become a significant risk factor for depression, anxiety, loss of cognitive functions, weight gain, metabolic disease, osteoporosis, cardiovascular disease, and neurodegenerative diseases. Clinical studies have found beneficial neural effects of ovarian steroid hormone therapy (HT) during the menopausal transition and data are emerging that it can be continued long term. To further understand molecular underpinnings of the clinical studies, we used quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) to examine gene expression in the serotonergic dorsal raphe of old (>18 years) rhesus macaques, focusing on genes related to depression, cellular resilience, and neurodegenerative diseases. The animals were ovariectomized (Ovx, surgically menopausal) and subjected to either estradiol or estradiol plus progesterone HT, or to placebo, starting 2 months after Ovx and continuing for ∼ 4 years. Significant changes were observed in 36 of 48 genes examined that encode proteins supporting serotonin neurotransmission, synapse assembly, glutamate neurotransmission, DNA repair, chaperones, ubiquinases and transport motors, as well as genes encoding proteins that have potential to delay the onset of neuropathologies. The data reveal important gene targets for chronic HT that contribute to neural health. Alternatively, the loss of ovarian steroids may lead to loss of functions at the gene level that contribute to many of the observable neural deficits after menopause.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, USA.
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Arubala P Reddy
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Internal Medicine, Texas Tech Health Science Center, Lubbock, TX, USA
| | - Henryk F Urbanski
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR, USA; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
12
|
Bethea CL, Phu K, Belikova Y, Bethea SC. Localization and regulation of reproductive steroid receptors in the raphe serotonin system of male macaques. J Chem Neuroanat 2015; 66-67:19-27. [PMID: 25908331 DOI: 10.1016/j.jchemneu.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/02/2015] [Accepted: 04/03/2015] [Indexed: 02/01/2023]
Abstract
We previously showed that tryptophan hydroxylase 2 (TPH2) and serotonin reuptake transporter (SERT) mRNAs are increased by the androgens, testosterone (T) and dihydrotestosterone (DHT) in serotonin neurons of male macaques. In addition, we observed that serotonin in axons of a terminal region were markedly decreased by aromatase inhibition and lack of estradiol (E) from metabolism of T. These observations implicated androgen receptors (AR) and estrogen receptors (ER) in the transduction of steroid hormone actions in serotonin neurons. Due to the longer treatment period employed, the expression of the cognate nuclear receptors was sought. We used single and double immunohistochemistry to quantitate and phenotypically localize AR, ERα and ERβ in the dorsal raphe of male macaques. Male Japanese macaques (Macaca fuscata) were castrated for 5-7 months and then treated for 3 months with [1] placebo, [2] T, [3] DHT (non-aromatizable androgen) plus ATD (steroidal aromatase inhibitor), or [4] Flutamide (FLUT; androgen antagonist) plus ATD (n = 5/group). After single labeling of each receptor, quantitative image analysis was applied and receptor positive neurons were counted. Double-label of raphe neurons for each receptor plus TPH2 determined whether the receptors were localized in serotonin neurons. There were significantly more AR-positive neurons in T- and DHT+ATD-treated groups (p = 0.0014) compared to placebo or FLUT+ATD-treated groups. There was no difference in the number of positive-neurons stained for ERα or ERβ⋅ Double-immunohistochemistry revealed that serotonin neurons did not contain AR. Rather, AR-positive nuclei were found in neighboring cells that are likely neurons. However, approximately 40% of dorsal raphe serotonin neurons contained ERα or ERβ⋅ In conclusion, the stimulatory effect of androgens on TPH2 and SERT mRNA expression is mediated indirectly by neighboring neurons contain AR. The stimulatory effect of E, derived from T metabolism, on serotonin transport is partially mediated directly via nuclear ERs.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States; Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, United States; Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97201, United States.
