1
|
Saraceno C, Cervellati C, Trentini A, Crescenti D, Longobardi A, Geviti A, Bonfiglio NS, Bellini S, Nicsanu R, Fostinelli S, Mola G, Riccetti R, Moretti DV, Zanetti O, Binetti G, Zuliani G, Ghidoni R. Serum Beta-Secretase 1 Activity Is a Potential Marker for the Differential Diagnosis between Alzheimer's Disease and Frontotemporal Dementia: A Pilot Study. Int J Mol Sci 2024; 25:8354. [PMID: 39125924 PMCID: PMC11313328 DOI: 10.3390/ijms25158354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) and frontotemporal dementia (FTD) are the two major neurodegenerative diseases causing dementia. Due to similar clinical phenotypes, differential diagnosis is challenging without specific biomarkers. Beta-site Amyloid Precursor Protein cleaving enzyme 1 (BACE1) is a β-secretase pivotal in AD pathogenesis. In AD and mild cognitive impairment subjects, BACE1 activity is increased in brain/cerebrospinal fluid, and plasma levels appear to reflect those in the brain. In this study, we aim to evaluate serum BACE1 activity in FTD, since, to date, there is no evidence about its role. The serum of 30 FTD patients and 30 controls was analyzed to evaluate (i) BACE1 activity, using a fluorescent assay, and (ii) Glial Fibrillary Acid Protein (GFAP) and Neurofilament Light chain (NfL) levels, using a Simoa kit. As expected, a significant increase in GFAP and NfL levels was observed in FTD patients compared to controls. Serum BACE1 activity was not altered in FTD patients. A significant increase in serum BACE1 activity was shown in AD vs. FTD and controls. Our results support the hypothesis that serum BACE1 activity is a potential biomarker for the differential diagnosis between AD and FTD.
Collapse
Affiliation(s)
- Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (G.M.); (G.Z.)
| | - Alessandro Trentini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.T.); (R.R.)
| | - Daniela Crescenti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Andrea Geviti
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.G.); (N.S.B.)
| | - Natale Salvatore Bonfiglio
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.G.); (N.S.B.)
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Roland Nicsanu
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| | - Silvia Fostinelli
- MAC–Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.F.); (G.B.)
| | - Gianmarco Mola
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (G.M.); (G.Z.)
| | - Raffaella Riccetti
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.T.); (R.R.)
| | - Davide Vito Moretti
- Alzheimer’s Rehabilitation Operative Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Orazio Zanetti
- Alzheimer’s Research Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Giuliano Binetti
- MAC–Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (S.F.); (G.B.)
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (C.C.); (G.M.); (G.Z.)
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (C.S.); (D.C.); (A.L.); (S.B.); (R.N.)
| |
Collapse
|
2
|
Sharma H, Chang KA, Hulme J, An SSA. Mammalian Models in Alzheimer's Research: An Update. Cells 2023; 12:2459. [PMID: 37887303 PMCID: PMC10605533 DOI: 10.3390/cells12202459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
A form of dementia distinct from healthy cognitive aging, Alzheimer's disease (AD) is a complex multi-stage disease that currently afflicts over 50 million people worldwide. Unfortunately, previous therapeutic strategies developed from murine models emulating different aspects of AD pathogenesis were limited. Consequently, researchers are now developing models that express several aspects of pathogenesis that better reflect the clinical situation in humans. As such, this review seeks to provide insight regarding current applications of mammalian models in AD research by addressing recent developments and characterizations of prominent transgenic models and their contributions to pathogenesis as well as discuss the advantages, limitations, and application of emerging models that better capture genetic heterogeneity and mixed pathologies observed in the clinical situation.
Collapse
Affiliation(s)
- Himadri Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Al Abdullah S, Najm L, Ladouceur L, Ebrahimi F, Shakeri A, Al-Jabouri N, Didar TF, Dellinger K. Functional Nanomaterials for the Diagnosis of Alzheimer's Disease: Recent Progress and Future Perspectives. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2302673. [PMID: 39309539 PMCID: PMC11415277 DOI: 10.1002/adfm.202302673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 09/25/2024]
Abstract
Alzheimer's disease (AD) is one of the main causes of dementia worldwide, whereby neuronal death or malfunction leads to cognitive impairment in the elderly population. AD is highly prevalent, with increased projections over the next few decades. Yet current diagnostic methods for AD occur only after the presentation of clinical symptoms. Evidence in the literature points to potential mechanisms of AD induction beginning before clinical symptoms start to present, such as the formation of amyloid beta (Aβ) extracellular plaques and neurofibrillary tangles (NFTs). Biomarkers of AD, including Aβ 40, Aβ 42, and tau protein, amongst others, show promise for early AD diagnosis. Additional progress is made in the application of biosensing modalities to measure and detect significant changes in these AD biomarkers within patient samples, such as cerebral spinal fluid (CSF) and blood, serum, or plasma. Herein, a comprehensive review of the emerging nano-biomaterial approaches to develop biosensors for AD biomarkers' detection is provided. Advances, challenges, and potential of electrochemical, optical, and colorimetric biosensors, focusing on nanoparticle-based (metallic, magnetic, quantum dots) and nanostructure-based biomaterials are discussed. Finally, the criteria for incorporating these emerging nano-biomaterials in clinical settings are presented and assessed, as they hold great potential for enhancing early-onset AD diagnostics.
Collapse
Affiliation(s)
- Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Lubna Najm
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Nadine Al-Jabouri
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- Institute for Infectious Disease Research (IIDR), 1280 Main St W, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| |
Collapse
|
4
|
Yin W, Wan K, Zhu W, Zhou X, Tang Y, Zheng W, Cao J, Song Y, Zhao H, Zhu X, Sun Z. Bilateral Hippocampal Volume Mediated the Relationship Between Plasma BACE1 Concentration and Memory Function in the Early Stage of Alzheimer's Disease: A Cross-Sectional Study. J Alzheimers Dis 2023; 92:1001-1013. [PMID: 36847009 DOI: 10.3233/jad-221174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
BACKGROUND β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a key enzyme in the formation of amyloid-β (Aβ) protein. Increasing evidence suggests that BACE1 concentration is a potential biomarker for Alzheimer's disease (AD). OBJECTIVE To evaluate the correlations between plasma BACE1 concentration, cognition, and hippocampal volume at different stages of the AD continuum. METHODS Plasma BACE1 concentrations were measured in 32 patients with probable dementia due to AD (ADD), 48 patients with mild cognitive impairment (MCI) due to AD, and 40 cognitively unimpaired (CU) individuals. Memory function was evaluated using the auditory verbal learning test (AVLT), and voxel-based morphometry was used to analyze bilateral hippocampal volumes. Correlation and mediation analyses were performed to investigate the associations between plasma BACE1 concentration, cognition, and hippocampal atrophy. RESULTS The MCI and ADD groups exhibited elevated BACE1 concentrations compared with the CU group after adjusting for age, sex, and apolipoprotein E (APOE) genotype. Increased BACE1 concentration was found in AD continuum patients who were APOE ɛ4 carriers (p < 0.05). BACE1 concentration was negatively associated with the scores of the subitems of the AVLT and hippocampal volume (p < 0.05, false discovery rate correction) in the MCI group. Moreover, bilateral hippocampal volume mediated the relationship between BACE1 concentration and recognition in the MCI group. CONCLUSION BACE1 expression increased in the AD continuum, and bilateral hippocampal volume mediated the effect of BACE1 concentration on memory function in patients with MCI. Research has indicated that the plasma BACE1 concentration might be a biomarker at the early stage of AD.
Collapse
Affiliation(s)
- Wenwen Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenhao Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yating Tang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenhui Zheng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jing Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
5
|
Dobrowolska Zakaria JA, Bateman RJ, Lysakowska M, Khatri A, Jean-Gilles D, Kennedy ME, Vassar R. The metabolism of human soluble amyloid precursor protein isoforms is quantifiable by a stable isotope labeling-tandem mass spectrometry method. Sci Rep 2022; 12:14985. [PMID: 36056033 PMCID: PMC9440206 DOI: 10.1038/s41598-022-18869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Evidence suggests that β-secretase (BACE1), which cleaves Amyloid Precursor Protein (APP) to form sAPPβ and amyloid-β, is elevated in Alzheimer's disease (AD) brains and biofluids and, thus, BACE1 is a therapeutic target for this devastating disease. The direct product of BACE1 cleavage of APP, sAPPβ, serves as a surrogate marker of BACE1 activity in the central nervous system. This biomarker could be utilized to better understand normal APP processing, aberrant processing in the disease setting, and modulations to processing during therapeutic intervention. In this paper, we present a method for measuring the metabolism of sAPPβ and another APP proteolytic product, sAPPα, in vivo in humans using stable isotope labeling kinetics, paired with immunoprecipitation and liquid chromatography/tandem mass spectrometry. The method presented herein is robust, reproducible, and precise, and allows for the study of these analytes by taking into account their full dynamic potential as opposed to the traditional methods of absolute concentration quantitation that only provide a static view of a dynamic system. A study of in vivo cerebrospinal fluid sAPPβ and sAPPα kinetics using these methods could reveal novel insights into pathophysiological mechanisms of AD, such as increased BACE1 processing of APP.
