1
|
Smith TA, Zhou L, Ghergherehchi CL, Mikesh M, Yang CZ, Tucker HO, Allgood J, Bushman JS, Bittner GD. Polyethylene glycol has immunoprotective effects on sciatic allografts, but behavioral recovery and graft tolerance require neurorrhaphy and axonal fusion. Neural Regen Res 2025; 20:1192-1206. [PMID: 38989956 PMCID: PMC11438327 DOI: 10.4103/nrr.nrr-d-23-01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/26/2023] [Accepted: 02/29/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00033/figure1/v/2024-07-06T104127Z/r/image-tiff Behavioral recovery using (viable) peripheral nerve allografts to repair ablation-type (segmental-loss) peripheral nerve injuries is delayed or poor due to slow and inaccurate axonal regeneration. Furthermore, such peripheral nerve allografts undergo immunological rejection by the host immune system. In contrast, peripheral nerve injuries repaired by polyethylene glycol fusion of peripheral nerve allografts exhibit excellent behavioral recovery within weeks, reduced immune responses, and many axons do not undergo Wallerian degeneration. The relative contribution of neurorrhaphy and polyethylene glycol-fusion of axons versus the effects of polyethylene glycol per se was unknown prior to this study. We hypothesized that polyethylene glycol might have some immune-protective effects, but polyethylene glycol-fusion was necessary to prevent Wallerian degeneration and functional/behavioral recovery. We examined how polyethylene glycol solutions per se affect functional and behavioral recovery and peripheral nerve allograft morphological and immunological responses in the absence of polyethylene glycol-induced axonal fusion. Ablation-type sciatic nerve injuries in outbred Sprague-Dawley rats were repaired according to a modified protocol using the same solutions as polyethylene glycol-fused peripheral nerve allografts, but peripheral nerve allografts were loose-sutured (loose-sutured polyethylene glycol) with an intentional gap of 1-2 mm to prevent fusion by polyethylene glycol of peripheral nerve allograft axons with host axons. Similar to negative control peripheral nerve allografts not treated by polyethylene glycol and in contrast to polyethylene glycol-fused peripheral nerve allografts, animals with loose-sutured polyethylene glycol peripheral nerve allografts exhibited Wallerian degeneration for all axons and myelin degeneration by 7 days postoperatively and did not recover sciatic-mediated behavioral functions by 42 days postoperatively. Other morphological signs of rejection, such as collapsed Schwann cell basal lamina tubes, were absent in polyethylene glycol-fused peripheral nerve allografts but commonly observed in negative control and loose-sutured polyethylene glycol peripheral nerve allografts at 21 days postoperatively. Loose-sutured polyethylene glycol peripheral nerve allografts had more pro-inflammatory and less anti-inflammatory macrophages than negative control peripheral nerve allografts. While T cell counts were similarly high in loose-sutured-polyethylene glycol and negative control peripheral nerve allografts, loose-sutured polyethylene glycol peripheral nerve allografts expressed some cytokines/chemokines important for T cell activation at much lower levels at 14 days postoperatively. MHCI expression was elevated in loose-sutured polyethylene glycol peripheral nerve allografts, but MHCII expression was modestly lower compared to negative control at 21 days postoperatively. We conclude that, while polyethylene glycol per se reduces some immune responses of peripheral nerve allografts, successful polyethylene glycol-fusion repair of some axons is necessary to prevent Wallerian degeneration of those axons and immune rejection of peripheral nerve allografts, and produce recovery of sensory/motor functions and voluntary behaviors. Translation of polyethylene glycol-fusion technologies would produce a paradigm shift from the current clinical practice of waiting days to months to repair ablation peripheral nerve injuries.
Collapse
Affiliation(s)
- Tyler A. Smith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Liwen Zhou
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | | | - Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Cathy Z. Yang
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Haley O. Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - JuliAnne Allgood
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, USA
| | - Jared S. Bushman
- Division of Pharmaceutical Sciences, University of Wyoming, Laramie, WY, USA
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
2
|
Weiss SN, Legato JM, Liu Y, Vaccaro CN, Da Silva RP, Miskiel S, Gilbert GV, Hakonarson H, Fuller DA, Buono RJ. An analysis of differential gene expression in peripheral nerve and muscle utilizing RNA sequencing after polyethylene glycol nerve fusion in a rat sciatic nerve injury model. PLoS One 2024; 19:e0304773. [PMID: 39231134 PMCID: PMC11373823 DOI: 10.1371/journal.pone.0304773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/19/2024] [Indexed: 09/06/2024] Open
Abstract
Application of polyethylene glycol (PEG) to a peripheral nerve injury at the time of primary neurorrhaphy is thought to prevent Wallerian degeneration via direct axolemma fusion. The molecular mechanisms of nerve fusion and recovery are unclear. Our study tested the hypothesis that PEG alters gene expression in neural and muscular environments as part of its restorative properties. Lewis rats underwent unilateral sciatic nerve transection with immediate primary repair. Subjects were randomly assigned to receive either PEG treatment or standard repair at the time of neurorrhaphy. Samples of sciatic nerve distal to the injury and tibialis muscle at the site of innervation were harvested at 24 hours and 4 weeks postoperatively. Total RNA sequencing and subsequent bioinformatics analyses were used to identify significant differences in differentially expressed genes (DEGs) and their related biological pathways (p<0.05) in PEG-treated subjects compared to non-PEG controls. No significant DEGs were identified in PEG-treated sciatic nerve compared to controls after 24 hours, but 1,480 DEGs were identified in PEG-treated tibialis compared to controls. At 4 weeks, 918 DEGs were identified in PEG-treated sciatic nerve, whereas only 3 DEGs remained in PEG-treated tibialis compared to controls. DEGs in sciatic were mostly upregulated (79%) and enriched in pathways present during nervous system development and growth, whereas DEGs in muscle were mostly downregulated (77%) and related to inflammation and tissue repair. Our findings indicate that PEG application during primary neurorrhaphy leads to significant differential gene regulation in the neural and muscular environment that is associated with improved functional recovery in animals treated with PEG compared to sham non-PEG controls. A detailed understanding of key molecules underlying PEG function in recovery after peripheral nerve repair may facilitate amplification of PEG effects through systemic or focal treatments at the time of neurotmesis.
Collapse
Affiliation(s)
- Samantha N Weiss
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, United States of America
| | - Joseph M Legato
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Yichuan Liu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Courtney N Vaccaro
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Renata Pellegrino Da Silva
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Sandra Miskiel
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Grace V Gilbert
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - David A Fuller
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, United States of America
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Sarac BA, Wordsworth M, Schmucker RW. Polyethylene Glycol Fusion and Nerve Repair Success: Practical Applications. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:740-742. [PMID: 39381383 PMCID: PMC11456640 DOI: 10.1016/j.jhsg.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/20/2024] [Indexed: 10/10/2024] Open
Abstract
Peripheral nerve injuries are potentially devastating injuries leading to pain and impairment in motor and sensory functions. Since the first published use of microsurgical epineural repair of peripheral nerves in 1964, a wide variety of adjuncts have been studied. Polyethylene glycol is a fusogen that has been shown to restore axolemmal membranes. The use of polyethylene glycol in nerve injuries was first described in 1986, and animal studies have shown fusion of transected sensory and motor nerves following early application at the time of surgical repair with improved motor and sensory outcomes. Early human clinical trials have shown promising results, although more data are needed to provide specific indications and protocols. This article summarizes the background, current evidence, and future directions as well as potential applications of polyethylene glycol-mediated nerve fusion.
