1
|
QingNing S, Mohd Ismail ZI, Ab Patar MNA, Mat Lazim N, Hadie SNH, Mohd Noor NF. The limelight of adipose-derived stem cells in the landscape of neural tissue engineering for peripheral nerve injury. Tissue Cell 2024; 91:102556. [PMID: 39293138 DOI: 10.1016/j.tice.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND AIMS Challenges in treating peripheral nerve injury include prolonged repair time and insufficient functional recovery. Stem cell therapy coupled with neural tissue engineering has been shown to induce nerve regeneration following peripheral nerve injury. Among these stem cells, adipose-derived stem cells (ADSCs) are preferred due to their accessibility, expansion, multidirectional differentiation, and production of essential nutrient factors for nerve growth. In recent years, ADSC-laden nerve guide conduit has been utilized to enhance the therapeutic effects of tissue-engineered nerve grafts. This review explores existing research that recognizes the roles played by ADSCs in inducing peripheral nerve regeneration following injury and summarizes the different methods of application of ADSC-laden nerve conduit in neural tissue engineering.
Collapse
Affiliation(s)
- Sun QingNing
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia; Department of Rehabilitation, School of Special Education, Zhengzhou Normal University, Zhengzhou 450044, China.
| | - Zul Izhar Mohd Ismail
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Mohd Nor Azim Ab Patar
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Siti Nurma Hanim Hadie
- Department of Anatomy, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia.
| | - Nor Farid Mohd Noor
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Kuala Terengganu, Terengganu 20400, Malaysia.
| |
Collapse
|
2
|
Ahmad N, Anker A, Klein S, Dean J, Knoedler L, Remy K, Pagani A, Kempa S, Terhaag A, Prantl L. Autologous Fat Grafting-A Panacea for Scar Tissue Therapy? Cells 2024; 13:1384. [PMID: 39195271 DOI: 10.3390/cells13161384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Scars may represent more than a cosmetic concern for patients; they may impose functional limitations and are frequently associated with the sensation of itching or pain, thus impacting both psychological and physical well-being. From an aesthetic perspective, scars display variances in color, thickness, texture, contour, and their homogeneity, while the functional aspect encompasses considerations of functionality, pliability, and sensory perception. Scars located in critical anatomic areas have the potential to induce profound impairments, including contracture-related mobility restrictions, thereby significantly impacting daily functioning and the quality of life. Conventional approaches to scar management may suffice to a certain extent, yet there are cases where tailored interventions are warranted. Autologous fat grafting emerges as a promising therapeutic avenue in such instances. Fundamental mechanisms underlying scar formation include chronic inflammation, fibrogenesis and dysregulated wound healing, among other contributing factors. These mechanisms can potentially be alleviated through the application of adipose-derived stem cells, which represent the principal cellular component utilized in the process of lipofilling. Adipose-derived stem cells possess the capacity to secrete proangiogenic factors such as fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor, as well as neurotrophic factors, such as brain-derived neurotrophic factors. Moreover, they exhibit multipotency, remodel the extracellular matrix, act in a paracrine manner, and exert immunomodulatory effects through cytokine secretion. These molecular processes contribute to neoangiogenesis, the alleviation of chronic inflammation, and the promotion of a conducive milieu for wound healing. Beyond the obvious benefit in restoring volume, the adipose-derived stem cells and their regenerative capacities facilitate a reduction in pain, pruritus, and fibrosis. This review elucidates the regenerative potential of autologous fat grafting and its beneficial and promising effects on both functional and aesthetic outcomes when applied to scar tissue.