Collapse
Affiliation(s)
- Justyna A Dobrowolska Zakaria
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- SILQ Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Monika Lysakowska
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ammaarah Khatri
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Matthew E Kennedy
- Deparment of Neuroscience, Merck & Co., Inc., Boston, MA, 02115, USA
| | - Robert Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Notch signaling in malignant gliomas: supporting tumor growth and the vascular environment. Cancer Metastasis Rev 2022; 41:737-747. [PMID: 35624227 DOI: 10.1007/s10555-022-10041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
Glioblastoma is the most malignant form of glioma, which is the most commonly occurring tumor of the central nervous system. Notch signaling in glioblastoma is considered to be a marker of an undifferentiated tumor cell state, associated with tumor stem cells. Notch is also known for facilitating tumor dormancy escape, recurrence and progression after treatment. Studies in vitro suggest that reducing, removing or blocking the expression of this gene triggers tumor cell differentiation, which shifts the phenotype away from stemness status and consequently facilitates treatment. In contrast, in the vasculature, Notch appears to also function as an important receptor that defines mature non-leaking vessels, and increasing its expression promotes tumor normalization in models of cancer in vivo. Failures in clinical trials with Notch inhibitors are potentially related to their opposing effects on the tumor versus the tumor vasculature, which points to the need for a greater understanding of this signaling pathway.
Collapse
|
7
|
Dey J, Roberts A, Mahari S, Gandhi S, Tripathi PP. Electrochemical Detection of Alzheimer’s Disease Biomarker, β-Secretase Enzyme (BACE1), With One-Step Synthesized Reduced Graphene Oxide. Front Bioeng Biotechnol 2022; 10:873811. [PMID: 35402415 PMCID: PMC8987718 DOI: 10.3389/fbioe.2022.873811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/14/2023] Open
Abstract
β-Secretase1 (BACE1) catalyzes the rate-limiting step in the generation of amyloid-β peptides, that is, the principal component involved in the pathology of Alzheimer’s disease (AD). Recent research studies show correlation between blood and cerebrospinal fluid (CSF) levels of BACE1 with the pathophysiology of AD. In this study, we report one-step synthesized reduced graphene oxide (rGO), activated via carbodiimide chemistry, conjugated with BACE1 antibody (Ab), and immobilized on fluorine-doped tin oxide (FTO) electrodes for rapid detection of BACE1 antigen (Ag) for AD diagnosis. The synthesis and fabrication steps were characterized using different types of spectroscopic, X-ray analytic, microscopic, and voltametric techniques. Various parameters including nanomaterial/Ab concentration, response time, pH, temperature, and rate of scan were standardized for maximum current output using the modified electrode. Final validation was performed via detection of BACE1 Ag ranging from 1 fM to 1 µM, with a detection limit of 0.64 fM in buffer samples and 1 fM in spiked serum samples, as well as negligible cross-reactivity with neurofilament Ag in buffer, spiked serum, and spiked artificial CSF. The proposed immunosensor gave a quick result in 30 s, and good repeatability and storage stability for a month, making it a promising candidate for sensitive, specific, and early diagnosis of AD. Thus, the fabricated electrochemical biosensor for BACE-1 detection improves detection performance compared to existing sensors as well as reduces detection time and cost, signifying its potential in early diagnosis of AD in clinical samples.
Collapse
Affiliation(s)
- Jhilik Dey
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Cell Biology and Physiology Division, IICB-Translational Research Unit of Excellence, Kolkata, India
| | - Akanksha Roberts
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Subhasis Mahari
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, India
- *Correspondence: Sonu Gandhi, , ; Prem Prakash Tripathi,
| | - Prem Prakash Tripathi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Cell Biology and Physiology Division, IICB-Translational Research Unit of Excellence, Kolkata, India
- *Correspondence: Sonu Gandhi, , ; Prem Prakash Tripathi,
| |
Collapse
|
8
|
Cervellati C, Valacchi G, Zuliani G. BACE1 role in Alzheimer's disease and other dementias: from the theory to the practice. Neural Regen Res 2021; 16:2407-2408. [PMID: 33907020 PMCID: PMC8374572 DOI: 10.4103/1673-5374.313041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Affiliation(s)
- Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Science Department, NC State University, Kannapolis, NC, USA
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Systematic Search for Novel Circulating Biomarkers Associated with Extracellular Vesicles in Alzheimer's Disease: Combining Literature Screening and Database Mining Approaches. J Pers Med 2021; 11:jpm11100946. [PMID: 34683087 PMCID: PMC8538213 DOI: 10.3390/jpm11100946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs play an important role in neurodegenerative diseases. Many miRNA-target gene interactions (MTI) have been experimentally confirmed and associated with Alzheimer’s disease (AD). miRNAs may also be contained within extracellular vesicles (EVs), mediators of cellular communication and a potential source of circulating biomarkers in body fluids. Therefore, EV-associated miRNAs (EV-miRNAs) in peripheral blood could support earlier and less invasive AD diagnostics. We aimed to prioritize EV-related miRNA with AD-related genes and to identify the most promising candidates for novel AD biomarkers. A list of unique EV-miRNAs from the literature was combined with a known set of AD risk genes and enriched for MTI. Additionally, miRNAs associated with the AD phenotype were combined with all known target genes in MTI enrichment. Expression in different sample types was analyzed to identify AD-associated miRNAs with the greatest potential as AD circulating biomarkers. Four common MTI were observed between EV-miRNAs and AD-associated miRNAs: hsa-miR-375–APH1B, hsa-miR-107–CDC42SE2, hsa-miR-375–CELF2, and hsa-miR-107–IL6. An additional 61 out of 169 unique miRNAs (36.1%) and seven out of 84 unique MTI (8.3%), observed in the body fluids of AD patients, were proposed as very strong AD-circulating biomarker candidates. Our analysis summarized several potential novel AD biomarkers, but further studies are needed to evaluate their potential in clinical practice.
Collapse
|
10
|
Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, Zhou J, Yan R, Vanmechelen E, De Vos A, Nisticò R, Corbo M, Imbimbo BP, Streffer J, Voytyuk I, Timmers M, Tahami Monfared AA, Irizarry M, Albala B, Koyama A, Watanabe N, Kimura T, Yarenis L, Lista S, Kramer L, Vergallo A. The β-Secretase BACE1 in Alzheimer's Disease. Biol Psychiatry 2021; 89:745-756. [PMID: 32223911 PMCID: PMC7533042 DOI: 10.1016/j.biopsych.2020.02.001] [Citation(s) in RCA: 348] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 01/18/2023]
Abstract
BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) was initially cloned and characterized in 1999. It is required for the generation of all monomeric forms of amyloid-β (Aβ), including Aβ42, which aggregates into bioactive conformational species and likely initiates toxicity in Alzheimer's disease (AD). BACE1 concentrations and rates of activity are increased in AD brains and body fluids, thereby supporting the hypothesis that BACE1 plays a critical role in AD pathophysiology. Therefore, BACE1 is a prime drug target for slowing down Aβ production in early AD. Besides the amyloidogenic pathway, BACE1 has other substrates that may be important for synaptic plasticity and synaptic homeostasis. Indeed, germline and adult conditional BACE1 knockout mice display complex neurological phenotypes. Despite BACE1 inhibitor clinical trials conducted so far being discontinued for futility or safety reasons, BACE1 remains a well-validated therapeutic target for AD. A safe and efficacious compound with high substrate selectivity as well as a more accurate dose regimen, patient population, and disease stage may yet be found. Further research should focus on the role of Aβ and BACE1 in physiological processes and key pathophysiological mechanisms of AD. The functions of BACE1 and the homologue BACE2, as well as the biology of Aβ in neurons and glia, deserve further investigation. Cellular and molecular studies of BACE1 and BACE2 knockout mice coupled with biomarker-based human research will help elucidate the biological functions of these important enzymes and identify their substrates and downstream effects. Such studies will have critical implications for BACE1 inhibition as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Harald Hampel
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey; Sorbonne University, GRC No. 21, Alzheimer Precision Medicine, Pitié-Salpêtrière Hospital, Paris, France.
| | - Robert Vassar
- Department of Neurology, Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Bart De Strooper
- Department of Neurosciences, KU Leuven, Leuven, Belgium; Centre for Brain and Disease Research, VIB (Flanders Institute for Biotechnology), Leuven, Belgium; Dementia Research Institute, University College London, London, United Kingdom
| | - John Hardy
- Department of Molecular Neuroscience and Reta Lilla Weston Laboratories, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Michael Willem
- Chair of Metabolic Biochemistry, Biomedical Center, Faculty of Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Neeraj Singh
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut
| | - John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, Connecticut
| | | | | | - Robert Nisticò
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy; School of Pharmacy, Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | | | - Johannes Streffer
- Reference Center for Biological Markers of Dementia, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; UCB Biopharma SPRL, Braine-l'Alleud, Belgium
| | - Iryna Voytyuk
- Department of Neurosciences, KU Leuven, Leuven, Belgium; Centre for Brain and Disease Research, VIB (Flanders Institute for Biotechnology), Leuven, Belgium; ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge, United Kingdom
| | - Maarten Timmers
- Reference Center for Biological Markers of Dementia, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium; Janssen Research and Development, a division of Janssen Pharmaceutica, Beerse, Belgium
| | - Amir Abbas Tahami Monfared
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Michael Irizarry
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | - Bruce Albala
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | - Akihiko Koyama
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | | | | | - Lisa Yarenis
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | - Simone Lista
- Sorbonne University, GRC No. 21, Alzheimer Precision Medicine, Pitié-Salpêtrière Hospital, Paris, France; Institute of Memory and Alzheimer's Disease, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute, INSERM U 1127, CNRS UMR 7225, Paris, France
| | - Lynn Kramer
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey
| | - Andrea Vergallo
- Neurology Business Group, Eisai Inc., Woodcliff Lake, New Jersey; Sorbonne University, GRC No. 21, Alzheimer Precision Medicine, Pitié-Salpêtrière Hospital, Paris, France; Institute of Memory and Alzheimer's Disease, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute, INSERM U 1127, CNRS UMR 7225, Paris, France.