Collapse
Affiliation(s)
- Benjamin A. Sarac
- Department of Plastic and Reconstructive Surgery, the Ohio State University Wexner Medical Center, Columbus, OH
| | - Matthew Wordsworth
- Department of Plastic and Reconstructive Surgery, the Ohio State University Wexner Medical Center, Columbus, OH
| | - Ryan W. Schmucker
- Department of Plastic and Reconstructive Surgery, the Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
4
|
Frost C, Salous A, Ketheeswaran S, Ngaage LM, Hanwright PJ, Ghergherehchi C, Tuffaha S, Vaidya D, Bittner GD, Brandacher G, Shores JT. Polyethylene Glycol Fusion Restores Axonal Continuity and Improves Return of Function in a Rat Median Nerve Denervation Model. Plast Reconstr Surg 2024; 154:563-571. [PMID: 37734115 DOI: 10.1097/prs.0000000000011068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
BACKGROUND Polyethylene glycol (PEG) can fuse severed closely apposed axolemmas and restore axonal continuity. The authors evaluated the effects of PEG fusion on functional recovery in a rodent forelimb model of peripheral nerve injury. METHODS The median nerves of male Lewis rats ( n = 5 per group) were transected and repaired with standard suture repair (SR), SR with PEG (PEG), or SR with PEG and 1% methylene blue (PEG+MB); a sham surgery group was also included. Proximal stimulation produced compound nerve and muscle action potentials recorded distally. The contralateral limb of each animal acted as an internal control for grip strength measurements. RESULTS Compound nerve and muscle action potentials immediately returned in all PEG and PEG+MB animals, but not in SR animals. The PEG and PEG+MB groups demonstrated earlier return of function by postoperative day (POD) 7 (62.6 ± 7.3% and 50.9 ± 6.7% of contralateral limb grip strength, respectively) compared with the SR group, in which minimal return of function was not measurable until POD 21. At POD 98, the PEG group grip strength recovered to 77.2 ± 2.8% and the PEG+MB grip strength recovered to 79.9 ± 4.4%, compared with 34.9 ± 1.8% recovery in the SR group ( P < 0.05). The PEG and PEG+MB groups reached 50% of the sham group grip strength on POD 3.8 and POD 6.3, respectively, whereas the SR group did not reach 50% grip strength recovery of the sham group throughout the study period. CONCLUSION PEG fusion plus neurorrhaphy with or without MB reestablished axonal continuity, shortened recovery time, and augmented functional recovery compared with suture neurorrhaphy alone. CLINICAL RELEVANCE STATEMENT PEG fusion with neurorrhaphy may bypass Wallerian degeneration, leading to augmented and shortened functional recovery.
Collapse
Affiliation(s)
- Christopher Frost
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Abdel Salous
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | | | - Ledibabari M Ngaage
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Philip J Hanwright
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Cameron Ghergherehchi
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
- Department of Neuroscience, University of Texas at Austin
| | - Sami Tuffaha
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Dhananjay Vaidya
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | | | - Gerald Brandacher
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| | - Jaimie T Shores
- From the Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine
| |
Collapse
|
5
|
Lee J, Hahm SC, Yoo H, Yoon YW, Kim J. Protection of the Vascular System by Polyethylene Glycol Reduces Secondary Injury Following Spinal Cord Injury in Rats. Tissue Eng Regen Med 2023; 20:1191-1204. [PMID: 37698812 PMCID: PMC10646076 DOI: 10.1007/s13770-023-00566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Polyethylene glycol (PEG) is a hydrophilic polymer, which has been known to have a neuroprotective effect by sealing the ruptured cell membrane, but PEG effects on the vascular systems and its underlying mechanisms remain unclear. Here, we showed the neuroprotective effect of PEG by preventing damage to the vascular system. METHODS A spinal contusion was made at the T11 segment in male Sprague-Dawley rats. PEG was injected into the subdural space immediately after SCI. Vascular permeability was assessed for 24 h after SCI using intraperitoneally injected Evans blue dye. Junctional complexes were stained with CD31 and ZO-1. Infarct size was analyzed using triphenyltetrazolium chloride, and blood vessels were counted in the epicenter. Behavioral tests for motor and sensory function were performed for 6 weeks. And then the tissue-sparing area was assessed. RESULTS Immediately applied PEG significantly reduced the vascular permeability at 6, 12, and 24 h after SCI when it compared to saline, and infarct size was also reduced at 0, 6, and 24 h after SCI. In addition, a great number of blood vessels were observed in PEG group at 6 and 24 h after SCI compared to those of the saline group. The PEG group also showed a significant improvement in motor function. And tissue-sparing areas in the PEG were greater than those of the saline group. CONCLUSION The present results provide preclinical evidence for the neuroprotective effects of PEG as a promising therapeutic agent for reducing secondary injury following SCI through vascular protection.
Collapse
Affiliation(s)
- Jinseung Lee
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul, 02841, Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Korea
- Department of Physical Therapy, Undergraduate School, Korea University College of Health Science, Anam-dong, Sungbuk-gu, Seoul, 02841, Korea
| | - Suk-Chan Hahm
- Graduate School of Integrative Medicine, CHA University, Seongnam, 13488, Korea
| | - Heayeon Yoo
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul, 02841, Korea
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Korea
| | - Young Wook Yoon
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Korea
| | - Junesun Kim
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul, 02841, Korea.
- Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Korea.
- Department of Physical Therapy, Undergraduate School, Korea University College of Health Science, Anam-dong, Sungbuk-gu, Seoul, 02841, Korea.
- Department of Health and Environmental Science, Undergraduate School, Korea University College of Health Science, Seoul, 02841, Korea.
| |
Collapse
|
6
|
Mencel ML, Bittner GD. Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies. Front Physiol 2023; 14:1114779. [PMID: 37008019 PMCID: PMC10050709 DOI: 10.3389/fphys.2023.1114779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/17/2023] Open
Abstract
Neuroscientists and Cell Biologists have known for many decades that eukaryotic cells, including neurons, are surrounded by a plasmalemma/axolemma consisting of a phospholipid bilayer that regulates trans-membrane diffusion of ions (including calcium) and other substances. Cells often incur plasmalemmal damage via traumatic injury and various diseases. If the damaged plasmalemma is not rapidly repaired within minutes, activation of apoptotic pathways by calcium influx often results in cell death. We review publications reporting what is less-well known (and not yet covered in neuroscience or cell biology textbooks): that calcium influx at the lesion sites ranging from small nm-sized holes to complete axonal transection activates parallel biochemical pathways that induce vesicles/membrane-bound structures to migrate and interact to restore original barrier properties and eventual reestablishment of the plasmalemma. We assess the reliability of, and problems with, various measures (e.g., membrane voltage, input resistance, current flow, tracer dyes, confocal microscopy, transmission and scanning electron microscopy) used individually and in combination to assess plasmalemmal sealing in various cell types (e.g., invertebrate giant axons, oocytes, hippocampal and other mammalian neurons). We identify controversies such as plug versus patch hypotheses that attempt to account for currently available data on the subcellular mechanisms of plasmalemmal repair/sealing. We describe current research gaps and potential future developments, such as much more extensive correlations of biochemical/biophysical measures with sub-cellular micromorphology. We compare and contrast naturally occurring sealing with recently-discovered artificially-induced plasmalemmal sealing by polyethylene glycol (PEG) that bypasses all natural pathways for membrane repair. We assess other recent developments such as adaptive membrane responses in neighboring cells following injury to an adjacent cell. Finally, we speculate how a better understanding of the mechanisms involved in natural and artificial plasmalemmal sealing is needed to develop better clinical treatments for muscular dystrophies, stroke and other ischemic conditions, and various cancers.
Collapse
Affiliation(s)
- Marshal L. Mencel
- Institute of Cell and Molecular Biology, University of Texas at Austin, Austin, TX, United States
| | - George D. Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United States
- *Correspondence: George D. Bittner,
| |
Collapse
|
7
|
Evolving Techniques in Peripheral Nerve Regeneration. J Hand Surg Am 2021; 46:695-701. [PMID: 34140178 DOI: 10.1016/j.jhsa.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/01/2021] [Accepted: 04/08/2021] [Indexed: 02/02/2023]
Abstract
Reliable and robust peripheral nerve regeneration after a nerve injury and repair remains an elusive goal. A variety of strategies have been proposed to mitigate the effects of Wallerian degeneration (through molecular therapies), enhance axonal regeneration across the repair site (through electrical stimulation and gene therapy), and explore alternatives to suture coaptation (through the fusion of transected ends). Although most of these techniques are in their infancy, animal data and some clinical trials have demonstrated promise for improving the restoration of function after these devastating injuries.