Collapse
Affiliation(s)
- Nura Ahmad
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Alexandra Anker
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Silvan Klein
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Katya Remy
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Sally Kempa
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Amraj Terhaag
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
3
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Brough S, Alizadeh M. Recent perspectives on the synergy of mesenchymal stem cells with micro/nano strategies in peripheral nerve regeneration-a review. Front Bioeng Biotechnol 2024; 12:1401512. [PMID: 39050683 PMCID: PMC11266111 DOI: 10.3389/fbioe.2024.1401512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Despite the intrinsic repair of peripheral nerve injury (PNI), it is important to carefully monitor the process of peripheral nerve repair, as peripheral nerve regeneration is slow and incomplete in large traumatic lesions. Hence, mesenchymal stem cells (MSCs) with protective and regenerative functions are utilized in synergy with innovative micro/nano technologies to enhance the regeneration process of peripheral nerves. Nonetheless, as MSCs are assessed using standard regenerative criteria including sensory-motor indices, structural features, and morphology, it is challenging to differentiate between the protective and regenerative impacts of MSCs on neural tissue. This study aims to analyze the process of nerve regeneration, particularly the performance of MSCs with and without synergistic approaches. It also focuses on the paracrine secretions of MSCs and their conversion into neurons with functional properties that influence nerve regeneration after PNI. Furthermore, the study explores new ideas for nerve regeneration after PNI by considering the synergistic effect of MSCs and therapeutic compounds, neuronal cell derivatives, biological or polymeric conduits, organic/inorganic nanoparticles, and electrical stimulation. Finally, the study highlights the main obstacles to developing synergy in nerve regeneration after PNI and aims to open new windows based on recent advances in neural tissue regeneration.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Brough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Park JS, Kim DY, Hong HS. FGF2/HGF priming facilitates adipose-derived stem cell-mediated bone formation in osteoporotic defects. Heliyon 2024; 10:e24554. [PMID: 38304814 PMCID: PMC10831751 DOI: 10.1016/j.heliyon.2024.e24554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Aims The activity of adipose-derived stem cells (ADSCs) is susceptible to the physiological conditions of the donor. Therefore, employing ADSCs from donors of advanced age or with diseases for cell therapy necessitates a strategy to enhance therapeutic efficacy before transplantation. This study aims to investigate the impact of supplementing Fibroblast Growth Factor 2 (FGF2) and Hepatocyte Growth Factor (HGF) on ADSC-mediated osteogenesis under osteoporotic conditions and to explore the underlying mechanisms of action. Main methods Adipose-derived stem cells (ADSCs) obtained from ovariectomized (OVX) rats were cultured ex vivo. These cells were cultured in an osteogenic medium supplemented with FGF2 and HGF and subsequently autologously transplanted into osteoporotic femur defects using Hydroxyapatite-Tricalcium Phosphate. The assessment of bone formation was conducted four weeks post-transplantation. Key findings Osteoporosis detrimentally affects the viability and osteogenic differentiation potential of ADSCs, often accompanied by a deficiency in FGF2 and HGF signaling. However, priming with FGF2 and HGF facilitated the formation of immature osteoblasts from OVX ADSCs in vitro, promoting the expression of osteoblastogenic proteins, including Runx-2, osterix, and ALP, during the early phase of osteogenesis. Furthermore, FGF2/HGF priming augmented the levels of VEGF and SDF-1α in the microenvironment of OVX ADSCs under osteogenic induction. Importantly, transplantation of OVX ADSCs primed with FGF2/HGF for 6 days significantly enhanced bone formation compared to non-primed cells. The success of bone regeneration was confirmed by the expression of type-1 collagen and osteocalcin in the bone tissue of the deficient area. Significance Our findings corroborate that priming with FGF2/HGF can improve the differentiation potential of ADSCs. This could be applied in autologous stem cell therapy for skeletal disease in the geriatric population.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Do Young Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, 02447, South Korea