| |
Collapse
|
11
|
Wu G, Cheney C, Huang Q, Hazuda DJ, Howell BJ, Zuck P. Improved Detection of HIV Gag p24 Protein Using a Combined Immunoprecipitation and Digital ELISA Method. Front Microbiol 2021; 12:636703. [PMID: 33796087 PMCID: PMC8007784 DOI: 10.3389/fmicb.2021.636703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Greater than 90% of HIV-1 proviruses are thought to be defective and incapable of viral replication. While replication competent proviruses are of primary concern with respect to disease progression or transmission, studies have shown that even defective proviruses are not silent and can produce viral proteins, which may contribute to inflammation and immune responses. Viral protein expression also has implications for immune-based HIV-1 clearance strategies, which rely on antigen recognition. Thus, sensitive assays aimed at quantifying both replication-competent proviruses and defective, yet translationally competent proviruses are needed to understand the contribution of viral protein to HIV-1 pathogenesis and determine the effectiveness of HIV-1 cure interventions. Previously, we reported a modified HIV-1 gag p24 digital enzyme-linked immunosorbent assay with single molecule array (Simoa) detection of cell-associated viral protein. Here we report a novel p24 protein enrichment method coupled with the digital immunoassay to further extend the sensitivity and specificity of viral protein detection. Immunocapture of HIV gag p24 followed by elution in a Simoa-compatible format resulted in higher protein recovery and lower background from various biological matrices and sample volumes. Quantification of as little as 1 fg of p24 protein from cell lysates from cells isolated from peripheral blood or tissues from ART-suppressed HIV participants, as well as simian-human immunodeficiency virus-infected non-human primates (NHPs), with high recovery and reproducibility is demonstrated here. The application of these enhanced methods to patient-derived samples has potential to further the study of the persistent HIV state and examine in vitro response to therapies, as well as ex vivo study of translationally competent cells from a variety of donors.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul Zuck
- Department of Infectious Disease and Vaccines, Merck & Co. Inc., Kenilworth, NJ, United States
| |
Collapse
|
12
|
Wilson EN, Do Carmo S, Welikovitch LA, Hall H, Aguilar LF, Foret MK, Iulita MF, Jia DT, Marks AR, Allard S, Emmerson JT, Ducatenzeiler A, Cuello AC. NP03, a Microdose Lithium Formulation, Blunts Early Amyloid Post-Plaque Neuropathology in McGill-R-Thy1-APP Alzheimer-Like Transgenic Rats. J Alzheimers Dis 2020; 73:723-739. [PMID: 31868669 DOI: 10.3233/jad-190862] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidemiological, preclinical, and clinical studies have suggested a role for microdose lithium in reducing Alzheimer's disease (AD) risk by modulating key mechanisms associated with AD pathology. The novel microdose lithium formulation, NP03, has disease-modifying effects in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis at pre-plaque stages, before frank amyloid-β (Aβ) plaque deposition, during which Aβ is primarily intraneuronal. Here, we are interested in determining whether the positive effects of microdose lithium extend into early Aβ post-plaque stages. We administered NP03 (40μg Li/kg; 1 ml/kg body weight) to McGill-R-Thy1-APP transgenic rats for 12 weeks spanning the transition phase from plaque-free to plaque-bearing. The effect of NP03 on remote working memory was assessed using the novel object recognition task. Levels of human Aβ38, Aβ40, and Aβ42 as well as levels of pro-inflammatory mediators were measured in brain-extracts and plasma using electrochemiluminescent assays. Mature Aβ plaques were visualized with a thioflavin-S staining. Vesicular acetylcholine transporter (VAChT) bouton density and levels of chemokine (C-X-C motif) ligand 1 (CXCL1), interleukin-6 (IL-6), and 4-hydroxynonenal (4-HNE) were probed using quantitative immunohistochemistry. During the early Aβ post-plaque stage, we find that NP03 rescues functional deficits in object recognition, reduces loss of cholinergic boutons in the hippocampus, reduces levels of soluble and insoluble cortical Aβ42 and reduces hippocampal Aβ plaque number. In addition, NP03 reduces markers of neuroinflammation and cellular oxidative stress. Together these results indicate that microdose lithium NP03 is effective at later stages of amyloid pathology, after appearance of Aβ plaques.
Collapse
Affiliation(s)
- Edward N Wilson
- Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - Sonia Do Carmo
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Hélène Hall
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Morgan K Foret
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Dan Tong Jia
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Adam R Marks
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Simon Allard
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Joshua T Emmerson
- Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - A Claudio Cuello
- Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Montreal, QC, Canada.,Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom (Visiting Professorship)
| |
Collapse
|
13
|
Bjorkli C, Sandvig A, Sandvig I. Bridging the Gap Between Fluid Biomarkers for Alzheimer's Disease, Model Systems, and Patients. Front Aging Neurosci 2020; 12:272. [PMID: 32982716 PMCID: PMC7492751 DOI: 10.3389/fnagi.2020.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of two proteins in fibrillar form: amyloid-β (Aβ) and tau. Despite decades of intensive research, we cannot yet pinpoint the exact cause of the disease or unequivocally determine the exact mechanism(s) underlying its progression. This confounds early diagnosis and treatment of the disease. Cerebrospinal fluid (CSF) biomarkers, which can reveal ongoing biochemical changes in the brain, can help monitor developing AD pathology prior to clinical diagnosis. Here we review preclinical and clinical investigations of commonly used biomarkers in animals and patients with AD, which can bridge translation from model systems into the clinic. The core AD biomarkers have been found to translate well across species, whereas biomarkers of neuroinflammation translate to a lesser extent. Nevertheless, there is no absolute equivalence between biomarkers in human AD patients and those examined in preclinical models in terms of revealing key pathological hallmarks of the disease. In this review, we provide an overview of current but also novel AD biomarkers and how they relate to key constituents of the pathological cascade, highlighting confounding factors and pitfalls in interpretation, and also provide recommendations for standardized procedures during sample collection to enhance the translational validity of preclinical AD models.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuromedicine and Movement Science, Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, University Hospital of Umeå, Umeå, Sweden
| | - Ioanna Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
14
|
Advantages and Pitfalls in Fluid Biomarkers for Diagnosis of Alzheimer's Disease. J Pers Med 2020; 10:jpm10030063. [PMID: 32708853 PMCID: PMC7563364 DOI: 10.3390/jpm10030063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease (AD) is a commonly occurring neurodegenerative disease in the advanced-age population, with a doubling of prevalence for each 5 years of age above 60 years. In the past two decades, there has been a sustained effort to find suitable biomarkers that may not only aide with the diagnosis of AD early in the disease process but also predict the onset of the disease in asymptomatic individuals. Current diagnostic evidence is supportive of some biomarker candidates isolated from cerebrospinal fluid (CSF), including amyloid beta peptide (Aβ), total tau (t-tau), and phosphorylated tau (p-tau) as being involved in the pathophysiology of AD. However, there are a few biomarkers that have been shown to be helpful, such as proteomic, inflammatory, oral, ocular and olfactory in the early detection of AD, especially in the individuals with mild cognitive impairment (MCI). To date, biomarkers are collected through invasive techniques, especially CSF from lumbar puncture; however, non-invasive (radio imaging) methods are used in practice to diagnose AD. In order to reduce invasive testing on the patients, present literature has highlighted the potential importance of biomarkers in blood to assist with diagnosing AD.
Collapse
|
15
|
Hampel H, Vergallo A, Afshar M, Akman-Anderson L, Arenas J, Benda N, Batrla R, Broich K, Caraci F, Cuello AC, Emanuele E, Haberkamp M, Kiddle SJ, Lucía A, Mapstone M, Verdooner SR, Woodcock J, Lista S. Blood-based systems biology biomarkers for next-generation clinical trials in Alzheimer's disease
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020. [PMID: 31636492 PMCID: PMC6787542 DOI: 10.31887/dcns.2019.21.2/hhampel] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD)-a complex disease showing multiple pathomechanistic alterations-is triggered by nonlinear dynamic interactions of genetic/epigenetic and environmental risk factors, which, ultimately, converge into a biologically heterogeneous disease. To tackle the burden of AD during early preclinical stages, accessible blood-based biomarkers are currently being developed. Specifically, next-generation clinical trials are expected to integrate positive and negative predictive blood-based biomarkers into study designs to evaluate, at the individual level, target druggability and potential drug resistance mechanisms. In this scenario, systems biology holds promise to accelerate validation and qualification for clinical trial contexts of use-including proof-of-mechanism, patient selection, assessment of treatment efficacy and safety rates, and prognostic evaluation. Albeit in their infancy, systems biology-based approaches are poised to identify relevant AD "signatures" through multifactorial and interindividual variability, allowing us to decipher disease pathophysiology and etiology. Hopefully, innovative biomarker-drug codevelopment strategies will be the road ahead towards effective disease-modifying drugs.
.
