1
|
Cayir S, Zhornitsky S, Barzegary A, Sotomayor-Carreño E, Sarfo-Ansah W, Funaro MC, Matuskey D, Angarita G. A review of the kappa opioid receptor system in opioid use. Neurosci Biobehav Rev 2024; 162:105713. [PMID: 38733895 DOI: 10.1016/j.neubiorev.2024.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The kappa opioid receptor (KOR) system is implicated in dysphoria and as an "anti-reward system" during withdrawal from opioids. However, no clear consensus has been made in the field, as mixed findings have been reported regarding the relationship between the KOR system and opioid use. This review summarizes the studies to date on the KOR system and opioids. A systematic scoping review was reported following PRISMA guidelines and conducted based on the published protocol. Comprehensive searches of several databases were done in the following databases: MEDLINE, Embase, PsycINFO, Web of Science, Scopus, and Cochrane. We included preclinical and clinical studies that tested the administration of KOR agonists/antagonists or dynorphin and/or measured dynorphin levels or KOR expression during opioid intoxication or withdrawal from opioids. One hundred studies were included in the final analysis. Preclinical administration of KOR agonists decreased drug-seeking/taking behaviors and opioid withdrawal symptoms. KOR antagonists showed mixed findings, depending on the agent and/or type of withdrawal symptom. Administration of dynorphins attenuated opioid withdrawal symptoms both in preclinical and clinical studies. In the limited number of available studies, dynorphin levels were found to increase in cerebrospinal fluid (CSF) and peripheral blood lymphocytes (PBL) of opioid use disorder subjects (OUD). In animals, dynorphin levels and/or KOR expression showed mixed findings during opioid use. The KOR/dynorphin system appears to have a multifaceted and complex nature rather than simply functioning as an anti-reward system. Future research in well-controlled study settings is necessary to better understand the clinical role of the KOR system in opioid use.
Collapse
Affiliation(s)
- Salih Cayir
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06510, USA
| | - Simon Zhornitsky
- Department of Psychology, Southern Connecticut State University, New Haven, CT 06515, USA
| | - Alireza Barzegary
- Islamic Azad University Tehran Medical Sciences School of Medicine, Iran
| | | | | | - Melissa C Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, CT 06510, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA; Department of Neurology, Yale University, New Haven, CT 06510, USA
| | - Gustavo Angarita
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA; Clinical Neuroscience Research Unit, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06519, USA.
| |
Collapse
|
2
|
Rivera A, Suárez-Boomgaard D, Miguelez C, Valderrama-Carvajal A, Baufreton J, Shumilov K, Taupignon A, Gago B, Real MÁ. Dopamine D 4 Receptor Is a Regulator of Morphine-Induced Plasticity in the Rat Dorsal Striatum. Cells 2021; 11:31. [PMID: 35011592 PMCID: PMC8750869 DOI: 10.3390/cells11010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Long-term exposition to morphine elicits structural and synaptic plasticity in reward-related regions of the brain, playing a critical role in addiction. However, morphine-induced neuroadaptations in the dorsal striatum have been poorly studied despite its key function in drug-related habit learning. Here, we show that prolonged treatment with morphine triggered the retraction of the dendritic arbor and the loss of dendritic spines in the dorsal striatal projection neurons (MSNs). In an attempt to extend previous findings, we also explored whether the dopamine D4 receptor (D4R) could modulate striatal morphine-induced plasticity. The combined treatment of morphine with the D4R agonist PD168,077 produced an expansion of the MSNs dendritic arbors and restored dendritic spine density. At the electrophysiological level, PD168,077 in combination with morphine altered the electrical properties of the MSNs and decreased their excitability. Finally, results from the sustantia nigra showed that PD168,077 counteracted morphine-induced upregulation of μ opioid receptors (MOR) in striatonigral projections and downregulation of G protein-gated inward rectifier K+ channels (GIRK1 and GIRK2) in dopaminergic cells. The present results highlight the key function of D4R modulating morphine-induced plasticity in the dorsal striatum. Thus, D4R could represent a valuable pharmacological target for the safety use of morphine in pain management.
Collapse
Affiliation(s)
- Alicia Rivera
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Diana Suárez-Boomgaard
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Alejandra Valderrama-Carvajal
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| | - Jérôme Baufreton
- Institut des Maladies Neurodegeneratives, Université de Bordeaux, UMR 5293, 33000 Bordeaux, France; (J.B.); (A.T.)