| |
Collapse
|
5
|
Kuang R, Zhang Y, Wu G, Zhu Z, Xu S, Liu X, Xu Y, Luo Y. Long Non-coding RNAs Influence Aging Process of Sciatic Nerves in SD Rats. Comb Chem High Throughput Screen 2024; 27:2140-2150. [PMID: 37691192 PMCID: PMC11348477 DOI: 10.2174/1386207326666230907115800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVES To investigate the long non-coding RNAs (lncRNAs) changes in the sciatic nerve (SN) in Sprague Dawley (SD) rats during aging. METHODS Eighteen healthy SD rats were selected at the age of 1 month (1M) and 24 months (24M) and SNs were collected. High-throughput transcriptome sequencing and bioinformatics analysis were performed. Protein-protein interaction (PPI) networks and competing endogenous RNA (ceRNA) networks were established according to differentially expressed genes (DEGs). RESULT As the length of lncRNAs increased, its proportion to the total number of lncRNAs decreased. A total of 4079 DElncRNAs were identified in Con vs. 24M. GO analysis was primarily clustered in nerve and lipid metabolism, extracellular matrix, and vascularization-related fields. There were 17 nodes in the PPI network of the target genes of up-regulating genes including Itgb2, Lox, Col11a1, Wnt5a, Kras, etc. Using quantitative RT-PCR, microarray sequencing accuracy was validated. There were 169 nodes constructing the PPI network of down-regulated target genes, mainly including Col1a1, Hmgcs1, Hmgcr. CeRNA interaction networks were constructed. CONCLUSION Lipid metabolism, angiogenesis, and ECM fields might play an important role in the senescence process in SNs. Col3a1, Serpinh1, Hmgcr, and Fdps could be candidates for nerve aging research.
Collapse
Affiliation(s)
- Rui Kuang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yi Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Guanggeng Wu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhaowei Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Shuqia Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Xiangxia Liu
- Department of Plastic Surgery, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yangbin Xu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yunxiang Luo
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
6
|
Caliani Carrera AL, Minto BW, Malard P, Brunel HDSS. The Role of Mesenchymal Stem Cell Secretome (Extracellular Microvesicles and Exosomes) in Animals' Musculoskeletal and Neurologic-Related Disorders. Vet Med Int 2023; 2023:8819506. [PMID: 38023428 PMCID: PMC10645499 DOI: 10.1155/2023/8819506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The advances in regenerative medicine are very important for the development of medicine and the discovery of stem cells has shown a greater capacity to raise the level of therapeutic quality while their use becomes more accessible, especially in their mesenchymal form. In veterinary medicine, it is not different. The use of those cells, as well as recent advances related to the use of their extracellular vesicles, demonstrates a great opportunity to enhance therapeutic methods and ensure more life quality for patients, which can be in clinical or surgical treatments. Knowing the advances in these modalities and the growing clinical and surgery research and demands for innovations in orthopedic and neurology medicines, this paper aimed to review the literature about the methodologies of use and applications such as the pathways of action and the advances that were postulated for microvesicles and exosomes derived from mesenchymal stem cells in veterinary medicine, especially for musculoskeletal disorders and related injuries.