Collapse
Affiliation(s)
- Harald Hampel
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Andrea Vergallo
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Mohammad Afshar
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Leyla Akman-Anderson
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Joaquín Arenas
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Norbert Benda
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Richard Batrla
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Karl Broich
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Filippo Caraci
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - A Claudio Cuello
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Enzo Emanuele
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Marion Haberkamp
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Steven J Kiddle
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Alejandro Lucía
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Mark Mapstone
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Steven R Verdooner
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Janet Woodcock
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| | - Simone Lista
- Author affiliations: AXA Research Fund & Sorbonne University Chair, Paris, France; Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France (Harald Hampel, Andrea Vergallo, Simone Lista); Ariana Pharma, Paris, France (Mohammad Afshar); NeuroVision Imaging, Inc., Sacramento, California, USA (Leyla Akman-Anderson, Steven R. Verdooner); Research Institute of Hospital 12 de Octubre (i+12), Madrid, Spain (Joaquín Arenas, Alejandro Lucía); Biostatistics and Special Pharmacokinetics Unit/Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Norbert Benda); Roche Diagnostics International, Rotkreuz, Switzerland (Richard Batrla); Head and President, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Karl Broich); Department of Drug Sciences, University of Catania, Catania, Italy; IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy (Filippo Caraci); Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada (A. Claudio Cuello); 2E Science, Robbio, Pavia, Italy (Enzo Emanuele); Neurology/Psychiatry/Ophthalmology Unit, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany (Marion Haberkamp); MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK (Steven J. Kiddle); Universidad Europea de Madrid (Sports Science Department), Madrid, Spain (Alejandro Lucía); Department of Neurology, University of California Irvine School of Medicine, Irvine, California, USA (Mark Mapstone); Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA (Janet Woodcock). Address for correspondence: Professor Harald Hampel, MD, PhD, Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, 47 boulevard de l'hôpital, F-75013, Paris, France.
| |
Collapse
|
16
|
Elevation of plasma soluble amyloid precursor protein beta in Alzheimer's disease. Arch Gerontol Geriatr 2019; 87:103995. [PMID: 31874328 DOI: 10.1016/j.archger.2019.103995] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/26/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Beta-amyloid is considered to be a pathophysiological marker in Alzheimer's disease (AD). Soluble amyloid precursor proteins (sAPPs) -α (sAPPα) and -β (sAPPβ), which are the byproducts of non-amyloidogenic and amyloidogenic process of APP, respectively, have been repeatedly observed in the cerebrospinal fluids (CSF) of AD patients. The present study focused on the determination of sAPP levels in peripheral blood. METHODS The plasma protein levels of sAPPα and sAPPβ were measured with ELISA. Plasma from 52 AD patients, 98 amnestic mild cognitive impairment (MCI) patients, and 114 cognitively normal controls were compared. RESULTS The plasma level of sAPPβ was significantly increased in AD patients than in cognitively healthy controls. However, no significant change in plasma sAPPα was observed among the three groups. Furthermore, the plasma sAPPβ levels significantly correlated with cognitive assessment scales, such as clinical dementia rating (CDR), and mini-mental status examination (MMSE). Interestingly, sAPPα and sAPPβ had a positive correlation with each other in blood plasma, similar to previous studies on CSF sAPP. This correlation was stronger in the MCI and AD groups than in the cognitively healthy controls. CONCLUSIONS These results suggest that individuals with elevated plasma sAPPβ levels are at an increased risk of AD; elevation in these levels may reflect the progression of disease.
Collapse
|
17
|
Lopez-Font I, Boix CP, Zetterberg H, Blennow K, Sáez-Valero J. Characterization of Cerebrospinal Fluid BACE1 Species. Mol Neurobiol 2019; 56:8603-8616. [PMID: 31290061 DOI: 10.1007/s12035-019-01677-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022]
Abstract
The β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the main brain β-secretase responsible for the amyloidogenic processing of the amyloid precursor protein (APP). Previous studies have suggested that cerebrospinal fluid (CSF) β-secretase activity may be a candidate diagnostic biomarker for Alzheimer's disease (AD), but biochemical characterization of BACE1 protein in CSF is needed. CSF samples from 19 AD patients and 19 age-matched non-AD controls (n = 19) were classified according to their Aβ42, total tau, and P-tau CSF biomarker levels. We found that β-secretase activity was higher in the CSF of AD subjects than in that of the controls. We found that the majority of the β-secretase activity in the CSF, measured using a peptide substrate homologous to the BACE1 cleavage site, was not inhibited by specific BACE1 inhibitors. We defined enzymatic activity attributable specifically to BACE1 as the activity that was blocked by the specific inhibitors, which is still higher in AD subjects. BACE1 protein levels were characterized by lectin binding, immunoprecipitation, blue native-PAGE, and western blotting using antibodies against specific protein domains. BACE1 was found to be present in human CSF as a mature form of ~ 70 kDa that probably comprised truncated and full-length species, and also as an immature form of ~ 50 kDa that retains the prodomain. CSF-BACE1 was found to assemble into hetero-complexes containing distinct species. Immunoblotting with an antibody against the C-terminus of BACE1 revealed significantly higher levels of the 70-kDa full-length BACE1, while the 50 kDa immature form remained unaltered. When the 70-kDa species was probed with an antibody against the N-terminus of BACE1 (which does not discriminate between truncated and full-length forms), no increase in immunoreactivity was observed, suggesting that truncated forms of BACE1 do not increase in AD. In conclusion, the complexity of BACE1 species in CSF has to be taken into consideration when determining BACE1 activity and protein levels in CSF as biomarkers of AD.
Collapse
Affiliation(s)
- Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.
| | - Claudia P Boix
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.
| |
Collapse
|
18
|
Zhang Z, Cui J, Gao F, Li Y, Zhang G, Liu M, Yan R, Shen Y, Li R. Elevated cleavage of neuregulin-1 by beta-secretase 1 in plasma of schizophrenia patients. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:161-168. [PMID: 30500411 DOI: 10.1016/j.pnpbp.2018.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 01/22/2023]
Abstract
Neuregulin 1 (NRG1) is a key candidate susceptibility gene for schizophrenia. It is reported that the function of NRG1 can be regulated by cleavage via the β-Secretase (BACE1), particularly during early development. While current knowledge suggested that schizophrenia might have different phenotypes, it is unknown whether BACE1-cleaved-NRG1 (BACE1-NRG1) activity is related to clinical phenotypes of schizophrenia. In the current study, we used a newly developed enzymatic assay to detect BACE1-NRG1 activity in the human plasma and investigated the levels of cleavage of NRG1 by BACE1 in the plasma from schizophrenia patients. Our results are the first to demonstrate that the level of plasma BACE1-NRG1 activity was significantly increased in subjects affected with schizophrenia compared with healthy controls. Interestingly, the elevated BACE1-NRG1 activity was correlated with the disease severity and duration of schizophrenia, such as patients suffering from shorter-term course and worse disease status expressed higher BACE1-NRG1 activity levels compared to whom with longer duration and less severity of the disease. Furthermore, this is also the first report that the alternation of BACE1-NRG1 activity was a substrate -specific event in schizophrenia. Together, our findings suggested that the plasma BACE1-NRG1 activity can be a potential biomarker for the early diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jie Cui
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243, USA
| | - Feng Gao
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yuhong Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Guofu Zhang
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Min Liu
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Riqiang Yan
- Department of Neurosciences, University of Connecticut School of Medicine, Farmington, CT 06269, USA
| | - Yong Shen
- Neurodegenerative Disorder Research Center, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Rena Li
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243, USA; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
19
|
Abstract
Alzheimer's disease (AD), the most common cause of age-dependent dementia, is one of the most significant healthcare problems worldwide. Aggravating this situation, drugs that are currently US Food and Drug Administration (FDA)-approved for AD treatment do not prevent or delay disease progression. Therefore, developing effective therapies for AD patients is of critical urgency. Human genetic and clinical studies over the past three decades have indicated that abnormal generation or accumulation of amyloid-β (Aβ) peptides is a likely culprit in AD pathogenesis. Aβ is generated from amyloid precursor protein (APP) via proteolytic cleavage by β-site APP cleaving enzyme 1 (BACE1) (memapsin 2, β-secretase, Asp 2 protease) and γ-secretase. Mice deficient in BACE1 show abrogated production of Aβ. Therefore, pharmacological inhibition of BACE1 is being intensively pursued as a therapeutic approach to treat AD patients. Recent setbacks in clinical trials with BACE1 inhibitors have highlighted the critical importance of understanding how to properly inhibit BACE1 to treat AD patients. This review summarizes the recent studies on the role of BACE1 in synaptic functions as well as our views on BACE1 inhibition as an effective AD treatment.
Collapse
Affiliation(s)
- Brati Das
- Department of Neuroscience, Room E4032, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA
| | - Riqiang Yan
- Department of Neuroscience, Room E4032, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030-3401, USA.
| |
Collapse
|
20
|
Abnormal clotting of the intrinsic/contact pathway in Alzheimer disease patients is related to cognitive ability. Blood Adv 2019; 2:954-963. [PMID: 29700007 DOI: 10.1182/bloodadvances.2018017798] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/29/2018] [Indexed: 12/31/2022] Open
Abstract
Alzheimer disease (AD) is a neurodegenerative disorder characterized by extracellular β-amyloid (Aβ) deposition. Although peripheral inflammation and cerebrovascular pathology are reported in AD, there is a lack of plasma biomarkers in this field. Because the contact system is triggered in patient plasma, we hypothesized that the hemostasis profile could be a novel biomarker in AD. Here, we assessed the clotting profile in plasma from AD patients and age-matched controls. Utilizing clinically relevant assays, thromboelastography and activated partial thromboplastin time, we found impaired clot initiation and formation rate in AD patient plasma. These coagulation end points correlated with cerebrospinal fluid neurofilament-light levels and cognition and were more profound in younger AD patients. Ex vivo intrinsic clotting of plasma from AD mice expressing human amyloid precursor protein (APP) was also delayed in an age-dependent manner, suggesting that this phenotype is related to APP, the parent protein of Aβ. Further analysis of coagulation factors in human plasma indicated that endogenous inhibitor(s) of factors XII and XI in AD plasma contribute to this delayed clotting. Together, these data suggest that delayed clotting in young AD patients is a novel biomarker and that therapies aimed to correct this phenotype might be beneficial in this patient population. Follow-up studies in additional AD patient cohorts are warranted to further evaluate these findings.