| | - Kenny Phu
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States
| | - Yelena Belikova
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States
| | - Sarah C Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, United States
| |
Collapse
|
13
|
Kou XX, Li CS, He DQ, Wang XD, Hao T, Meng Z, Zhou YH, Gan YH. Estradiol promotes M1-like macrophage activation through cadherin-11 to aggravate temporomandibular joint inflammation in rats. THE JOURNAL OF IMMUNOLOGY 2015; 194:2810-8. [PMID: 25681337 DOI: 10.4049/jimmunol.1303188] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages play a major role in joint inflammation. Estrogen is involved in rheumatoid arthritis and temporomandibular disorders. However, the underlying mechanism is still unclear. This study was done to verify and test how estrogen affects M1/M2-like macrophage polarization and then contributes to joint inflammation. Female rats were ovariectomized and treated with increasing doses of 17β-estradiol for 10 d and then intra-articularly injected with CFA to induce temporomandibular joint (TMJ) inflammation. The polarization of macrophages and expression of cadherin-11 was evaluated at 24 h after the induction of TMJ inflammation and after blocking cadherin-11 or estrogen receptors. NR8383 macrophages were treated with estradiol and TNF-α, with or without blocking cadherin-11 or estrogen receptors, to evaluate the expression of the M1/M2-like macrophage-associated genes. We found that estradiol increased the infiltration of macrophages with a proinflammatory M1-like predominant profile in the synovium of inflamed TMJ. In addition, estradiol dose-dependently upregulated the expressions of the M1-associated proinflammatory factor inducible NO synthase (iNOS) but repressed the expressions of the M2-associated genes IL-10 and arginase in NR8383 macrophages. Furthermore, estradiol mainly promoted cadherin-11 expression in M1-like macrophages of inflamed TMJ. By contrast, blockage of cadherin-11 concurrently reversed estradiol-potentiated M1-like macrophage activation and TMJ inflammation, as well as reversed TNF-α-induced induction of inducible NO synthase and NO in NR8383 macrophages. The blocking of estrogen receptors reversed estradiol-potentiated M1-like macrophage activation and cadherin-11 expression. These results suggested that estradiol could promote M1-like macrophage activation through cadherin-11 to aggravate the acute inflammation of TMJs.
Collapse
Affiliation(s)
- Xiao-Xing Kou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China; and Central Laboratory and Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Chen-Shuang Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China; and
| | - Dan-Qing He
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China; and
| | - Xue-Dong Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China; and
| | - Ting Hao
- Central Laboratory and Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Zhen Meng
- Central Laboratory and Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| | - Yan-Heng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China; and
| | - Ye-Hua Gan
- Central Laboratory and Center for Temporomandibular Disorders and Orofacial Pain, Peking University School and Hospital of Stomatology, Beijing 100081, People's Republic of China
| |
Collapse
|
14
|
Kou XX, Wang XD, Li CS, Bi RY, Meng Z, Li B, Zhou YH, Gan YH. Estradiol-potentiated cadherin-11 in synovial membrane involves in temporomandibular joint inflammation in rats. J Steroid Biochem Mol Biol 2014; 143:444-50. [PMID: 25006014 DOI: 10.1016/j.jsbmb.2014.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/22/2022]
Abstract
Estrogen is involved in inflammation/pain of temporomandibular joint (TMJ), but the underlying mechanisms are largely unknown. Cadherin-11 plays an essential role in synovial inflammation. This study examined whether estrogen could potentiate cadherin-11 in synoviocytes and contribute to TMJ inflammatory pain. Female rats were ovariectomized, treated with increasing doses of 17β-estradiol for 10 days, and injected intra-articularly with complete Freund's adjuvant to induce TMJ inflammation. The expression of cadherin-11 in synovial membrane was evaluated. TMJ pain was blocked with intra-articular injection of anti-cadherin-11 antibody and evaluated by head withdrawal threshold. Primary TMJ synoviocytes were treated with estradiol and tumor necrosis factor (TNF)-α or blocked with anti-cadherin-11 antibody to assess the expression of cadherin-11, interleukin (IL)-6, cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS). We observed that estradiol potentiated the inflammation-induced expression of cadherin-11 in the synoviocytes of synovial membrane from inflamed TMJ. Estradiol induced cadherin-11 expression in a dose- and time-dependent manner in primary synoviocytes and further potentiated the induction of cadherin-11 by TNF-α in synoviocytes. Furthermore, an estrogen receptor antagonist or a NF-κB inhibitor partially blocked the effects of estradiol on cadherin-11 induction in the synovial membrane. Blocking cadherin-11 partially reversed the TMJ inflammatory pain and estradiol-potentiated proliferation of synovial lining cells accompanied with iNOS expression. In addition, blocking cadherin-11 reversed TNF-α-induced and estradiol-potentiated transcription of IL-6, COX-2, and iNOS in primary synoviocytes. These results suggest that estrogen aggravated TMJ inflammatory pain partially through cadherin-11-mediated release of proinflammatory cytokines and enzymes in the synoviocytes.