Collapse
Affiliation(s)
- Alefe Luiz Caliani Carrera
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), Av Paulo Donato Castelane s/n, Jaboticabal, São Paulo, Brazil
| | - Bruno Watanabe Minto
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), Av Paulo Donato Castelane s/n, Jaboticabal, São Paulo, Brazil
| | - Patrícia Malard
- Catholic University of Brasilia, Brasília, Federal District, Brazil
| | | |
Collapse
|
7
|
Massoumi H, Amin S, Soleimani M, Momenaei B, Ashraf MJ, Guaiquil VH, Hematti P, Rosenblatt MI, Djalilian AR, Jalilian E. Extracellular-Vesicle-Based Therapeutics in Neuro-Ophthalmic Disorders. Int J Mol Sci 2023; 24:9006. [PMID: 37240353 PMCID: PMC10219002 DOI: 10.3390/ijms24109006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs) have been recognized as promising candidates for developing novel therapeutics for a wide range of pathologies, including ocular disorders, due to their ability to deliver a diverse array of bioactive molecules, including proteins, lipids, and nucleic acids, to recipient cells. Recent studies have shown that EVs derived from various cell types, including mesenchymal stromal cells (MSCs), retinal pigment epithelium cells, and endothelial cells, have therapeutic potential in ocular disorders, such as corneal injury and diabetic retinopathy. EVs exert their effects through various mechanisms, including promoting cell survival, reducing inflammation, and inducing tissue regeneration. Furthermore, EVs have shown promise in promoting nerve regeneration in ocular diseases. In particular, EVs derived from MSCs have been demonstrated to promote axonal regeneration and functional recovery in various animal models of optic nerve injury and glaucoma. EVs contain various neurotrophic factors and cytokines that can enhance neuronal survival and regeneration, promote angiogenesis, and modulate inflammation in the retina and optic nerve. Additionally, in experimental models, the application of EVs as a delivery platform for therapeutic molecules has revealed great promise in the treatment of ocular disorders. However, the clinical translation of EV-based therapies faces several challenges, and further preclinical and clinical studies are needed to fully explore the therapeutic potential of EVs in ocular disorders and to address the challenges for their successful clinical translation. In this review, we will provide an overview of different types of EVs and their cargo, as well as the techniques used for their isolation and characterization. We will then review the preclinical and clinical studies that have explored the role of EVs in the treatment of ocular disorders, highlighting their therapeutic potential and the challenges that need to be addressed for their clinical translation. Finally, we will discuss the future directions of EV-based therapeutics in ocular disorders. Overall, this review aims to provide a comprehensive overview of the current state of the art of EV-based therapeutics in ophthalmic disorders, with a focus on their potential for nerve regeneration in ocular diseases.
Collapse
Affiliation(s)
- Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sohil Amin
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Bita Momenaei
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mohammad Javad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Peiman Hematti
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
8
|
Babu S, Krishnan M, Panneerselvam A, Chinnaiyan M. A comprehensive review on therapeutic application of mesenchymal stem cells in neuroregeneration. Life Sci 2023:121785. [PMID: 37196856 DOI: 10.1016/j.lfs.2023.121785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Each year, thousands of people suffer from traumatic peripheral nerve lesions, which impair mobility and sensibility and frequently have fatal outcomes. The recovery of peripheral nerves on its own is frequently insufficient. In this regard, cell therapy is currently one of the most cutting-edge techniques for nerve healing. The purpose of this review is to highlight the properties of various types of mesenchymal stem cells (MSCs) that are critical for peripheral nerve regeneration after nerve injury. The Preferred Reporting term used to review the available literature are "nerve regeneration," "stem cells," "peripheral nerve damage," "rat," and "human" were combined. In addition, using the phrases "stem cells" and "nerve regeneration" in PubMed, a "MeSH" search was conducted. This study describes the features of the most often utilized MSCs, as well as its paracrine potential, targeted stimulation, and propensity for differentiation into Schwann-like and neuronal-like cells. For the repair of peripheral nerve lesions, ADSCs appear to be the most relevant and promising MSCs, because of their ability to sustain and increase axonal growth, as well as their outstanding paracrine activity, putative differentiation potential, low immunogenicity, and excellent post-transplant survival rate.