- Institut des Maladies Neurodegeneratives, CNRS, UMR 5293, 33000 Bordeaux, France
| | - Kirill Shumilov
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
- School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Anne Taupignon
- Institut des Maladies Neurodegeneratives, Université de Bordeaux, UMR 5293, 33000 Bordeaux, France; (J.B.); (A.T.)
- Institut des Maladies Neurodegeneratives, CNRS, UMR 5293, 33000 Bordeaux, France
| | - Belén Gago
- Facultad de Medicina, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain;
| | - M. Ángeles Real
- Facultad de Ciencias, Instituto de Investigación Biomédica, Universidad de Málaga, 29071 Málaga, Spain; (D.S.-B.); (A.V.-C.); (K.S.); (M.Á.R.)
| |
Collapse
|
3
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|
4
|
Negrete-Díaz JV, Shumilov K, Real MÁ, Medina-Luque J, Valderrama-Carvajal A, Flores G, Rodríguez-Moreno A, Rivera A. Pharmacological activation of dopamine D 4 receptor modulates morphine-induced changes in the expression of GAD 65/67 and GABA B receptors in the basal ganglia. Neuropharmacology 2019; 152:22-29. [PMID: 30682345 DOI: 10.1016/j.neuropharm.2019.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 11/27/2022]
Abstract
Dopamine D4 receptor (D4R) stimulation, in a putative D4R/μ opioid heteroreceptor (MOR) complex, counteracts the molecular, cellular and behavioural actions of morphine which are associated with morphine addiction, without any effect on its analgesic properties. In the present work, we have evaluated the role of D4R in modulating the effects of a continuous treatment with morphine on the GABAergic system in the basal ganglia. It has been demonstrated that the co-administration of a D4R agonist together with morphine leads to a restoration of GABA signaling by preventing drug-induced changes in GAD65/67 expression in the caudate putamen, globus palidus and substantia nigra. Results from GABABR1 and GABABR2 expression suggest a role of D4R in modulation of the GABAB heteroreceptor complexes along the basal ganglia, especially in the functional divisions of the caudate putamen. These results provide a new proof of the functional interaction between D4R and MOR and we postulate this putative heteroreceptor complex as a key target for the development of a new strategy to prevent the addictive effects of morphine in the treatment of pain. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- José Vicente Negrete-Díaz
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain; División de Ciencias de la Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Guanajuato, Mexico (permanent address)
| | - Kirill Shumilov
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - M Ángeles Real
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain
| | - José Medina-Luque
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain; German Center for Neurodegenerative Diseases (DZNE) Munich, German (permanent address)
| | | | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla, Mexico
| | | | - Alicia Rivera
- Universidad de Málaga, Instituto de Investigación Biomédica, Málaga, Spain.
| |
Collapse
|
5
|
Valderrama-Carvajal A, Irizar H, Gago B, Jiménez-Urbieta H, Fuxe K, Rodríguez-Oroz MC, Otaegui D, Rivera A. Transcriptomic integration of D 4R and MOR signaling in the rat caudate putamen. Sci Rep 2018; 8:7337. [PMID: 29743514 PMCID: PMC5943359 DOI: 10.1038/s41598-018-25604-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/20/2018] [Indexed: 12/19/2022] Open
Abstract
Morphine binding to opioid receptors, mainly to μ opioid receptor (MOR), induces alterations in intracellular pathways essential to the initial development of addiction. The activation of the dopamine D4 receptor (D4R), which is expressed in the caudate putamen (CPu), mainly counteracts morphine-induced alterations in several molecular networks. These involve transcription factors, adaptive changes of MOR signaling, activation of the nigrostriatal dopamine pathway and behavioural effects, underlining functional D4R/MOR interactions. To shed light on the molecular mechanisms implicated, we evaluated the transcriptome alterations following acute administration of morphine and/or PD168,077 (D4R agonist) using whole-genome microarrays and a linear regression-based differential expression analysis. The results highlight the development of a unique transcriptional signature following the co-administration of both drugs that reflects a countereffect of PD168,077 on morphine effects. A KEGG pathway enrichment analysis using GSEA identified 3 pathways enriched positively in morphine vs control and negatively in morphine + PD168,077 vs morphine (Ribosome, Complement and Coagulation Cascades, Systemic Lupus Erythematosus) and 3 pathways with the opposite enrichment pattern (Alzheimer’s Disease, Neuroactive Ligand Receptor Interaction, Oxidative Phosphorilation). This work supports the massive D4R/MOR functional integration at the CPu and provides a gateway to further studies on the use of D4R drugs to modulate morphine-induced effects.