Collapse
|
21
|
Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J, Fagan AM, Hampel H, Mielke MM, Mikulskis A, O'Bryant S, Scheltens P, Sevigny J, Shaw LM, Soares HD, Tong G, Trojanowski JQ, Zetterberg H, Blennow K. Current state of Alzheimer's fluid biomarkers. Acta Neuropathol 2018; 136:821-853. [PMID: 30488277 PMCID: PMC6280827 DOI: 10.1007/s00401-018-1932-x] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with a complex and heterogeneous pathophysiology. The number of people living with AD is predicted to increase; however, there are no disease-modifying therapies currently available and none have been successful in late-stage clinical trials. Fluid biomarkers measured in cerebrospinal fluid (CSF) or blood hold promise for enabling more effective drug development and establishing a more personalized medicine approach for AD diagnosis and treatment. Biomarkers used in drug development programmes should be qualified for a specific context of use (COU). These COUs include, but are not limited to, subject/patient selection, assessment of disease state and/or prognosis, assessment of mechanism of action, dose optimization, drug response monitoring, efficacy maximization, and toxicity/adverse reactions identification and minimization. The core AD CSF biomarkers Aβ42, t-tau, and p-tau are recognized by research guidelines for their diagnostic utility and are being considered for qualification for subject selection in clinical trials. However, there is a need to better understand their potential for other COUs, as well as identify additional fluid biomarkers reflecting other aspects of AD pathophysiology. Several novel fluid biomarkers have been proposed, but their role in AD pathology and their use as AD biomarkers have yet to be validated. In this review, we summarize some of the pathological mechanisms implicated in the sporadic AD and highlight the data for several established and novel fluid biomarkers (including BACE1, TREM2, YKL-40, IP-10, neurogranin, SNAP-25, synaptotagmin, α-synuclein, TDP-43, ferritin, VILIP-1, and NF-L) associated with each mechanism. We discuss the potential COUs for each biomarker.
Collapse
Affiliation(s)
- José Luis Molinuevo
- BarcelonaBeta Brain Research Center, Fundació Pasqual Maragall, Universitat Pompeu Fabra, Barcelona, Spain
- Unidad de Alzheimer y otros trastornos cognitivos, Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard Batrla
- Roche Centralised and Point of Care Solutions, Roche Diagnostics International, Rotkreuz, Switzerland
| | - Martin M Bednar
- Neuroscience Therapeutic Area Unit, Takeda Development Centre Americas Ltd, Cambridge, MA, USA
| | - Tobias Bittner
- Genentech, A Member of the Roche Group, Basel, Switzerland
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC No 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Michelle M Mielke
- Departments of Epidemiology and Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Sid O'Bryant
- Department of Pharmacology and Neuroscience; Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Philip Scheltens
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeffrey Sevigny
- Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, and Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Holly D Soares
- Clinical Development Neurology, AbbVie, North Chicago, IL, USA
| | | | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal Campus, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden.
| |
Collapse
|
22
|
Hampel H, O'Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R, Blennow K. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol 2018; 14:639-652. [PMID: 30297701 PMCID: PMC6211654 DOI: 10.1038/s41582-018-0079-7] [Citation(s) in RCA: 407] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomarker discovery and development for clinical research, diagnostics and therapy monitoring in clinical trials have advanced rapidly in key areas of medicine - most notably, oncology and cardiovascular diseases - allowing rapid early detection and supporting the evolution of biomarker-guided, precision-medicine-based targeted therapies. In Alzheimer disease (AD), breakthroughs in biomarker identification and validation include cerebrospinal fluid and PET markers of amyloid-β and tau proteins, which are highly accurate in detecting the presence of AD-associated pathophysiological and neuropathological changes. However, the high cost, insufficient accessibility and/or invasiveness of these assays limit their use as viable first-line tools for detecting patterns of pathophysiology. Therefore, a multistage, tiered approach is needed, prioritizing development of an initial screen to exclude from these tests the high numbers of people with cognitive deficits who do not demonstrate evidence of underlying AD pathophysiology. This Review summarizes the efforts of an international working group that aimed to survey the current landscape of blood-based AD biomarkers and outlines operational steps for an effective academic-industry co-development pathway from identification and assay development to validation for clinical use.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France.
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
- Brain & Spine Institute (ICM), INSERM U 1127, Paris, France.
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France.
| | - Sid E O'Bryant
- University of North Texas Health Science Center, Fort Worth, TX, USA
| | - José L Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Melbourne, Australia
| | - Simone Lista
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, Paris, France
- Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Steven J Kiddle
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | | | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
| |
Collapse
|
23
|
Murakami Y, Takahashi K, Hoshi K, Ito H, Kanno M, Saito K, Nollet K, Yamaguchi Y, Miyajima M, Arai H, Hashimoto Y, Mima T. Spontaneous intracranial hypotension is diagnosed by a combination of lipocalin-type prostaglandin D synthase and brain-type transferrin in cerebrospinal fluid. Biochim Biophys Acta Gen Subj 2018; 1862:1835-1842. [PMID: 29621631 DOI: 10.1016/j.bbagen.2018.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 03/28/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Spontaneous intracranial hypotension (SIH) is caused by cerebrospinal fluid (CSF) leakage. Definitive diagnosis can be difficult by clinical examinations and imaging studies. METHODS SIH was diagnosed with the following criteria: (i) evidence of CSF leakage by cranial magnetic resonance imaging (MRI) findings of intracranial hypotension and/or low CSF opening pressure; (ii) no recent history of dural puncture. We quantified CSF proteins by ELISA or Western blotting. RESULTS Comparing with non-SIH patients, SIH patients showed significant increase of brain-derived CSF glycoproteins such as lipocalin-type prostaglandin D synthase (L-PGDS), soluble protein fragments generated from amyloid precursor protein (sAPP) and "brain-type" transferrin (Tf). Serum-derived proteins such as albumin, immunoglobulin G, and serum Tf were also increased. A combination of L-PGDS and brain-type Tf differentiated SIH from non-SIH with sensitivity 94.7% and specificity 72.6%. CONCLUSION L-PGDS and brain-type Tf can be biomarkers for diagnosing SIH. GENERAL SIGNIFICANCE L-PGDS and brain-type Tf biosynthesized in the brain appears to be markers for abnormal metabolism of CSF.
Collapse
Affiliation(s)
- Yuta Murakami
- Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Koichi Takahashi
- Department of Neurosurgery, Sanno Hospital, Minato-ku, Tokyo, Japan
| | - Kyoka Hoshi
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Hiromi Ito
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Mayumi Kanno
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Kiyoshi Saito
- Department of Neurosurgery, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Kenneth Nollet
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, RIKEN Global Research Cluster, Wako, Saitama, Japan
| | | | - Hajime Arai
- Department of Neurosurgery, Juntendo University, Tokyo, Japan
| | - Yasuhiro Hashimoto
- Department of Biochemistry, Fukushima Medical University School of Medicine, Fukushima City, Fukushima, Japan.
| | - Tatsuo Mima
- Department of Neurosurgery, Sanno Hospital, Minato-ku, Tokyo, Japan.
| |
Collapse
|
24
|
Lue LF, Sabbagh MN, Chiu MJ, Jing N, Snyder NL, Schmitz C, Guerra A, Belden CM, Chen TF, Yang CC, Yang SY, Walker DG, Chen K, Reiman EM. Plasma Levels of Aβ42 and Tau Identified Probable Alzheimer's Dementia: Findings in Two Cohorts. Front Aging Neurosci 2017; 9:226. [PMID: 28790911 PMCID: PMC5522888 DOI: 10.3389/fnagi.2017.00226] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/03/2017] [Indexed: 01/31/2023] Open
Abstract
The utility of plasma amyloid beta (Aβ) and tau levels for the clinical diagnosis of Alzheimer’s disease (AD) dementia has been controversial. The main objective of this study was to compare Aβ42 and tau levels measured by the ultra-sensitive immunomagnetic reduction (IMR) assays in plasma samples collected at the Banner Sun Health Institute (BSHRI) (United States) with those from the National Taiwan University Hospital (NTUH) (Taiwan). Significant increase in tau levels were detected in AD subjects from both cohorts, while Aβ42 levels were increased only in the NTUH cohort. A regression model incorporating age showed that tau levels identified probable ADs with 81 and 96% accuracy in the BSHRI and NTUH cohorts, respectively, while computed products of Aβ42 and tau increased the accuracy to 84% in the BSHRI cohorts. Using 382.68 (pg/ml)2 as the cut-off value, the product achieved 92% accuracy in identifying AD in the combined cohorts. Overall findings support that plasma Aβ42 and tau assayed by IMR technology can be used to assist in the clinical diagnosis of AD.