Collapse
Affiliation(s)
- Shyamaladevi Babu
- Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Madhan Krishnan
- Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | | | - Mayilvanan Chinnaiyan
- Department of Otolaryngology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| |
Collapse
|
9
|
Bedar M, van Wijnen AJ, Shin AY. Safety of Allogeneic Mesenchymal Stem Cell Seeding of NeuraGen Nerve Guides in a Rabbit Model. Tissue Eng Part C Methods 2023; 29:43-53. [PMID: 36680753 PMCID: PMC10162580 DOI: 10.1089/ten.tec.2022.0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/21/2022] [Indexed: 01/22/2023] Open
Abstract
Mesenchymal stem cells (MSCs) stimulate nerve and tissue regeneration and are primed for clinical translation. Application of autologous MSCs is limited by requirements for expedient harvesting procedures, proliferative expansion to increase number of cells, and reduced regenerative potential due to aging or pathological conditions. Because MSCs are immune privileged, allogeneic MSCs may serve as "off-the-shelf" cell-based reconstructive treatments to support nerve repair. Therefore, we examined the safety and immune response parameters of allogeneic MSCs seeded on NeuraGen® Nerve Guides (NNGs) in a rabbit model. NNGs with or without allogeneic rabbit MSCs were applied to rabbit sciatic nerves. Randomly assigned treatment included group I (no surgery control, n = 3) or groups II and III (sciatic nerve wrapped with unseeded or allogeneic MSC-seeded NNGs; n = 5/group). Rabbits were euthanized after 2 weeks to monitor functional recovery by histological evaluation of sciatic nerves and tibialis anterior (TA) muscle. Host reactions to allogeneic MSCs were analyzed by assessment of body and tissue weight, temperature, as well as hematological parameters, including white blood cell count (WBC), spleen histology, and CD4+ and CD8+ T lymphocytes. Histological analyses of nerves and spleen were all unremarkable, consistent with absence of overt systemic and local immune responses upon allogeneic MSC administration. No significant differences were observed in WBC or CD4+ and CD8+ T lymphocytes across unseeded and seeded treatment groups. Thus, allogenic MSCs are safe for use and may be considered in lieu of autologous MSCs in translational animal studies as the basis for future clinical nerve repair strategies. Impact statement Autologous mesenchymal stem cells (MSC) have been reported to enhance nerve regeneration when used in conjunction with nerve graft substitutes. However, autologous stem cell sources delay treatment and may be susceptible to age- or disease-related dysfunctions. In this study, we investigated the safety of allogeneic MSCs and the optimal number of cells for nerve conduit delivery in a rabbit model. When compared with unseeded nerve conduits, allogeneic MSC-seeded conduits did not induce a systemic or local immune response. The findings of this study will ultimately facilitate the clinical translation of a universal donor cell-based treatment option for nerve defects.
Collapse
Affiliation(s)
- Meiwand Bedar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Plastic Surgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Alexander Y. Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Yousefifard M, Sarveazad A, Janzadeh A, Behroozi Z, Nasirinezhad F. Pain Alleviating Effect of Adipose-Derived Stem Cells Transplantation on the Injured Spinal Cord: A Behavioral and Electrophysiological Evaluation. J Stem Cells Regen Med 2022; 18:53-63. [PMID: 36713791 PMCID: PMC9837693 DOI: 10.46582/jsrm.1802010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/15/2022] [Indexed: 01/01/2023]
Abstract
Few studies are conducted on the efficacy of human adipose-derived stem cells (ADSCs) in spinal cord injury (SCI) management and electrophysiological changes in the spinal cord. Therefore, the present study aimed to determine the effect of ADSCs on neuropathic pain, motor function recovery, and electrophysiology assessment. For the purpose of this study, adult male Wistar rats (weight: 140-160 gr, n = 42) were randomly allocated into five groups namely intact animals, sham-operated, SCI non-treated animals, vehicle-treated (culture media), and ADSCs treated groups. One week after clips compression SCI induction, about 1×106 cells were transplanted into the spinal cord. As well, both neuropathic pain (allodynia and hyperalgesia) and motor function were measured weekly. Cavity size, ADSCs survival, and electrophysiology assessments were measured at the end of the eighth week. The transplantation of ADSCs resulted in a significant improvement in the locomotion of SCI animals (p<0.0001), mechanical allodynia (p<0.0001), cold allodynia (p<0.0001), mechanical hyperalgesia (p<0.0001), and thermal hyperalgesia (p<0.0001). The cavity size was significantly smaller among the ADSCs-treated animals (p <0.0001). The single-unit recording showed that the transplantation of ADSCs decreased wide dynamic range (WDR) in neurons and it evoked potential in response to receiving signals from Aβ (p<0.0001) and Aδ (p=0.003) C-fiber (p<0.0001) neurons. Post-discharge recorded from WDR neurons decreased after the transplantation of ADSCs (p<0.0001) and wind up in the ADSCs-treated group was lower than that of the SCI group (p=0.003). Our results showed that the transplantation of ADSCs could significantly alleviate neuropathic pain, enhance motor function recovery, and improve electrophysiology findings after SCI.