Collapse
Affiliation(s)
| | - Haritz Irizar
- Neuroscience Area, Biodonostia Institute, San Sebastián, Spain.,Division of Psychiatry, University College London, London, England, United Kingdom
| | - Belén Gago
- Neuroscience Area, Biodonostia Institute, San Sebastián, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Universidad de Málaga, Instituto de Investigación Biomédica, Facultad de Medicina, Málaga, Spain.
| | - Haritz Jiménez-Urbieta
- Neuroscience Area, Biodonostia Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Kjell Fuxe
- Neuroscience Department, Karolinska Institute, Stockholm, Sweden
| | - María C Rodríguez-Oroz
- Neuroscience Area, Biodonostia Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Neurology Department, Donostia University Hospital, San Sebastián, Spain.,Ikerbasque Foundation, Bilbao, Spain
| | - David Otaegui
- Neuroscience Area, Biodonostia Institute, San Sebastián, Spain
| | - Alicia Rivera
- Universidad de Málaga, Instituto de Investigación Biomédica, Facultad de Ciencias, Málaga, Spain.
| |
Collapse
|
6
|
Rivera A, Gago B, Suárez-Boomgaard D, Yoshitake T, Roales-Buján R, Valderrama-Carvajal A, Bilbao A, Medina-Luque J, Díaz-Cabiale Z, Craenenbroeck KV, Borroto-Escuela DO, Kehr J, Rodríguez de Fonseca F, Santín L, de la Calle A, Fuxe K. Dopamine D 4 receptor stimulation prevents nigrostriatal dopamine pathway activation by morphine: relevance for drug addiction. Addict Biol 2017; 22:1232-1245. [PMID: 27212105 DOI: 10.1111/adb.12407] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/03/2016] [Accepted: 03/30/2016] [Indexed: 01/08/2023]
Abstract
Morphine is one of the most effective drugs used for pain management, but it is also highly addictive. Morphine elicits acute and long-term adaptive changes at cellular and molecular level in the brain, which play a critical role in the development of tolerance, dependence and addiction. Previous studies indicated that the dopamine D4 receptor (D4 R) activation counteracts morphine-induced adaptive changes of the μ opioid receptor (MOR) signaling in the striosomes of the caudate putamen (CPu), as well as the induction of several Fos family transcription factors. Thus, it has been suggested that D4 R could play an important role avoiding some of the addictive effects of morphine. Here, using different drugs administration paradigms, it is determined that the D4 R agonist PD168,077 prevents morphine-induced activation of the nigrostriatal dopamine pathway and morphological changes of substantia nigra pars compacta (SNc) dopamine neurons, leading to a restoration of dopamine levels and metabolism in the CPu. Results from receptor autoradiography indicate that D4 R activation modulates MOR function in the substantia nigra pars reticulata (SNr) and the striosomes of the CPu, suggesting that these regions are critically involved in the modulation of SNc dopamine neuronal function through a functional D4 R/MOR interaction. In addition, D4 R activation counteracts the rewarding effects of morphine, as well as the development of hyperlocomotion and physical dependence without any effect on its analgesic properties. These results provide a novel role of D4 R agonist as a pharmacological strategy to prevent the adverse effects of morphine in the treatment of pain.
Collapse
Affiliation(s)
- Alicia Rivera
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | - Belén Gago
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | - Diana Suárez-Boomgaard
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | - Takashi Yoshitake
- Karolinska Institute; Department of Physiology and Pharmacology; Stockholm Sweden
| | - Ruth Roales-Buján
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | | | - Ainhoa Bilbao
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty of Mannheim; University of Heidelberg; Mannheim Germany
| | - José Medina-Luque
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | - Zaida Díaz-Cabiale
- Karolinska Institute; Department of Physiology and Pharmacology; Stockholm Sweden
| | | | | | - Jan Kehr
- Karolinska Institute; Department of Physiology and Pharmacology; Stockholm Sweden
| | | | - Luis Santín
- Universidad de Málaga; Instituto de Investigación Biomédica, Facultad de Psicología; Málaga Spain
| | - Adelaida de la Calle
- Universidad de Málaga, Instituto de Investigación Biomédica; Facultad de Ciencias; Málaga Spain
| | - Kjell Fuxe
- Karolinska Institute; Department of Neuroscience; Stockholm Sweden
| |
Collapse
|
7
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
8
|
Dopamine D₄ receptor counteracts morphine-induced changes in µ opioid receptor signaling in the striosomes of the rat caudate putamen. Int J Mol Sci 2014; 15:1481-98. [PMID: 24451133 PMCID: PMC3907881 DOI: 10.3390/ijms15011481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 11/17/2022] Open
Abstract
The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine.
Collapse
|