Collapse
Affiliation(s)
- Lih-Fen Lue
- Laboratory of Neuroregeneration, Banner Sun Health Research Institute, Sun CityAZ, United States.,Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, TempeAZ, United States
| | - Marwan N Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun CityAZ, United States
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan UniversityTaipei, Taiwan.,Department of Psychology, National Taiwan UniversityTaipei, Taiwan
| | - Naomi Jing
- Department of Statistics, College of Letters and Sciences, University of California, Berkeley, BerkeleyCA, United States
| | | | - Christopher Schmitz
- Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, TempeAZ, United States
| | - Andre Guerra
- Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, TempeAZ, United States
| | - Christine M Belden
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun CityAZ, United States
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan.,Department of Medical Imaging, National Taiwan University Hospital, College of Medicine, National Taiwan UniversityTaipei, Taiwan
| | | | | | - Douglas G Walker
- Laboratory of Neuroregeneration, Banner Sun Health Research Institute, Sun CityAZ, United States.,Arizona State University-Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, TempeAZ, United States
| | - Kewei Chen
- Banner Alzheimer's Institute, PhoenixAZ, United States
| | - Eric M Reiman
- Banner Alzheimer's Institute, PhoenixAZ, United States.,Translational Genomics Research Institute, PhoenixAZ, United States.,Arizona Alzheimer's Consortium, PhoenixAZ, United States
| |
Collapse
|
25
|
Price EA, Krasowska-Zoladek A, Nanda KK, Stachel SJ, Henze DA. Development of a pharmacodynamic biomarker to measure target engagement from inhibition of the NGF-TrkA pathway. J Neurosci Methods 2017; 282:34-42. [PMID: 28279735 DOI: 10.1016/j.jneumeth.2017.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 02/02/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND NGF signaling through TrkA triggers pathways involved in a wide range of biological effects. Clinical trials targeting either NGF or TrkA are ongoing to treat various diseases in the areas of oncology, neuroscience, and for pain, but there is no described measure of target engagement of TrkA in these studies. NEW METHOD We have developed custom ELISA assays to measure NGF-induced phosphorylation of TrkA specific for rodent and human receptors. Optimized tissue processing methods allow for detection in both the brain and in skin. In addition, TrkB and TrkC assays have been in established to evaluate selectivity against other neurotrophin receptors. RESULTS In a preclinical NGF-induced pain model, we show that pre-dosing with a TrkA inhibitor prevents phosphorylation of TrkA in the skin at a dose that is efficacious in reversal of thermal hypersensitivity. In addition, we show data in non-human primate and human skin supporting the potential use of this approach to enable translational target engagement. Comparison with existing methods: Existing methods involve animal models expressing TrkA tumors or injection of over-expressing TrkA recombinant cells into animals. Our method can measure target engagement in both normal and disease tissues in preclinical animal models and human skin. CONCLUSIONS We have developed methods to assess target engagement for drug programs aimed at disrupting NGF-induced TrkA signaling. This includes preclinical determination of selectivity against other neurotrophin receptors and estimation of functional peripheral restriction. Preliminary data supports this method can be translated into a clinical pharmacodynamic readout using human skin biopsies.
Collapse
Affiliation(s)
- Eric A Price
- Departments of Neuroscience Pain and Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc, West Point, PA 19486, USA.
| | - Alicja Krasowska-Zoladek
- Departments of Neuroscience Pain and Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc, West Point, PA 19486, USA
| | - Kausik K Nanda
- Departments of Neuroscience Pain and Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc, West Point, PA 19486, USA
| | - Shawn J Stachel
- Departments of Neuroscience Pain and Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc, West Point, PA 19486, USA
| | - Darrell A Henze
- Departments of Neuroscience Pain and Department of Medicinal Chemistry, Merck Research Laboratories, Merck & Co., Inc, West Point, PA 19486, USA
| |
Collapse
|
26
|
Manzine PR, Souza MDS, Cominetti MR. BACE1 levels are increased in plasma of Alzheimer's disease patients compared with matched cognitively healthy controls. Per Med 2016; 13:531-540. [DOI: 10.2217/pme-2016-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aim: BACE1 is the secretase that acts in Aβ production in Alzheimer's disease (AD). Materials & methods: We investigated mRNA expression in total blood and the levels of plasma protein BACE1 in AD patients compared with cognitively healthy subjects. Probable AD (n = 47) and non-AD control group (n = 32) were evaluated for mRNA expression for BACE1 using reverse transcription-qPCR. A subsample of n = 21 AD and n = 20 non-AD had plasma BACE1 levels analyzed, using ELISA. Results: No differences were found on BACE1 mRNA between groups. However, higher levels of BACE1 were detected in plasma of AD patients. Discussion: Blood-based diagnostic tools are desired to improve AD diagnosis. BACE1 plasma levels could provide an additional diagnostic tool for AD in association with neuropsychological tests.
Collapse
Affiliation(s)
- Patricia Regina Manzine
- Departamento de Gerontologia, Rodovia Washington Luís, Km 235, CEP 13565-905, São Carlos, SP, Brazil
| | - Matheus da Silva Souza
- Departamento de Gerontologia, Rodovia Washington Luís, Km 235, CEP 13565-905, São Carlos, SP, Brazil
| | - Márcia Regina Cominetti
- Departamento de Gerontologia, Rodovia Washington Luís, Km 235, CEP 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
27
|
Lista S, O'Bryant SE, Blennow K, Dubois B, Hugon J, Zetterberg H, Hampel H. Biomarkers in Sporadic and Familial Alzheimer's Disease. J Alzheimers Dis 2016; 47:291-317. [PMID: 26401553 DOI: 10.3233/jad-143006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Most forms of Alzheimer's disease (AD) are sporadic (sAD) or inherited in a non-Mendelian fashion, and less than 1% of cases are autosomal-dominant. Forms of sAD do not exhibit familial aggregation and are characterized by complex genetic and environmental interactions. Recently, the expansion of genomic methodologies, in association with substantially larger combined cohorts, has resulted in various genome-wide association studies that have identified several novel genetic associations of AD. Currently, the most effective methods for establishing the diagnosis of AD are defined by multi-modal pathways, starting with clinical and neuropsychological assessment, cerebrospinal fluid (CSF) analysis, and brain-imaging procedures, all of which have significant cost- and access-to-care barriers. Consequently, research efforts have focused on the development and validation of non-invasive and generalizable blood-based biomarkers. Among the modalities conceptualized by the systems biology paradigm and utilized in the "exploratory biomarker discovery arena", proteome analysis has received the most attention. However, metabolomics, lipidomics, transcriptomics, and epigenomics have recently become key modalities in the search for AD biomarkers. Interestingly, biomarker changes for familial AD (fAD), in many but not all cases, seem similar to those for sAD. The integration of neurogenetics with systems biology/physiology-based strategies and high-throughput technologies for molecular profiling is expected to help identify the causes, mechanisms, and biomarkers associated with the various forms of AD. Moreover, in order to hypothesize the dynamic trajectories of biomarkers through disease stages and elucidate the mechanisms of biomarker alterations, updated and more sophisticated theoretical models have been proposed for both sAD and fAD.
Collapse
Affiliation(s)
- Simone Lista
- AXA Research Fund & UPMC Chair, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Sid E O'Bryant
- Institute for Aging and Alzheimer's Disease Research & Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Bruno Dubois
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpétrière, Paris, France
| | - Jacques Hugon
- Centre Mémoire de Ressources et de Recherche (CMRR) Paris Nord Ile-de-France, Groupe Hospitalier Saint Louis Lariboisière - Fernand Widal, Université Paris Diderot, Paris 07, Paris, France.,Institut du Fer à Moulin (IFM), Inserm UMR_S 839, Paris, France
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,University College London Institute of Neurology, Queen Square, London, UK
| | - Harald Hampel
- AXA Research Fund & UPMC Chair, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A) & Institut du Cerveau et de la Moelle épinière (ICM), Département de Neurologie, Hôpital de la Pitié-Salpétrière, Paris, France
| |
Collapse
|
28
|
The Alzheimer's Disease Neuroimaging Initiative 2 Biomarker Core: A review of progress and plans. Alzheimers Dement 2016; 11:772-91. [PMID: 26194312 DOI: 10.1016/j.jalz.2015.05.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/20/2022]
Abstract
INTRODUCTION We describe Alzheimer's Disease Neuroimaging Initiative (ADNI) Biomarker Core progress including: the Biobank; cerebrospinal fluid (CSF) amyloid beta (Aβ1-42), t-tau, and p-tau181 analytical performance, definition of Alzheimer's disease (AD) profile for plaque, and tangle burden detection and increased risk for progression to AD; AD disease heterogeneity; progress in standardization; and new studies using ADNI biofluids. METHODS Review publications authored or coauthored by ADNI Biomarker core faculty and selected non-ADNI studies to deepen the understanding and interpretation of CSF Aβ1-42, t-tau, and p-tau181 data. RESULTS CSF AD biomarker measurements with the qualified AlzBio3 immunoassay detects neuropathologic AD hallmarks in preclinical and prodromal disease stages, based on CSF studies in non-ADNI living subjects followed by the autopsy confirmation of AD. Collaboration across ADNI cores generated the temporal ordering model of AD biomarkers varying across individuals because of genetic/environmental factors that increase/decrease resilience to AD pathologies. DISCUSSION Further studies will refine this model and enable the use of biomarkers studied in ADNI clinically and in disease-modifying therapeutic trials.