Collapse
|
8
|
Zhang C, Wang A, Zhang G, Rong W, Wu C, Huo X. Effects of the combination therapy of electric field stimulation and polyethylene glycol in the ex vivo spinal cord of female rats after compression. J Neurosci Res 2021; 99:1850-1863. [PMID: 33847010 DOI: 10.1002/jnr.24839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/17/2023]
Abstract
The application of electric field stimulation (EFS) can reduce the cation influx after spinal cord injury. However, regenerated cation influx and reestablished injury potential are observed after EFS. Polyethylene glycol (PEG) is popular as an effective cell membrane fusion agent. This study aims to determine the effects of the combination therapy of EFS and PEG in the ex vivo spinal cord after compression. The ex vivo spinal cords of female rats with compression injury were incubated in a double sucrose gap recording chamber (DSGRC) and randomly divided into the following four groups: (1) compression group: compression only, (2) EFS group: EFS for 15 min, (3) PEG group: PEG treatment for 4 min, and (4) EFS + PEG group: EFS for 15 min and PEG treatment for 4 min. The hematoxylin-eosin staining was performed to measure the necrotic area of the spinal cords. The gap potential was detected, and the area under the curve of the gap potential was calculated. The intracellular cation concentration, membrane permeability, and compound action potential were measured and quantified. Results revealed no significant difference in the necrotic areas among different groups, and the compression model of the ex vivo spinal cord in the DSGRC had high consistency and stability. The combination therapy could attenuate cation inflow, promote cell membrane restoration, and promote the functional recovery of the spinal cord conduction after compression in ex vivo spinal cords.
Collapse
Affiliation(s)
- Cheng Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Aihua Wang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Guanghao Zhang
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei Rong
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital Medical Center, Tsinghua University, Beijing, China
| | - Changzhe Wu
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Huo
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Van Nest DS, Kahan DM, Ilyas AM. Polyethylene Glycol Fusion of Nerve Injuries: Review of the Technique and Clinical Applicability. J Hand Microsurg 2021; 13:49-54. [PMID: 33867761 PMCID: PMC8041495 DOI: 10.1055/s-0040-1718651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Traumatic peripheral nerve injuries present a particular challenge to hand surgeons as mechanisms of nerve-healing pose serious limitations to achieving complete functional recovery. The loss of distal axonal segments through Wallerian degeneration results in the loss of neuromuscular junctions and irreversible muscle atrophy. Current methods of repair depend on the outgrowth of proximal nerve fibers following direct end-to-end repair or gap repair techniques. Investigational techniques in nerve repair using polyethylene glycol (PEG) nerve fusion have been shown to bypass Wallerian degeneration by immediately restoring nerve axonal continuity, thus resulting in a rapid and more complete functional recovery. The purpose of this article is to review the current literature surrounding this novel technique for traumatic nerve repair, paying particular attention to the underlying physiology of nerve healing and the current applications of PEG fusion in the laboratory and clinical setting. This article also serves to identify areas of future investigation to further establish validity and feasibility and encourage the translation of PEG fusion into clinical use.
Collapse
Affiliation(s)
- Duncan S. Van Nest
- Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - David M. Kahan
- Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Asif M. Ilyas
- Rothman Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
10
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
11
|
Ghergherehchi CL, Shores JT, Alderete J, Weitzel EK, Bittner GD. Methylene blue enhances polyethylene glycol-fusion repair of completely severed rat sciatic nerves. Neural Regen Res 2021; 16:2056-2063. [PMID: 33642394 PMCID: PMC8343334 DOI: 10.4103/1673-5374.308099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Complete transection of peripheral mixed nerves immediately produces loss of sensory perception, muscle contractions and voluntary behavior mediated by the severed distal axons. In contrast to natural regeneration (~1 mm/d) of proximal axons that may eventually reinnervate denervated targets, re-innervation is restored within minutes by PEG-fusion that consists of neurorrhaphy and a sequence of well specified hypo- and isotonic calcium-free or calcium-containing solutions, the anti-oxidant methylene blue (MB) and the membrane fusogen polyethylene glycol (PEG). In this study, we examined the relative efficacy of PEG-fusion with no MB (0%), 0.5% MB, or 1% MB on the recovery of voluntary behaviors by female Sprague-Dawley rats with a complete mid-thigh severance of their sciatic nerve bathed in extracellular fluid or calcium-containing isotonic saline. The recovery of voluntary behaviors is the most relevant measure of success of any technique to repair peripheral nerve injuries. We assessed recovery by the sciatic functional index, a commonly used measure of voluntary hindlimb behaviors following complete sciatic transections. We reported that both 1% MB and 0.5% MB in sterile distilled water in our PEG-fusion protocol with neurorrhaphy significantly increased the rate and extent of behavioral recovery compared to PEG plus neurorrhaphy alone. Furthermore, 0.5% MB was as effective as 1% MB in voluntary behavioral recovery as assessed by the sciatic functional index. Since sterile 1% MB is no longer clinically available, we therefore recommend that 0.5% MB be included in upcoming human clinical trials to evaluate the safety and efficacy of PEG-fusion. All animal procedures were approved by the University of Texas Institutional Animal Care and Use Committee (AUP-2019-00225) on September 9, 2020.
Collapse
Affiliation(s)
- Cameron L Ghergherehchi
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph Alderete
- Department of Surgery, RESTOR Laboratory, San Antonio, TX, USA
| | - Erik K Weitzel
- Department of Surgery, RESTOR Laboratory, San Antonio, TX, USA
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Rotterman TM, Alvarez FJ. Microglia Dynamics and Interactions with Motoneurons Axotomized After Nerve Injuries Revealed By Two-Photon Imaging. Sci Rep 2020; 10:8648. [PMID: 32457369 PMCID: PMC7250868 DOI: 10.1038/s41598-020-65363-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/01/2020] [Indexed: 01/08/2023] Open
Abstract
The significance of activated microglia around motoneurons axotomized after nerve injuries has been intensely debated. In particular, whether microglia become phagocytic is controversial. To resolve these issues we directly observed microglia behaviors with two-photon microscopy in ex vivo spinal cord slices from CX3CR1-GFP mice complemented with confocal analyses of CD68 protein. Axotomized motoneurons were retrogradely-labeled from muscle before nerve injuries. Microglia behaviors close to axotomized motoneurons greatly differ from those within uninjured motor pools. They develop a phagocytic phenotype as early as 3 days after injury, characterized by frequent phagocytic cups, high phagosome content and CD68 upregulation. Interactions between microglia and motoneurons changed with time after axotomy. Microglia first extend processes that end in phagocytic cups at the motoneuron surface, then they closely attach to the motoneuron while extending filopodia over the cell body. Confocal 3D analyses revealed increased microglia coverage of the motoneuron cell body surface with time after injury and the presence of CD68 granules in microglia surfaces opposed to motoneurons. Some microglia formed macroclusters associated with dying motoneurons. Microglia in these clusters display the highest CD68 expression and associate with cytotoxic T-cells. These observations are discussed in relation to current theories on microglia function around axotomized motoneurons.