Collapse
Affiliation(s)
- Xiao-Xing Kou
- Department of Orthodontics, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China; Center for Craniofacial Stem Cell Research and Regeneration, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China
| | - Xue-Dong Wang
- Department of Orthodontics, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China; Center for Craniofacial Stem Cell Research and Regeneration, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China
| | - Chen-Shuang Li
- Department of Orthodontics, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China
| | - Rui-Yun Bi
- The 3rd Dental Center, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China
| | - Zhen Meng
- Central Laboratory and Center for Temporomandibular Disorders and Orofacial Pain, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China
| | - Bei Li
- The 3rd Dental Center, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China
| | - Yan-Heng Zhou
- Department of Orthodontics, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China; Center for Craniofacial Stem Cell Research and Regeneration, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China.
| | - Ye-Hua Gan
- Central Laboratory and Center for Temporomandibular Disorders and Orofacial Pain, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
15
|
Goodloe AH, Evans JM, Middha S, Prasad A, Olson TM. Characterizing genetic variation of adrenergic signalling pathways in Takotsubo (stress) cardiomyopathy exomes. Eur J Heart Fail 2014; 16:942-9. [PMID: 25132214 DOI: 10.1002/ejhf.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/20/2014] [Accepted: 06/27/2014] [Indexed: 01/21/2023] Open
Abstract
AIMS Exome sequencing was used to genotype comprehensively a Takotsubo (stress) cardiomyopathy (TC) cohort, enabling investigation of a vast 486 gene network for adrenergic signalling. METHODS AND RESULTS Twenty-eight TC subjects, including a mother-daughter pair and five recurrent cases, underwent whole-exome sequencing. Frequencies of 17 common, functional adrenergic polymorphisms were statistically similar to those of population controls. Filtering for rare, predicted-deleterious, catecholamine/adrenergic signalling variants revealed heterozygosity in 55 genes in TC cases and 59 genes in healthy controls. Overall allele burden was similar and did not discriminate clinical variables among TC subjects, but gene identities were largely cohort specific, and TC cases were enriched for variants within functional domains (68% vs. 48%, P = 0.031). Two-thirds of TC cases carried more than one filtered adrenergic pathway variant, and 11 genes harboured a variant in ≥ 2 cases. The mother-daughter pair shared missense variants in highly conserved functional domains of ADH5, CACNG1, EPHA4, and PRKCA. An adrenergic pathway-independent analysis of the cohort exposed no common gene for TC. CONCLUSIONS Overall, these data support genetic heterogeneity in TC susceptibility and a likely polygenic basis, conferring a cumulative effect on adrenergic pathway dysregulation in a subset of individual subjects. Study of larger cohorts and non-coding regulatory regions is warranted to define genetic risk factors for TC further.
Collapse
|
16
|
Rahman MS, Thomas P. Interactive effects of hypoxia with estradiol-17β on tryptophan hydroxylase activity and serotonin levels in the Atlantic croaker hypothalamus. Gen Comp Endocrinol 2013; 192:71-6. [PMID: 23500675 DOI: 10.1016/j.ygcen.2013.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
Hypoxia causes a marked decline in reproductive neuroendocrine function in Atlantic croaker due to decreases in the hypothalamic expression and activities of tryptophan hydroxylase (TPH, the rate limiting enzyme in serotonin synthesis) and aromatase. In the present study, the influence of the estrogen status on hypothalamic TPH and serotonin (5-HT) regulation by hypoxia (dissolved oxygen: 1.7 mg/L for 4 weeks) was investigated in croaker. Treatment in vivo with the aromatase inhibitor, ATD (1,4,6-androstatrien-3,17-dione), significantly decreased TPH activity, TPHs (TPH-1 and TPH-2) mRNAs expression, and 5-hydroxytryptophan (5-HTP, an immediate precursor of 5-HT) and 5-HT contents in croaker hypothalamus. Treatment with estradiol-17β partially restored hypothalamic TPH activity, TPHs mRNA expression, and 5-HTP and 5-HT contents in hypoxia-exposed fish. These results suggest that the hypoxia-induced inhibition of TPH and 5-HT synthesis is dependent on the estrogen status. To our knowledge, this is the first report of a role for estrogens in modulating neural TPH and 5-HT responses to hypoxia in aquatic vertebrates.