Collapse
|
29
|
Baird AL, Westwood S, Lovestone S. Blood-Based Proteomic Biomarkers of Alzheimer's Disease Pathology. Front Neurol 2015; 6:236. [PMID: 26635716 PMCID: PMC4644785 DOI: 10.3389/fneur.2015.00236] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
The complexity of Alzheimer’s disease (AD) and its long prodromal phase poses challenges for early diagnosis and yet allows for the possibility of the development of disease modifying treatments for secondary prevention. It is, therefore, of importance to develop biomarkers, in particular, in the preclinical or early phases that reflect the pathological characteristics of the disease and, moreover, could be of utility in triaging subjects for preventative therapeutic clinical trials. Much research has sought biomarkers for diagnostic purposes by comparing affected people to unaffected controls. However, given that AD pathology precedes disease onset, a pathology endophenotype design for biomarker discovery creates the opportunity for detection of much earlier markers of disease. Blood-based biomarkers potentially provide a minimally invasive option for this purpose and research in the field has adopted various “omics” approaches in order to achieve this. This review will, therefore, examine the current literature regarding blood-based proteomic biomarkers of AD and its associated pathology.
Collapse
Affiliation(s)
- Alison L Baird
- Department of Psychiatry, University of Oxford , Oxford , UK
| | - Sarah Westwood
- Department of Psychiatry, University of Oxford , Oxford , UK
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford , Oxford , UK
| |
Collapse
|
30
|
Catalán-García M, Garrabou G, Morén C, Guitart-Mampel M, Gonzalez-Casacuberta I, Hernando A, Gallego-Escuredo JM, Yubero D, Villarroya F, Montero R, O-Callaghan AS, Cardellach F, Grau JM. BACE-1, PS-1 and sAPPβ Levels Are Increased in Plasma from Sporadic Inclusion Body Myositis Patients: Surrogate Biomarkers among Inflammatory Myopathies. Mol Med 2015; 21:817-823. [PMID: 26552061 DOI: 10.2119/molmed.2015.00168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a rare disease that is difficult to diagnose. Muscle biopsy provides three prominent pathological findings: inflammation, mitochondrial abnormalities and fibber degeneration, represented by the accumulation of protein depots constituted by β-amyloid peptide, among others. We aim to perform a screening in plasma of circulating molecules related to the putative etiopathogenesis of sIBM to determine potential surrogate biomarkers for diagnosis. Plasma from 21 sIBM patients and 20 age- and gender-paired healthy controls were collected and stored at -80°C. An additional population of patients with non-sIBM inflammatory myopathies was also included (nine patients with dermatomyositis and five with polymyositis). Circulating levels of inflammatory cytokines (interleukin [IL]-6 and tumor necrosis factor [TNF]-α), mitochondrial-related molecules (free plasmatic mitochondrial DNA [mtDNA], fibroblast growth factor-21 [FGF-21] and coenzyme-Q10 [CoQ]) and amyloidogenic-related molecules (beta-secretase-1 [BACE-1], presenilin-1 [PS-1], and soluble Aβ precursor protein [sAPPβ]) were assessed with magnetic bead-based assays, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA) and high-pressure liquid chromatography (HPLC). Despite remarkable trends toward altered plasmatic expression of inflammatory and mitochondrial molecules (increased IL-6, TNF-α, circulating mtDNA and FGF-21 levels and decreased content in CoQ), only amyloidogenic degenerative markers including BACE-1, PS-1 and sAPPβ levels were significantly increased in plasma from sIBM patients compared with controls and other patients with non-sIBM inflammatory myopathies (p < 0.05). Inflammatory, mitochondrial and amyloidogenic degeneration markers are altered in plasma of sIBM patients confirming their etiopathological implication in the disease. Sensitivity and specificity analysis show that BACE-1, PS-1 and sAPPβ represent a good predictive noninvasive tool for the diagnosis of sIBM, especially in distinguishing this disease from polymyositis.
Collapse
Affiliation(s)
- Marc Catalán-García
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Constanza Morén
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Mariona Guitart-Mampel
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ingrid Gonzalez-Casacuberta
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Adriana Hernando
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Jose Miquel Gallego-Escuredo
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (University of Barcelona), University of Barcelona, and CIBEROBN, Barcelona, Spain
| | - Dèlia Yubero
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Barcelona, Spain, and CIBERER, Valencia, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (University of Barcelona), University of Barcelona, and CIBEROBN, Barcelona, Spain
| | - Raquel Montero
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Barcelona, Spain, and CIBERER, Valencia, Spain
| | | | - Francesc Cardellach
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Josep Maria Grau
- Laboratory of Muscle Research and Mitochondrial Function, Cellex-IDIBAPS, Faculty of Medicine, University of Barcelona, Department of Internal Medicine, Hospital Clinic of Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Lopez-Font I, Cuchillo-Ibañez I, Sogorb-Esteve A, García-Ayllón MS, Sáez-Valero J. Transmembrane Amyloid-Related Proteins in CSF as Potential Biomarkers for Alzheimer's Disease. Front Neurol 2015; 6:125. [PMID: 26082753 PMCID: PMC4451586 DOI: 10.3389/fneur.2015.00125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/17/2015] [Indexed: 02/04/2023] Open
Abstract
In the continuing search for new cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease (AD), reasonable candidates are the secretase enzymes involved in the processing of the amyloid precursor protein (APP), as well as the large proteolytic cleavage fragments sAPPα and sAPPβ. The enzymatic activities of some of these secretases, such as BACE1 and TACE, have been investigated as potential AD biomarkers, and it has been assumed that these activities present in human CSF result from the soluble truncated forms of the membrane-bound enzymes. However, we and others recently identified soluble forms of BACE1 and APP in CSF containing the intracellular domains, as well as the multi-pass transmembrane presenilin-1 (PS1) and other subunits of γ-secretase. We also review recent findings that suggest that most of these soluble transmembrane proteins could display self-association properties based on hydrophobic and/or ionic interactions leading to the formation of heteromeric complexes. The oligomerization state of these potential new biomarkers needs to be taken into consideration for assessing their real potential as CSF biomarkers for AD by adequate molecular tools.
Collapse
Affiliation(s)
- Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - Aitana Sogorb-Esteve
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain ; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche , Elche , Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| |
Collapse
|
32
|
Lu H, Zhu XC, Jiang T, Yu JT, Tan L. Body fluid biomarkers in Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:70. [PMID: 25992369 DOI: 10.3978/j.issn.2305-5839.2015.02.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 01/09/2023]
Abstract
A heterogeneous and slowly progressive disease with extracellular amyloid-β (Aβ) deposits and intracellular hyperphosphorylated tau protein aggregates, Alzheimer's disease (AD) is already a hard nut to crack, featured with cognitive decline and memory lapse. Body fluid biomarkers are proved to be useful in exploring further study of AD, might benefit for a full comprehension of the etiopathogenesis, an improved precision of the prognosis and diagnosis, and a positive response of treatments. The cerebrospinal fluid biomarkers Aβ, total tau, and hyperphosphorylated tau reflect the main pathologic changes of AD. We also review data from several novel biomarkers, such as, β-site APP cleaving enzyme 1, soluble amyloid precursor proteins α and β, soluble Aβ oligomers and so on, which are associated with the occurrence and deterioration of this disease and couldn't be ignored. The rationale for the clinical use of those biomarkers, the challenges faced with and the properties of the most appropriate biomarkers are also summarized in the paper. We aim to find several ideal biomarkers to improve the diagnosis and optimize the treatment respectively.
Collapse
Affiliation(s)
- Huan Lu
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210029, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266001, China ; 4 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Xi-Chen Zhu
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210029, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266001, China ; 4 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Teng Jiang
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210029, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266001, China ; 4 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Jin-Tai Yu
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210029, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266001, China ; 4 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Lan Tan
- 1 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210029, China ; 2 Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China ; 3 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266001, China ; 4 Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
33
|
Wu G, Wu Z, Na S, Hershey JC. Quantitative assessment of Aβ peptide in brain, cerebrospinal fluid and plasma following oral administration of γ-secretase inhibitor MRK-560 in rats. Int J Neurosci 2015; 125:616-24. [DOI: 10.3109/00207454.2014.952730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Paterson RW, Toombs J, Slattery CF, Schott JM, Zetterberg H. Biomarker modelling of early molecular changes in Alzheimer's disease. Mol Diagn Ther 2014; 18:213-27. [PMID: 24281842 DOI: 10.1007/s40291-013-0069-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The preclinical phase of Alzheimer's disease (AD) occurs years, possibly decades, before the onset of clinical symptoms. Being able to detect the very earliest stages of AD is critical to improving understanding of AD biology, and identifying individuals at greatest risk of developing clinical symptoms with a view to treating AD pathophysiology before irreversible neurodegeneration occurs. Studies of dominantly inherited AD families and longitudinal studies of sporadic AD have contributed to knowledge of the earliest AD biomarkers. Here we appraise this evidence before reviewing novel, particularly fluid, biomarkers that may provide insights into AD pathogenesis and relate these to existing hypothetical disease models.