Collapse
Affiliation(s)
- Travis M Rotterman
- Department of Physiology, Emory University, Atlanta, GA, 30322, United States of America.,School of Biological Sciences, Georgia Tech, Atlanta, GA, 30318, United States of America
| | - Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA, 30322, United States of America.
| |
Collapse
|
13
|
Vargas SA, Bittner GD. Natural mechanisms and artificial PEG-induced mechanism that repair traumatic damage to the plasmalemma in eukaryotes. CURRENT TOPICS IN MEMBRANES 2019; 84:129-167. [PMID: 31610860 DOI: 10.1016/bs.ctm.2019.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eukaryotic tissues are composed of individual cells surrounded by a plasmalemma that consists of a phospholipid bilayer with hydrophobic heads that bind cell water. Bound-water creates a thermodynamic barrier that impedes the fusion of a plasmalemma with other membrane-bound intracellular structures or with the plasmalemma of adjacent cells. Plasmalemmal damage consisting of small or large holes or complete transections of a cell or axon results in calcium influx at the lesion site. Calcium activates fusogenic pathways that have been phylogenetically conserved and that lower thermodynamic barriers for fusion of membrane-bound structures. Calcium influx also activates phylogenetically conserved sealing mechanisms that mobilize the gradual accumulation and fusion of vesicles/membrane-bound structures that seal the damaged membrane. These naturally occurring sealing mechanisms for different cells vary based on the type of lesion, the type of cell, the proximity of intracellular membranous structures to the lesion and the relation to adjacent cells. The reliability of different measures to assess plasmalemmal sealing need be carefully considered for each cell type. Polyethylene glycol (PEG) bypasses calcium and naturally occurring fusogenic pathways to artificially fuse adjacent cells (PEG-fusion) or artificially seal transected axons (PEG-sealing). PEG-fusion techniques can also be used to rapidly rejoin the closely apposed, open ends of severed axons. PEG-fused axons do not (Wallerian) degenerate and PEG-fused nerve allografts are not immune-rejected, and enable behavioral recoveries not observed for any other clinical treatment. A better understanding of natural and artificial mechanisms that induce membrane fusion should provide better clinical treatment for many disorders involving plasmalemmal damage.
Collapse
Affiliation(s)
- Sara A Vargas
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United states
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, United states.
| |
Collapse
|
14
|
Bittner G, Ghergherehchi C, Mikesh M, Sengelaub D, Trevino R, Shores J. Salomone et al did not induce PEG‐fusion repair of severed rat facial nerves. Head Neck 2019; 41:3737-3739. [DOI: 10.1002/hed.25894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/22/2019] [Indexed: 11/11/2022] Open
Affiliation(s)
- George Bittner
- Department of NeuroscienceUniversity of Texas at Austin Austin Texas
- Institute for Cellular and Molecular BiologyUniversity of Texas at Austin Austin Texas
| | - Cameron Ghergherehchi
- Department of NeuroscienceUniversity of Texas at Austin Austin Texas
- Institute for Cellular and Molecular BiologyUniversity of Texas at Austin Austin Texas
| | - Michelle Mikesh
- Department of NeuroscienceUniversity of Texas at Austin Austin Texas
| | - Dale Sengelaub
- Department of Psychological and Brain SciencesIndiana University Bloomington Indiana
| | - Richard Trevino
- Department of Orthopedic SurgeryWellspan Teaching Hospitals York Pennsylvania
| | - Jamie Shores
- Department of Plastic and Reconstructive SurgeryJohns Hopkins University School of Medicine Baltimore Maryland
| |
Collapse
|
15
|
Messineo E, Pollins A, Thayer W. Optimization and evaluation of an in vitro model of PEG-mediated fusion of nerve cell bodies. J Clin Neurosci 2019; 63:189-195. [DOI: 10.1016/j.jocn.2019.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 01/27/2023]
|
16
|
Paskal AM, Paskal W, Pietruski P, Wlodarski PK. Polyethylene Glycol: The Future of Posttraumatic Nerve Repair? Systemic Review. Int J Mol Sci 2019; 20:E1478. [PMID: 30909624 PMCID: PMC6471459 DOI: 10.3390/ijms20061478] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injury is a common posttraumatic complication. The precise surgical repair of nerve lesion does not always guarantee satisfactory motor and sensory function recovery. Therefore, enhancement of the regeneration process is a subject of many research strategies. It is believed that polyethylene glycol (PEG) mediates axolemmal fusion, thus enabling the direct restoration of axon continuity. It also inhibits Wallerian degeneration and recovers nerve conduction. This systemic review, performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, describes and summarizes published studies on PEG treatment efficiency in various nerve injury types and repair techniques. Sixteen original experimental studies in animal models and one in humans were analyzed. PEG treatment superiority was reported in almost all experiments (based on favorable electrophysiological, histological, or behavioral results). To date, only one study attempted to transfer the procedure into the clinical phase. However, some technical aspects, e.g., the maximal delay between trauma and successful treatment, await determination. PEG therapy is a promising prospect that may improve the surgical treatment of peripheral nerve injuries in the clinical practice.
Collapse
Affiliation(s)
- Adriana M Paskal
- Laboratory of Centre for Preclinical Research, Department of Research Methodology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland.
| | - Wiktor Paskal
- Laboratory of Centre for Preclinical Research, Department of Research Methodology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland.
| | - Piotr Pietruski
- Timeless Plastic Surgery Clinic, gen. Romana Abrahama 18/322, 03-982 Warsaw, Poland.
| | - Pawel K Wlodarski
- Laboratory of Centre for Preclinical Research, Department of Research Methodology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland.
| |
Collapse
|
17
|
Rodemer W, Selzer ME. Role of axon resealing in retrograde neuronal death and regeneration after spinal cord injury. Neural Regen Res 2019; 14:399-404. [PMID: 30539805 PMCID: PMC6334596 DOI: 10.4103/1673-5374.245330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Spinal cord injury leads to persistent behavioral deficits because mammalian central nervous system axons fail to regenerate. A neuron's response to axon injury results from a complex interplay of neuron-intrinsic and environmental factors. The contribution of axotomy to the death of neurons in spinal cord injury is controversial because very remote axotomy is unlikely to result in neuronal death, whereas death of neurons near an injury may reflect environmental factors such as ischemia and inflammation. In lampreys, axotomy due to spinal cord injury results in delayed apoptosis of spinal-projecting neurons in the brain, beyond the extent of these environmental factors. This retrograde apoptosis correlates with delayed resealing of the axon, and can be reversed by inducing rapid membrane resealing with polyethylene glycol. Studies in mammals also suggest that polyethylene glycol may be neuroprotective, although the mechanism(s) remain unclear. This review examines the early, mechanical, responses to axon injury in both mammals and lampreys, and the potential of polyethylene glycol to reduce injury-induced pathology. Identifying the mechanisms underlying a neuron's response to axotomy will potentially reveal new therapeutic targets to enhance regeneration and functional recovery in humans with spinal cord injury.
Collapse
Affiliation(s)
- William Rodemer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA, USA
| | - Michael E Selzer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation); Department of Neurology, the Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Ghergherehchi CL, Mikesh M, Sengelaub DR, Jackson DM, Smith T, Nguyen J, Shores JT, Bittner GD. Polyethylene glycol (PEG) and other bioactive solutions with neurorrhaphy for rapid and dramatic repair of peripheral nerve lesions by PEG-fusion. J Neurosci Methods 2018; 314:1-12. [PMID: 30586569 DOI: 10.1016/j.jneumeth.2018.12.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nervous system injuries in mammals often involve transection or segmental loss of peripheral nerves. Such injuries result in functional (behavioral) deficits poorly restored by naturally occurring 1-2 mm/d axonal outgrowths aided by primary repair or reconstruction. "Neurorrhaphy" or nerve repair joins severed connective tissues, but not severed cytoplasmic/plasmalemmal extensions (axons) within the tissue. NEW METHOD PEG-fusion consists of neurorrhaphy combined with a well-defined sequence of four pharmaceutical agents in solution, one containing polyethylene glycol (PEG), applied directly to closely apposed viable ends of severed axons. RESULTS PEG-fusion of rat sciatic nerves: (1) restores axonal continuity across coaptation site(s) within minutes, (2) prevents Wallerian degeneration of many distal severed axons, (3) preserves neuromuscular junctions, (4) prevents target muscle atrophy, (5) produces rapid and improved recovery of voluntary behaviors compared with neurorrhaphy alone, and (6) PEG-fused allografts are not rejected, despite no tissue-matching nor immunosuppression. COMPARISON WITH EXISTING METHODS If PEG-fusion protocols are not correctly executed, the results are similar to that of neurorrhaphy alone: (1) axonal continuity across coaptation site(s) is not re-established, (2) Wallerian degeneration of all distal severed axons rapidly occurs, (3) neuromuscular junctions are non-functional, (4) target muscle atrophy begins within weeks, (5) recovery of voluntary behavior occurs, if ever, after months to levels well-below that observed in unoperated animals, and (6) allografts are either rejected or not well-accepted. CONCLUSION PEG-fusion produces rapid and dramatic recovery of function following rat peripheral nerve injuries.