Collapse
Affiliation(s)
- Md Saydur Rahman
- University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | | |
Collapse
|
17
|
Rivera HM, Bethea CL. Ovarian steroids increase PSD-95 expression and dendritic spines in the dorsal raphe of ovariectomized macaques. Synapse 2013; 67:897-908. [PMID: 23959764 DOI: 10.1002/syn.21702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/30/2013] [Accepted: 08/10/2013] [Indexed: 01/19/2023]
Abstract
Estradiol (E) and progesterone (P) promote spinogenesis in several brain areas. Intracellular signaling cascades that promote spinogenesis involve RhoGTPases, glutamate signaling and synapse assembly. We found that in serotonin neurons, E ± P administration increases (a) gene and protein expression of RhoGTPases, (b) gene expression of glutamate receptors, and (c) gene expression of pivotal synapse assembly proteins. Therefore, in this study we determined whether structural changes in dendritic spines in the dorsal raphe follow the observed changes in gene and protein expression. Dendritic spines were examined with immunogold silver staining of a spine marker protein, postsynaptic density-95 (PSD-95) and with Golgi staining. In the PSD-95 study, adult Ovx monkeys received placebo, E, P, or E + P for 1 month (n = 3/group). Sections were immunostained for PSD-95 and the number of PSD-95-positive puncta was determined with stereology. E, P, and E + P treatment significantly increased the total number of PSD-95-positive puncta (ANOVA, P = 0.04). In the golgi study, adult Ovx monkeys received placebo, E or E + P for 1 month (n = 3-4) and the midbrain was golgi-stained. A total of 80 neurons were analyzed with Neurolucida software. There was a significant difference in spine density that depended on branch order (two-way ANOVA). E + P treatment significantly increased spine density in higher-order (3°-5°) dendritic branches relative to Ovx group (Bonferroni, P < 0.05). In summary, E + P leads to the elaboration of dendritic spines on dorsal raphe neurons. The ability of E to induce PSD-95, but not actual spines, suggests either a sampling or time lag issue. Increased spinogenesis on serotonin dendrites would facilitate excitatory glutamatergic input and, in turn, increase serotonin neurotransmission throughout the brain.
Collapse
Affiliation(s)
- Heidi M Rivera
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, Oregon, 97006
| | | |
Collapse
|
18
|
Donner NC, Lowry CA. Sex differences in anxiety and emotional behavior. Pflugers Arch 2013; 465:601-26. [PMID: 23588380 DOI: 10.1007/s00424-013-1271-7] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/13/2013] [Accepted: 03/13/2013] [Indexed: 12/14/2022]
Abstract
Research has elucidated causal links between stress exposure and the development of anxiety disorders, but due to the limited use of female or sex-comparative animal models, little is known about the mechanisms underlying sex differences in those disorders. This is despite an overwhelming wealth of evidence from the clinical literature that the prevalence of anxiety disorders is about twice as high in women compared to men, in addition to gender differences in severity and treatment efficacy. We here review human gender differences in generalized anxiety disorder, panic disorder, posttraumatic stress disorder and anxiety-relevant biological functions, discuss the limitations of classic conflict anxiety tests to measure naturally occurring sex differences in anxiety-like behaviors, describe sex-dependent manifestation of anxiety states after gestational, neonatal, or adolescent stressors, and present animal models of chronic anxiety states induced by acute or chronic stressors during adulthood. Potential mechanisms underlying sex differences in stress-related anxiety states include emerging evidence supporting the existence of two anatomically and functionally distinct serotonergic circuits that are related to the modulation of conflict anxiety and panic-like anxiety, respectively. We discuss how these serotonergic circuits may be controlled by reproductive steroid hormone-dependent modulation of crfr1 and crfr2 expression in the midbrain dorsal raphe nucleus and by estrous stage-dependent alterations of γ-aminobutyric acid (GABAergic) neurotransmission in the periaqueductal gray, ultimately leading to sex differences in emotional behavior.