Collapse
Affiliation(s)
- Ross W Paterson
- Dementia Research Centre, Department of Neurodegeneration, UCL Institute of Neurology, London, UK,
| | | | | | | | | |
Collapse
|
35
|
Perneczky R, Alexopoulos P. Cerebrospinal fluid BACE1 activity and markers of amyloid precursor protein metabolism and axonal degeneration in Alzheimer's disease. Alzheimers Dement 2014; 10:S425-S429.e1. [PMID: 24239250 PMCID: PMC4038661 DOI: 10.1016/j.jalz.2013.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The objective of this study was to assess cerebrospinal fluid (CSF) β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1) activity in relation to Alzheimer's disease (AD) and to correlate the enzyme activity with protein markers of APP metabolism and axonal degeneration. METHODS BACE1 activity and protein concentrations were measured and analyzed in 342 participants of the Alzheimer's Disease Neuroimaging Initiative, including 99 normal control, 75 stable mild cognitive impairment (MCI), 87 progressive MCI, and 79 AD dementia cases. All statistical analyses were Bonferroni corrected for multiple comparisons. RESULTS No significant differences between controls and any of the three patient groups were detected for BACE1 activity and soluble APPβ (sAPPβ) concentrations in CSF. Significant correlations with BACE1 activity were found for CSF APPβ and total tau in all four groups and for CSF phosphorylated tau181 in all groups but the progressive MCI group. There were no correlations for CSF amyloid β (Aβ)1-42 or for plasma Aβ1-42 and Aβ1-40. CONCLUSIONS The consistent correlation between BACE1 activity and sAPPβ supports their role as biomarkers of target engagement in clinical trials on BACE1 inhibition.
Collapse
Affiliation(s)
- Robert Perneczky
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology, and Medicine, London, UK; West London Cognitive Disorders Treatment and Research Unit, West London Mental Health Trust, London, UK; Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany.
| | - Panagiotis Alexopoulos
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| |
Collapse
|
36
|
Abstract
BACE, a β-secretase, is an attractive potential disease-modifying therapeutic strategy for Alzheimer's disease (AD) as it results directly in the decrease of amyloid precursor protein (APP) processing through the β-secretase pathway and a lowering of CNS amyloid-β (Aβ) levels. The interaction of the β-secretase and α-secretase pathway-mediated processing of APP in the rhesus monkey (nonhuman primate; NHP) CNS is not understood. We hypothesized that CNS inhibition of BACE would result in decreased newly generated Aβ and soluble APPβ (sAPPβ), with increased newly generated sAPPα. A stable isotope labeling kinetics experiment in NHPs was performed with a (13)C6-leucine infusion protocol to evaluate effects of BACE inhibition on CNS APP processing by measuring the kinetics of sAPPα, sAPPβ, and Aβ in CSF. Each NHP received a low, medium, or high dose of MBI-5 (BACE inhibitor) or vehicle in a four-way crossover design. CSF sAPPα, sAPPβ, and Aβ were measured by ELISA and newly incorporated label following immunoprecipitation and liquid chromatography-mass spectrometry. Concentrations, kinetics, and amount of newly generated APP fragments were calculated. sAPPβ and sAPPα kinetics were similar, but both significantly slower than Aβ. BACE inhibition resulted in decreased labeled sAPPβ and Aβ in CSF, without observable changes in labeled CSF sAPPα. ELISA concentrations of sAPPβ and Aβ both decreased and sAPPα increased. sAPPα increased by ELISA, with no difference by labeled sAPPα kinetics indicating increases in product may be due to APP shunting from the β-secretase to the α-secretase pathway. These results provide a quantitative understanding of pharmacodynamic effects of BACE inhibition on NHP CNS, which can inform about target development.
Collapse
|
37
|
Treadmill exercise represses neuronal cell death and inflammation during Aβ-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. Apoptosis 2014; 18:1332-1347. [PMID: 23907580 DOI: 10.1007/s10495-013-0884-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Alzheimer's disease (AD) is characterized by the deposition of aggregated amyloid-beta (Aβ), which triggers a cellular stress response called the unfolded protein response (UPR). The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER) stress is prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of neuronal apoptosis and inflammation by Aβ-induced ER stress to exercise training are not fully understood. Here, we demonstrated that treadmill exercise (TE) prevented PS2 mutation-induced memory impairment and reduced Aβ-42 deposition through the inhibition of β-secretase (BACE-1) and its product, C-99 in cortex and/or hippocampus of aged PS2 mutant mice. We also found that TE down-regulated the expression of GRP78/Bip and PDI proteins and inhibited activation of PERK, eIF2α, ATF6α, sXBP1 and JNK-p38 MAPK as well as activation of CHOP, caspase-12 and caspase-3. Moreover, TE up-regulated the expression of Bcl-2 and down-regulated the expressions of Bax in the hippocampus of aged PS2 mutant mice. Finally, the generation of TNFα and IL-1α and the number of TUNEL-positive cells in the hippocampus of aged PS2 mutant mice was also prevented or decreased by TE. These results showed that TE suppressed the activation of UPR signaling pathways as well as inhibited the apoptotic pathways of the UPR and inflammatory response following Aβ-induced ER stress. Thus, therapeutic strategies that modulate Aβ-induced ER stress through TE could represent a promising approach for the prevention or treatment of AD.
Collapse
|
38
|
Huesgen PF, Lange PF, Overall CM. Ensembles of protein termini and specific proteolytic signatures as candidate biomarkers of disease. Proteomics Clin Appl 2014; 8:338-50. [PMID: 24497460 DOI: 10.1002/prca.201300104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 12/23/2022]
Abstract
Early accurate diagnosis and personalized treatment are essential in order to treat complex or fatal diseases such as cancer and autoimmune, cardiovascular and neurodegenerative diseases. To realize this vision, new diagnostic and prognostic biomarkers are urgently required. MS-based proteomics is the most promising approach for protein biomarker identification, but suffers in clinical translation of biomarker candidates that show only quantitative differences from normal tissue. Indeed, success in translating proteomic data to biomarkers in the clinic has been disappointing. Here, we propose that protein termini provide a new opportunity for biomarker discovery due to qualitative differences in intact and new protein termini between diseased and normal tissues. Altered proteolysis occurs in most pathologies. Disease- and process-specific protein modifications, including proteolytic processing and subsequent modification of the terminal amino acids, frequently lead to altered protein activity that plays key roles in the disease process. Thus, mapping of ensembles of characteristic protein termini provides a proteolytic signature of high information content that shows both quantitative and most importantly qualitative differences in different diseases and stage of disease. These unique protein biomarkers have the added benefit of being mechanistically informative by revealing the activity state of the bioactive protein. Moreover, proteome-wide isolation of protein termini leads to generalized sample simplification, thereby enabling up to three orders of magnitude lower LODs compared to traditional shotgun proteomic approaches. We introduce the potential of protein termini for biomarker discovery, briefly review methods enabling large-scale studies of protein termini, and discuss how these may be integrated into a termini-oriented biomarker discovery pipeline from discovery to clinical application.
Collapse
Affiliation(s)
- Pitter F Huesgen
- Centre for Blood Research, University of British Columbia, Vancouver, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
39
|
|
40
|
Henriksen K, O'Bryant SE, Hampel H, Trojanowski JQ, Montine TJ, Jeromin A, Blennow K, Lönneborg A, Wyss-Coray T, Soares H, Bazenet C, Sjögren M, Hu W, Lovestone S, Karsdal MA, Weiner MW. The future of blood-based biomarkers for Alzheimer's disease. Alzheimers Dement 2014; 10:115-31. [PMID: 23850333 PMCID: PMC4128378 DOI: 10.1016/j.jalz.2013.01.013] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/29/2013] [Indexed: 12/18/2022]
Abstract
Treatment of Alzheimer's disease (AD) is significantly hampered by the lack of easily accessible biomarkers that can detect disease presence and predict disease risk reliably. Fluid biomarkers of AD currently provide indications of disease stage; however, they are not robust predictors of disease progression or treatment response, and most are measured in cerebrospinal fluid, which limits their applicability. With these aspects in mind, the aim of this article is to underscore the concerted efforts of the Blood-Based Biomarker Interest Group, an international working group of experts in the field. The points addressed include: (1) the major challenges in the development of blood-based biomarkers of AD, including patient heterogeneity, inclusion of the "right" control population, and the blood-brain barrier; (2) the need for a clear definition of the purpose of the individual markers (e.g., prognostic, diagnostic, or monitoring therapeutic efficacy); (3) a critical evaluation of the ongoing biomarker approaches; and (4) highlighting the need for standardization of preanalytical variables and analytical methodologies used by the field.
Collapse
Affiliation(s)
- Kim Henriksen
- Nordic Bioscience Biomarkers and Research, Neurodegenerative Diseases, Herlev, Denmark.
| | - Sid E O'Bryant
- Department of Internal Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Harald Hampel
- Department of Psychiatry, University of Frankfurt, Frankfurt, Germany
| | - John Q Trojanowski
- Institute on Aging, Alzheimer's Disease Core Center, Udall Parkinson's Research Center, Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Goteborg, Sahlgrenska University Hospital, Molndal, Sweden
| | | | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Chantal Bazenet
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, De Crespigny Park, London, UK
| | | | - William Hu
- Department of Neurology, Center for Neurodegenerative Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Simon Lovestone
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, De Crespigny Park, London, UK
| | - Morten A Karsdal
- Nordic Bioscience Biomarkers and Research, Neurodegenerative Diseases, Herlev, Denmark
| | - Michael W Weiner
- Departments of Medicine, Radiology, Psychiatry, and Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
41
|
Wu G, Miller RA, Connolly B, Marcus J, Renger J, Savage MJ. Pyroglutamate-Modified Amyloid-� Protein Demonstrates Similar Properties in an Alzheimer's Disease Familial Mutant Knock-In Mouse and Alzheimer's Disease Brain. NEURODEGENER DIS 2014; 14:53-66. [DOI: 10.1159/000353634] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
|
42
|
Biomarker-Driven Therapeutic Management of Alzheimer’s Disease: Establishing the Foundations. Clin Pharmacol Ther 2013; 95:67-77. [DOI: 10.1038/clpt.2013.205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/20/2013] [Indexed: 11/08/2022]
|