Collapse
Affiliation(s)
| | - Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Dale R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
| | | | - Tyler Smith
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Jacklyn Nguyen
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Jaimie T Shores
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Ross Research Building 749D, 720 Rutland Avenue, Baltimore, MD, 21205, USA.
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
19
|
Aghaie T, Jazayeri MH, Manian M, Khani L, Erfani M, Rezayi M, Ferns GA, Avan A. Gold nanoparticle and polyethylene glycol in neural regeneration in the treatment of neurodegenerative diseases. J Cell Biochem 2018; 120:2749-2755. [DOI: 10.1002/jcb.27415] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Tayebe Aghaie
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Mir Hadi Jazayeri
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
- Immunology Research Center, Iran University of Medical Sciences Tehran Iran
| | - Mostafa Manian
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - leila Khani
- Department of Immunology School of Medicine, Iran University of Medical Sciences Tehran Iran
| | - Marjan Erfani
- Department of Neurology Ghaem Hospital, Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Rezayi
- Metabolic syndrome Research center, Mashhad University of Medical Sciences Mashhad Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer Brighton UK
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies School of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
20
|
Mikesh M, Ghergherehchi CL, Hastings RL, Ali A, Rahesh S, Jagannath K, Sengelaub DR, Trevino RC, Jackson DM, Bittner GD. Polyethylene glycol solutions rapidly restore and maintain axonal continuity, neuromuscular structures, and behaviors lost after sciatic nerve transections in female rats. J Neurosci Res 2018; 96:1223-1242. [PMID: 29659058 DOI: 10.1002/jnr.24225] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/15/2022]
Abstract
Complete severance of major peripheral mixed sensory-motor nerve proximally in a mammalian limb produces immediate loss of action potential conduction and voluntary behaviors mediated by the severed distal axonal segments. These severed distal segments undergo Wallerian degeneration within days. Denervated muscles atrophy within weeks. Slowly regenerating (∼1 mm/day) outgrowths from surviving proximal stumps that often nonspecifically reinnervate denervated targets produce poor, if any, restoration of lost voluntary behaviors. In contrast, in this study using completely transected female rat sciatic axons as a model system, we provide extensive morphometric, immunohistochemical, electrophysiological, and behavioral data to show that these adverse outcomes are avoided by microsuturing closely apposed axonal cut ends (neurorrhaphy) and applying a sequence of well-specified solutions, one of which contains polyethylene glycol (PEG). This "PEG-fusion" procedure within minutes reestablishes axoplasmic and axolemmal continuity and signaling by nonspecifically fusing (connecting) closely apposed open ends of severed motor and/or sensory axons at the lesion site. These PEG-fused axons continue to conduct action potentials and generate muscle action potentials and muscle twitches for months and do not undergo Wallerian degeneration. Continuously innervated muscle fibers undergo much less atrophy compared with denervated muscle fibers. Dramatic behavioral recovery to near-unoperated levels occurs within days to weeks, almost certainly by activating many central nervous system and peripheral nervous system synaptic and other plasticities, some perhaps to a greater extent than most neuroscientists would expect. Negative control transections in which neurorrhaphy and all solutions except the PEG-containing solution are applied produce none of these remarkably fortuitous outcomes observed for PEG-fusion.
Collapse
Affiliation(s)
- Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | | | | | - Amir Ali
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Sina Rahesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Karthik Jagannath
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Dale R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - Richard C Trevino
- Department of Orthopedic Surgery, Wellspan Teaching Hospitals, York, Pennsylvania
| | | | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
21
|
Zhang G, Rodemer W, Lee T, Hu J, Selzer ME. The Effect of Axon Resealing on Retrograde Neuronal Death after Spinal Cord Injury in Lamprey. Brain Sci 2018; 8:E65. [PMID: 29661988 PMCID: PMC5924401 DOI: 10.3390/brainsci8040065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 02/05/2023] Open
Abstract
Failure of axon regeneration in the central nervous system (CNS) of mammals is due to both extrinsic inhibitory factors and to neuron-intrinsic factors. The importance of intrinsic factors is illustrated in the sea lamprey by the 18 pairs of large, individually identified reticulospinal (RS) neurons, whose axons are located in the same spinal cord tracts but vary greatly in their ability to regenerate after spinal cord transection (TX). The neurons that are bad regenerators also undergo very delayed apoptosis, signaled early by activation of caspases. We noticed that the neurons with a low probability of axon regeneration tend to be larger than the good regenerators. We postulate that the poorly regenerating larger neurons have larger caliber axons, which reseal more slowly, allowing more prolonged entry of toxic signals (e.g., Ca++) into the axon at the injury site. To test this hypothesis, we used a dye-exclusion assay, applying membrane-impermeable dyes to the cut ends of spinal cords at progressively longer post-TX intervals. Axons belonging to the very small neurons (not individually identified) of the medial inferior RS nucleus resealed within 15 min post-TX. Almost 75% of axons belonging to the medium-sized identified RS neurons resealed within 3 h. At this time, only 36% of the largest axons had resealed, often taking more than 24 h to exclude the dye. There was an inverse relationship between an RS neuron's size and the probability that its axon would regenerate (r = -0.92) and that the neuron would undergo delayed apoptosis, as indicated by staining with a fluorescently labeled inhibitor of caspases (FLICA; r = 0.73). The artificial acceleration of resealing with polyethylene glycol (PEG) reduced retrograde neuronal apoptosis by 69.5% at 2 weeks after spinal cord injury (SCI), suggesting that axon resealing is a critical determinant of cell survival. Ca++-free Ringer's solution with EGTA prolonged the sealing time and increased apoptotic signaling, suggesting that factors other than Ca++ diffusion into the injured tip contribute to retrograde death signaling. A longer distance of the lesion from the cell body reduced apoptotic signaling independent of the axon sealing time.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - William Rodemer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - Taemin Lee
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - Jianli Hu
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
| | - Michael E Selzer
- Shriners Hospital Pediatric Research Center (Center for Neural Repair and Rehabilitation), Philadelphia, PA 19140, USA.
- Department of Neurology, the Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
22
|
Salomone R, Jácomo AL, Nascimento SBD, Lezirovitz K, Hojaij FC, Costa HJZR, Bento RF. Polyethylene glycol fusion associated with antioxidants: A new promise in the treatment of traumatic facial paralysis. Head Neck 2018. [PMID: 29522265 DOI: 10.1002/hed.25122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recent studies in invertebrates have taught us that early cell membrane regeneration is determinant for axonal recovery and survival after trauma. Many authors obtained extraordinary results in neural regeneration using polyethylene glycol fusion protocols, which also involved microsutures and antioxidants. METHODS Sixty rats were evaluated with functional and histological protocol after facial nerve neurotmesis. Groups A and B had their stumps coapted with microsuture after 24 hours of neurotmesis and groups C and D after 72 hours. In addition to the microstructure, groups B and D used the polyethylene glycol-fusion protocol for the modulation of the Ca+2 . RESULTS At the sixth week, the latency of group D and duration of group B was lower than groups A and C (P = .011). The axonal diameter of the groups that used polyethylene glycol-fusion was higher than those who did not use polyethylene glycol-fusion (P ≤ .001). CONCLUSION Although not providing a functional improvement, polyethylene glycol-fusion slowed down demyelination.