Collapse
Affiliation(s)
- Nina C Donner
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, 1725 Pleasant Street, 114 Clare Small, Boulder, CO 80309-0354, USA.
| | | |
Collapse
|
19
|
Embree M, Michopoulos V, Votaw JR, Voll RJ, Mun J, Stehouwer JS, Goodman MM, Wilson ME, Sánchez MM. The relation of developmental changes in brain serotonin transporter (5HTT) and 5HT1A receptor binding to emotional behavior in female rhesus monkeys: effects of social status and 5HTT genotype. Neuroscience 2012; 228:83-100. [PMID: 23079633 DOI: 10.1016/j.neuroscience.2012.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/21/2023]
Abstract
The goal of the present study was to examine how social subordination stress and 5HTT polymorphisms affect the development of brain serotonin (5HT) systems during the pubertal transition in female rhesus monkeys. We also examined associations with developmental changes in emotional reactivity in response to a standardized behavioral test, the Human Intruder (HI). Our findings provide the first longitudinal evidence of developmental increases in 5HT1A receptor and 5HTT binding in the brain of female primates from pre- to peripuberty. The increase in 5HT1A BP(ND) in these socially housed female rhesus monkeys is a robust finding, occurring across all groups, regardless of social status or 5HTT genotype, and occurring in the left and right hemispheres of all prefrontal regions studied, as well as the amygdala, hippocampus, hypothalamus, and raphe nuclei. 5HTT BP(ND) also showed an increase with age in raphe, anterior cingulate cortex, and dorsolateral prefrontal cortex. These changes in brain 5HT systems take place as females establish more adult-like patterns of social behavior, as well as during the HI paradigm. Indeed, the main developmental changes in behavior during the HI (increase in freezing and decrease in submission/appeasement) were related to neurodevelopmental increases in 5HT1A receptors and 5HTT, because the associations between these behaviors and 5HT endpoints emerge at peripuberty. We detected an effect of social status on 5HT1A BP(ND) in the hypothalamus and on 5HTT BP(ND) in the orbitofrontal cortex, with subordinates showing higher BP(ND) than dominants in both cases during the pubertal transition. No main effects of 5HTT genotype were observed for 5HT1A or 5HTT BP(ND). Our findings indicate that adolescence in female rhesus monkeys is a period of central 5HT reorganization, partly influenced by exposure to the social stress of subordination, that likely functions to integrate adrenal and gonadal systems and shape the behavioral response to emotionally challenging social situations.
Collapse
Affiliation(s)
- M Embree
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lesch KP, Waider J. Serotonin in the Modulation of Neural Plasticity and Networks: Implications for Neurodevelopmental Disorders. Neuron 2012; 76:175-91. [DOI: 10.1016/j.neuron.2012.09.013] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2012] [Indexed: 12/23/2022]
|
21
|
Rivera HM, Bethea CL. Ovarian steroids increase spinogenetic proteins in the macaque dorsal raphe. Neuroscience 2012; 208:27-40. [PMID: 22342969 DOI: 10.1016/j.neuroscience.2012.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/09/2012] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
Abstract
Dendritic spines are the basic structural units of neuronal plasticity. Intracellular signaling cascades that promote spinogenesis have centered on RhoGTPases. We found that ovarian steroids increase gene expression of RhoGTPases [Ras homolog gene family member A (RhoA), cell division control protein 42 homolog (Cdc42), and ras-related C3 botulinum toxin substrate (Rac)] in laser-captured serotonin neurons. We sought to confirm that the increases observed in gene expression translate to the protein level. In addition, a preliminary study was conducted to determine whether an increase in spines occurs via detection of the spine marker protein, postsynaptic density-95 (PSD-95). Adult ovariectomized (Ovx) monkeys were treated with estradiol (E), progesterone (P), or E+P for 1 month. Sections through the dorsal raphe nucleus were immunostained for RhoA and Cdc42 (n=3-4/group). The number and positive pixel area of RhoA-positive cells and the positive pixel area of Cdc42-positive fibers were determined. On combining E- and E+P-treated groups, there was a significant increase in the average and total cell number and positive pixel area of RhoA-positive cells. E, P, and E+P treatments, individually or combined, also increased the average and total positive pixel area of Cdc42-positive fibers. With remaining sections from two animals in each group, we conducted a preliminary examination of the regulation of PSD-95 protein expression. PSD-95, a postsynaptic scaffold protein, was examined with immunogold silver staining (n=2/group), and the total number of PSD-95-positive puncta was determined with stereology across four levels of the dorsal raphe. E, P, and E+P treatment significantly increased the total number of PSD-95-positive puncta. Together, these findings indicate that ovarian steroids act to increase gene and protein expression of two pivotal RhoGTPases involved in spinogenesis and preliminarily indicate that an increased number of spines and/or synapses result from this action. Increased spinogenesis on serotonin dendrites would facilitate excitatory glutamatergic input and in turn, increase serotonin neuronal activity throughout the brain.
Collapse
Affiliation(s)
- H M Rivera
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | |
Collapse
|