Collapse
Affiliation(s)
- Raquel Salomone
- Department of Otorhinolaryngology, University of São Paulo Medical School, São Paulo, Brazil
| | - Alfredo Luiz Jácomo
- Department of Surgery, Discipline of Human Structural Topography, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Karina Lezirovitz
- Department of Otorhinolaryngology, University of São Paulo Medical School, São Paulo, Brazil
| | - Flávio Carneiro Hojaij
- Department of Surgery, Discipline of Human Structural Topography, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Ricardo Ferreira Bento
- Department of Otorhinolaryngology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
23
|
Bittner GD, Sengelaub DR, Ghergherehchi CL. Conundrums and confusions regarding how polyethylene glycol-fusion produces excellent behavioral recovery after peripheral nerve injuries. Neural Regen Res 2018; 13:53-57. [PMID: 29451204 PMCID: PMC5840989 DOI: 10.4103/1673-5374.224363] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Current Neuroscience dogma holds that transections or ablations of a segment of peripheral nerves produce: (1) Immediate loss of axonal continuity, sensory signaling, and motor control; (2) Wallerian rapid (1–3 days) degeneration of severed distal axons, muscle atrophy, and poor behavioral recovery after many months (if ever, after ablations) by slowly-regenerating (1 mm/d), proximal-stump outgrowths that must specifically reinnervate denervated targets; (3) Poor acceptance of microsutured nerve allografts, even if tissue-matched and immune-suppressed. Repair of transections/ablations by neurorrhaphy and well-specified-sequences of PEG-fusion solutions (one containing polyethylene glycol, PEG) successfully address these problems. However, conundrums and confusions regarding unorthodox and dramatic results of PEG-fusion repair in animal model systems often lead to misunderstandings. For example, (1) Axonal continuity and signaling is re-established within minutes by non-specifically PEG-fusing (connecting) severed motor and sensory axons across each lesion site, but remarkable behavioral recovery to near-unoperated levels takes several weeks; (2) Many distal stumps of inappropriately-reconnected, PEG-fused axons do not ever (Wallerian) degenerate and continuously innervate muscle fibers that undergo much less atrophy than otherwise-denervated muscle fibers; (3) Host rats do not reject PEG-fused donor nerve allografts in a non-immuno-privileged environment with no tissue matching or immunosuppression; (4) PEG fuses apposed open axonal ends or seals each shut (thereby preventing PEG-fusion), depending on the experimental protocol; (5) PEG-fusion protocols produce similar results in animal model systems and early human case studies. Hence, iconoclastic PEG-fusion data appropriately understood might provoke a re-thinking of some Neuroscience dogma and a paradigm shift in clinical treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Dale R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
24
|
Poellmann MJ, Lee RC. Repair and Regeneration of the Wounded Cell Membrane. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
25
|
Abstract
BACKGROUND Peripheral nerve injury can have a devastating impact on our military and veteran population. Current strategies for peripheral nerve repair include techniques such as nerve tubes, nerve grafts, tissue matrices, and nerve growth guides to enhance the number of regenerating axons. Even with such advanced techniques, it takes months to regain function. In animal models, polyethylene glycol (PEG) therapy has shown to improve both physiologic and behavioral outcomes after nerve transection by fusion of a portion of the proximal axons to the distal axon stumps. The objective of this study was to show the efficacy of PEG fusion in humans and to retrospectively compare PEG fusion to standard nerve repair. METHODS Patients with traumatic lacerations involving digital nerves were treated with PEG after standard microsurgical neurorrhaphy. Sensory assessment after injury was performed at 1 week, 2 weeks, 1 month, and 2 months using static two-point discrimination and Semmes-Weinstein monofilament testing. The Medical Research Council Classification (MRCC) for Sensory Recovery Scale was used to evaluate the level of injury. The PEG fusion group was compared to patient-matched controls whose data were retrospectively collected. RESULTS Four PEG fusions were performed on four nerve transections in two patients. Polyethylene glycol therapy improves functional outcomes and speed of nerve recovery in clinical setting assessed by average MRCC score in week 1 (2.8 vs 1.0, p = 0.03). At 4 weeks, MRCC remained superior in the PEG fusion group (3.8 vs 1.3, p = 0.01). At 8 weeks, there was improvement in both groups with the PEG fusion cohort remaining statistically better (4.0 vs 1.7, p = 0.01). CONCLUSION Polyethylene glycol fusion is a novel therapy for peripheral nerve repair with proven effectiveness in animal models. Clinical studies are still in early stages but have had encouraging results. Polyethylene glycol fusion is a potential revolutionary therapy in peripheral nerve repair but needs further investigation. LEVEL OF EVIDENCE Therapeutic study, level IV.
Collapse
|
26
|
Bittner GD, Spaeth CS, Poon AD, Burgess ZS, McGill CH. Repair of traumatic plasmalemmal damage to neurons and other eukaryotic cells. Neural Regen Res 2016; 11:1033-42. [PMID: 27630671 PMCID: PMC4994430 DOI: 10.4103/1673-5374.187019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The repair (sealing) of plasmalemmal damage, consisting of small holes to complete transections, is critical for cell survival, especially for neurons that rarely regenerate cell bodies. We first describe and evaluate different measures of cell sealing. Some measures, including morphological/ultra-structural observations, membrane potential, and input resistance, provide very ambiguous assessments of plasmalemmal sealing. In contrast, measures of ionic current flow and dye barriers can, if appropriately used, provide more accurate assessments. We describe the effects of various substances (calcium, calpains, cytoskeletal proteins, ESCRT proteins, mUNC-13, NSF, PEG) and biochemical pathways (PKA, PKC, PLC, Epac, cytosolic oxidation) on plasmalemmal sealing probability, and suggest that substances, pathways, and cellular events associated with plasmalemmal sealing have undergone a very conservative evolution. During sealing, calcium ion influx mobilizes vesicles and other membranous structures (lysosomes, mitochondria, etc.) in a continuous fashion to form a vesicular plug that gradually restricts diffusion of increasingly smaller molecules and ions over a period of seconds to minutes. Furthermore, we find no direct evidence that sealing occurs through the collapse and fusion of severed plasmalemmal leaflets, or in a single step involving the fusion of one large wound vesicle with the nearby, undamaged plasmalemma. We describe how increases in perikaryal calcium levels following axonal transection account for observations that cell body survival decreases the closer an axon is transected to the perikaryon. Finally, we speculate on relationships between plasmalemmal sealing, Wallerian degeneration, and the ability of polyethylene glycol (PEG) to seal cell membranes and rejoin severed axonal ends – an important consideration for the future treatment of trauma to peripheral nerves. A better knowledge of biochemical pathways and cytoplasmic structures involved in plasmalemmal sealing might provide insights to develop treatments for traumatic nerve injuries, stroke, muscular dystrophy, and other pathologies.
Collapse
Affiliation(s)
- George D Bittner
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | | | - Andrew D Poon
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Zachary S Burgess
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
27
|
Bittner GD, Sengelaub DR, Trevino RC, Ghergherehchi CL, Mikesh M. Robinson and madison have published no data on whether polyethylene glycol fusion repair prevents reinnervation accuracy in rat peripheral nerve. J Neurosci Res 2016; 95:863-866. [PMID: 27514994 DOI: 10.1002/jnr.23849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 12/26/2022]
Affiliation(s)
- G D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - D R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - R C Trevino
- Department of Orthopedic Surgery, Wellspan Health, York, Pennsylvania
| | - C L Ghergherehchi
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - M Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
28
|
Bamba R, Riley DC, Kelm ND, Does MD, Dortch RD, Thayer WP. A novel technique using hydrophilic polymers to promote axonal fusion. Neural Regen Res 2016; 11:525-8. [PMID: 27212898 PMCID: PMC4870894 DOI: 10.4103/1673-5374.180724] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The management of traumatic peripheral nerve injury remains a considerable concern for clinicians. With minimal innovations in surgical technique and a limited number of specialists trained to treat peripheral nerve injury, outcomes of surgical intervention have been unpredictable. The inability to manipulate the pathophysiology of nerve injury (i.e., Wallerian degeneration) has left scientists and clinicians depending on the slow and lengthy process of axonal regeneration (~1 mm/day). When axons are severed, the endings undergo calcium-mediated plasmalemmal sealing, which limits the ability of the axon to be primarily repaired. Polythethylene glycol (PEG) in combination with a bioengineered process overcomes the inability to fuse axons. The mechanism for PEG axonal fusion is not clearly understood, but multiple studies have shown that a providing a calcium-free environment is essential to the process known as PEG fusion. The proposed mechanism is PEG-induced lipid bilayer fusion by removing the hydration barrier surrounding the axolemma and reducing the activation energy required for membrane fusion to occur. This review highlights PEG fusion, its past and current studies, and future directions in PEG fusion.
Collapse
Affiliation(s)
- Ravinder Bamba
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Surgery, Georgetown University, Washington, DC, USA
| | - D Colton Riley
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Georgetown University School of Medicine, Washington, DC, USA
| | - Nathaniel D Kelm
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Mark D Does
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Richard D Dortch
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
29
|
Effect of DSPE-PEG on compound action potential, injury potential and ion concentration following compression in ex vivo spinal cord. Neurosci Lett 2016; 620:50-6. [DOI: 10.1016/j.neulet.2016.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/01/2016] [Accepted: 03/24/2016] [Indexed: 01/20/2023]
|
30
|
Bittner GD, Mikesh M, Ghergherehchi CL. Polyethylene glycol-fusion retards Wallerian degeneration and rapidly restores behaviors lost after nerve severance. Neural Regen Res 2016; 11:217-9. [PMID: 27073362 PMCID: PMC4810973 DOI: 10.4103/1673-5374.177716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
31
|
McGill CH, Bhupanapadu Sunkesula SR, Poon AD, Mikesh M, Bittner GD. Sealing frequency of B104 cells declines exponentially with decreasing transection distance from the axon hillock. Exp Neurol 2016; 279:149-158. [PMID: 26851541 DOI: 10.1016/j.expneurol.2016.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 11/28/2022]
Abstract
Transection of nerve axons (axotomy) leads to rapid (Wallerian) degeneration of the distal portion of the severed axon whereas the proximal portion and the soma often survive. Clinicians and neuroscientists have known for decades that somal survival is less likely for cells transected nearer to the soma, compared to further from the soma. Calcium ion (Ca(2+)) influx at the cut axonal end increases somal Ca(2+) concentration, which subsequently activates apoptosis and other pathways that lead to cell death. The same Ca(2+) influx activates parallel pathways that seal the plasmalemma, reduce Ca(2+) influx, and thereby enable the soma to survive. In this study, we have examined the ability of transected B104 axons to seal, as measured by uptake or exclusion of fluorescent dye, and quantified the relationship between sealing frequency and transection distance from the axon hillock. We report that sealing frequency is maximal at about 150μm (μm) from the axon hillock and decreases exponentially with decreasing transection distance with a space constant of about 40μm. We also report that after Ca(2+) influx is initiated, the curve of sealing frequency versus time is well-fit by a one-phase, rising exponential model having a time constant of several milliseconds that is longer nearer to, versus further from, the axon hillock. These results could account for the increased frequency of cell death for axotomies nearer to, versus farther from, the soma of many types of neurons.
Collapse
Affiliation(s)
- Christopher H McGill
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA.
| | | | - Andrew D Poon
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA.
| | - Michelle Mikesh
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA.
| | - George D Bittner
- Department of Neuroscience, The University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA.
| |
Collapse
|
32
|
Ghergherehchi CL, Bittner GD, Hastings RL, Mikesh M, Riley DC, Trevino RC, Schallert T, Thayer WP, Bhupanapadu Sunkesula SR, Ha TAN, Munoz N, Pyarali M, Bansal A, Poon AD, Mazal AT, Smith TA, Wong NS, Dunne PJ. Effects of extracellular calcium and surgical techniques on restoration of axonal continuity by polyethylene glycol fusion following complete cut or crush severance of rat sciatic nerves. J Neurosci Res 2016; 94:231-45. [PMID: 26728662 DOI: 10.1002/jnr.23704] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/12/2015] [Accepted: 12/03/2015] [Indexed: 01/10/2023]
Abstract
Complete crush or cut severance of sciatic nerve axons in rats and other mammals produces immediate loss of axonal continuity. Loss of locomotor functions subserved by those axons is restored only after months, if ever, by outgrowths regenerating at ∼1 mm/day from the proximal stumps of severed axonal segments. The distal stump of a severed axon typically begins to degenerate in 1-3 days. We recently developed a polyethylene glycol (PEG) fusion technology, consisting of sequential exposure of severed axonal ends to hypotonic Ca(2+) -free saline, methylene blue, PEG in distilled water, and finally Ca(2+) -containing isotonic saline. This study examines factors that affect the PEG fusion restoration of axonal continuity within minutes, as measured by conduction of action potentials and diffusion of an intracellular fluorescent dye across the lesion site of rat sciatic nerves completely cut or crush severed in the midthigh. Also examined are factors that affect the longer-term PEG fusion restoration of lost behavioral functions within days to weeks, as measured by the sciatic functional index. We report that exposure of cut-severed axonal ends to Ca(2+) -containing saline prior to PEG fusion and stretch/tension of proximal or distal axonal segments of cut-severed axons decrease PEG fusion success. Conversely, trimming cut-severed ends in Ca(2+) -free saline just prior to PEG fusion increases PEG fusion success. PEG fusion prevents or retards the Wallerian degeneration of cut-severed axons, as assessed by measures of axon diameter and G ratio. PEG fusion may produce a paradigm shift in the treatment of peripheral nerve injuries. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - George D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | | | - Michelle Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - D Colton Riley
- Department of Neuroscience, University of Texas at Austin, Austin, Texas.,Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee
| | - Richard C Trevino
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Tim Schallert
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee
| | | | - Tu-Anh N Ha
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Nicolas Munoz
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Monika Pyarali
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Aakarshita Bansal
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Andrew D Poon
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Alexander T Mazal
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Tyler A Smith
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Nicole S Wong
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Patrick J Dunne
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
33
|
Bittner GD, Sengelaub DR, Trevino RC, Peduzzi JD, Mikesh M, Ghergherehchi CL, Schallert T, Thayer WP. The curious ability of polyethylene glycol fusion technologies to restore lost behaviors after nerve severance. J Neurosci Res 2015; 94:207-30. [PMID: 26525605 DOI: 10.1002/jnr.23685] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 01/09/2023]
Abstract
Traumatic injuries to PNS and CNS axons are not uncommon. Restoration of lost behaviors following severance of mammalian peripheral nerve axons (PNAs) relies on regeneration by slow outgrowths and is typically poor or nonexistent when after ablation or injuries close to the soma. Behavioral recovery after severing spinal tract axons (STAs) is poor because STAs do not naturally regenerate. Current techniques to enhance PNA and/or STA regeneration have had limited success and do not prevent the onset of Wallerian degeneration of severed distal segments. This Review describes the use of a recently developed polyethylene glycol (PEG) fusion technology combining concepts from biochemical engineering, cell biology, and clinical microsurgery. Within minutes after microsuturing carefully trimmed cut ends and applying a well-specified sequence of solutions, PEG-fused axons exhibit morphological continuity (assessed by intra-axonal dye diffusion) and electrophysiological continuity (assessed by conduction of action potentials) across the lesion site. Wallerian degeneration of PEG-fused PNAs is greatly reduced as measured by counts of sensory and/or motor axons and maintenance of axonal diameters and neuromuscular synapses. After PEG-fusion repair, cut-severed, crush-severed, or ablated PNAs or crush-severed STAs rapidly (within days to weeks), more completely, and permanently restore PNA- or STA-mediated behaviors compared with nontreated or conventionally treated animals. PEG-fusion success is enhanced or decreased by applying antioxidants or oxidants, trimming cut ends or stretching axons, and exposure to Ca(2+) -free or Ca(2+) -containing solutions, respectively. PEG-fusion technology employs surgical techniques and chemicals already used by clinicians and has the potential to produce a paradigm shift in the treatment of traumatic injuries to PNAs and STAs.
Collapse
Affiliation(s)
- G D Bittner
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - D R Sengelaub
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| | - R C Trevino
- Department of Orthopedic Surgery, Wellspan Health, York, Pennsylvania
| | - J D Peduzzi
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - M Mikesh
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - C L Ghergherehchi
- Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - T Schallert
- Department of Psychology, University of Texas at Austin, Austin, Texas
| | - W P Thayer
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee
| |
Collapse
|
34
|
Riley DC, Bittner GD, Mikesh M, Cardwell NL, Pollins AC, Ghergherehchi CL, Bhupanapadu Sunkesula SR, Ha TN, Hall BTD, Poon AD, Pyarali M, Boyer RB, Mazal AT, Munoz N, Trevino RC, Schallert T, Thayer WP. Polyethylene glycol-fused allografts produce rapid behavioral recovery after ablation of sciatic nerve segments. J Neurosci Res 2014; 93:572-83. [PMID: 25425242 DOI: 10.1002/jnr.23514] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/19/2014] [Accepted: 10/09/2014] [Indexed: 11/08/2022]
Abstract
Restoration of neuronal functions by outgrowths regenerating at ∼1 mm/day from the proximal stumps of severed peripheral nerves takes many weeks or months, if it occurs at all, especially after ablation of nerve segments. Distal segments of severed axons typically degenerate in 1-3 days. This study shows that Wallerian degeneration can be prevented or retarded, and lost behavioral function can be restored, following ablation of 0.5-1-cm segments of rat sciatic nerves in host animals. This is achieved by using 0.8-1.1-cm microsutured donor allografts treated with bioengineered solutions varying in ionic and polyethylene glycol (PEG) concentrations (modified PEG-fusion procedure), being careful not to stretch any portion of donor or host sciatic nerves. The data show that PEG fusion permanently restores axonal continuity within minutes, as initially assessed by action potential conduction and intracellular diffusion of dye. Behavioral functions mediated by the sciatic nerve are largely restored within 2-4 weeks, as measured by the sciatic functional index. Increased restoration of sciatic behavioral functions after ablating 0.5-1-cm segments is associated with greater numbers of viable myelinated axons within and distal to PEG-fused allografts. Many such viable myelinated axons are almost certainly spared from Wallerian degeneration by PEG fusion. PEG fusion of donor allografts may produce a paradigm shift in the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- D C Riley
- Department of Plastic Surgery, Vanderbilt School of Medicine, Nashville, Tennessee; Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Methylene blue is used primarily in the treatment of patients with methemoglobinemia. Most recently, methylene blue has been used as a treatment for refractory distributive shock from a variety of causes such as sepsis and anaphylaxis. Many studies suggest that the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway plays a significant role in the pathophysiology of distributive shock. There are some experimental and clinical experiences with the use of methylene blue as a selective inhibitor of the NO-cGMP pathway. Methylene blue may play a role in the treatment of distributive shock when standard treatment fails.
Collapse
|
36
|
Davis AA, Farrar MJ, Nishimura N, Jin MM, Schaffer CB. Optoporation and genetic manipulation of cells using femtosecond laser pulses. Biophys J 2014; 105:862-71. [PMID: 23972838 DOI: 10.1016/j.bpj.2013.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 07/07/2013] [Accepted: 07/11/2013] [Indexed: 02/08/2023] Open
Abstract
Femtosecond laser optoporation is a powerful technique to introduce membrane-impermeable molecules, such as DNA plasmids, into targeted cells in culture, yet only a narrow range of laser regimes have been explored. In addition, the dynamics of the laser-produced membrane pores and the effect of pore behavior on cell viability and transfection efficiency remain poorly elucidated. We studied optoporation in cultured cells using tightly focused femtosecond laser pulses in two irradiation regimes: millions of low-energy pulses and two higher-energy pulses. We quantified the pore radius and resealing time as a function of incident laser energy and determined cell viability and transfection efficiency for both irradiation regimes. These data showed that pore size was the governing factor in cell viability, independently of the laser irradiation regime. For viable cells, larger pores resealed more quickly than smaller pores, ruling out a passive resealing mechanism. Based on the pore size and resealing time, we predict that few DNA plasmids enter the cell via diffusion, suggesting an alternative mechanism for cell transfection. Indeed, we observed fluorescently labeled DNA plasmid adhering to the irradiated patch of the cell membrane, suggesting that plasmids may enter the cell by adhering to the membrane and then being translocated.
Collapse
Affiliation(s)
- Andrew A Davis
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
37
|
Kouhzaei S, Rad I, Mousavidoust S, Mobasheri H. Protective effect of low molecular weight polyethylene glycol on the repair of experimentally damaged neural membranes in rat’s spinal cord. Neurol Res 2013; 35:415-23. [DOI: 10.1179/1743132812y.0000000133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
| | - Iman Rad
- University of TehranTehran, Iran
| | | | | |
Collapse
|
38
|
The Neuroprotective Ability of Polyethylene Glycol is Affected by Temperature in Ex Vivo Spinal Cord Injury Model. J Membr Biol 2013; 246:613-9. [DOI: 10.1007/s00232-013-9574-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/04/2013] [Indexed: 11/26/2022]
|
39
|
Blocking the P2X7 receptor improves outcomes after axonal fusion. J Surg Res 2013; 184:705-13. [PMID: 23731685 DOI: 10.1016/j.jss.2013.04.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/25/2013] [Accepted: 04/30/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Activation of the P2X7 receptor on peripheral neurons causes the formation of pannexin pores, which allows the influx of calcium across the cell membrane. Polyethylene glycol (PEG) and methylene blue have previously been shown to delay Wallerian degeneration if applied during microsuture repair of the severed nerve. Our hypothesis is that by modulating calcium influx via the P2X7 receptor pathway, we could improve PEG-based axonal repair. The P2X7 receptor can be stimulated or inhibited using bz adenosine triphosphate (bzATP) or brilliant blue (FCF), respectively. METHODS A single incision rat sciatic nerve injury model was used. The defect was repaired using a previously described PEG methylene blue fusion protocol. Experimental animals were treated with 100 μL of 100 μM FCF solution (n = 8) or 100 μL of a 30 μM bzATP solution (n = 6). Control animals received no FCF, bzATP, or PEG. Compound action potentials were recorded prior to transection (baseline), immediately after repair, and 21 d postoperatively. Animals underwent behavioral testing 3, 7, 14, and 21 d postoperatively. After sacrifice, nerves were fixed, sectioned, and immunostained to allow for counting of total axons. RESULTS Rats treated with FCF showed an improvement compared with control at all time points (n = 8) (P = 0.047, 0.044, 0.014, and 0.0059, respectively). A statistical difference was also shown between FCF and bzATP at d 7 (P < 0.05), but not shown with d 3, 14, and 21 (P > 0.05). CONCLUSIONS Blocking the P2X7 receptor improves functional outcomes after PEG-mediated axonal fusion.
Collapse
|
40
|
Sexton KW, Pollins AC, Cardwell NL, Del Corral GA, Bittner GD, Shack RB, Nanney LB, Thayer WP. Hydrophilic polymers enhance early functional outcomes after nerve autografting. J Surg Res 2012; 177:392-400. [PMID: 22521220 DOI: 10.1016/j.jss.2012.03.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/07/2012] [Accepted: 03/22/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Approximately 12% of operations for traumatic neuropathy are for patients with segmental nerve loss, and less than 50% of these injuries obtain meaningful functional recovery. Polyethylene glycol (PEG) therapy has been shown to improve functional outcomes after nerve severance, and we hypothesized this therapy could also benefit nerve autografting. METHODS We used a segmental rat sciatic nerve injury model in which we repaired a 0.5-cm defect with an autograft using microsurgery. We treated experimental animals with solutions containing methylene blue (MB) and PEG; control animals did not receive PEG. We recorded compound action potentials (CAPs) before nerve transection, after solution therapy, and at 72 h postoperatively. The animals underwent behavioral testing at 24 and 72 h postoperatively. After we euthanized the animals, we fixed the nerves, sectioned and immunostained them to allow for quantitative morphometric analysis. RESULTS The introduction of hydrophilic polymers greatly improved morphological and functional recovery of rat sciatic axons at 1-3 d after nerve autografting. Polyethylene glycol therapy restored CAPs in all animals, and CAPs were still present 72 h postoperatively. No CAPS were detectable in control animals. Foot Fault asymmetry scores and sciatic functional index scores were significantly improved for PEG therapy group at all time points (P < 0.05 and P < 0.001; P < 0.001 and P < 0.01). Sensory and motor axon counts were increased distally in nerves treated with PEG compared with control (P = 0.019 and P = 0.003). CONCLUSIONS Polyethylene glycol therapy improves early physiologic function, behavioral outcomes, and distal axonal density after nerve autografting.
Collapse
Affiliation(s)
- Kevin W Sexton
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | |
Collapse
|