Collapse
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran,Nursing care Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Behroozi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farinaz Nasirinezhad
- Cellular and molecular research center, Iran University of Medical Sciences, Tehran, Iran,Centre for Experimental and Comparative Study, Iran University of Medical Sciences, Tehran, Iran,Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,Farinaz Nasirinezhad, Cellular, and molecular research center, Iran University of Medical Sciences, Tehran, Iran., Tel/Fax: +982188622709.
| |
Collapse
|
11
|
Lai CSE, Leyva-Aranda V, Kong VH, Lopez-Silva TL, Farsheed AC, Cristobal CD, Swain JWR, Lee HK, Hartgerink JD. A Combined Conduit-Bioactive Hydrogel Approach for Regeneration of Transected Sciatic Nerves. ACS APPLIED BIO MATERIALS 2022; 5:10.1021/acsabm.2c00132. [PMID: 35446025 PMCID: PMC11097895 DOI: 10.1021/acsabm.2c00132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transected peripheral nerve injury (PNI) affects the quality of life of patients, which leads to socioeconomic burden. Despite the existence of autografts and commercially available nerve guidance conduits (NGCs), the complexity of peripheral nerve regeneration requires further research in bioengineered NGCs to improve surgical outcomes. In this work, we introduce multidomain peptide (MDP) hydrogels, as intraluminal fillers, into electrospun poly(ε-caprolactone) (PCL) conduits to bridge 10 mm rat sciatic nerve defects. The efficacy of treatment groups was evaluated by electromyography and gait analysis to determine their electrical and motor recovery. We then studied the samples' histomorphometry with immunofluorescence staining and automatic axon counting/measurement software. Comparison with negative control group shows that PCL conduits filled with an anionic MDP may improve functional recovery 16 weeks postoperation, displaying higher amplitude of compound muscle action potential, greater gastrocnemius muscle weight retention, and earlier occurrence of flexion contracture. In contrast, PCL conduits filled with a cationic MDP showed the least degree of myelination and poor functional recovery. This phenomenon may be attributed to MDPs' difference in degradation time. Electrospun PCL conduits filled with an anionic MDP may become an attractive tissue engineering strategy for treating transected PNI when supplemented with other bioactive modifications.
Collapse
Affiliation(s)
- Cheuk Sun Edwin Lai
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Victoria H Kong
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Tania L Lopez-Silva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Carlo D Cristobal
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Pediatrics, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, United States
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
12
|
Karakol P, Kapi E, Karaöz E, Tunik S, Bozkurt M. Comparison of the Effects of Intratubal Injection of Adipose-Derived Mesenchymal Stem Cells in a Rat Sciatic Nerve Transection: An Experimental Study. Ann Plast Surg 2022; 88:460-466. [PMID: 34711729 DOI: 10.1097/sap.0000000000003040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT This study was designed to evaluate the efficacy of epineural tubulization (ENT) with or without intratubal application of adipose-derived mesenchymal stem cells (ASCs) in the rat model of sciatic nerve transection. After formation of 1-cm defect in the left sciatic nerve and ENT, 32 adults female Wistar albino rats were separated into 4 groups (n = 8 for each) including ENT per se (group 1; ENT group) and ENT plus intratubal ASC injection groups killed on day 21 (group 2; ENT-ASC-21-day group), 60 days (group 3; ENT-ASC-60-day group), and 120 days (group 4; ENT-ASC-120-day group). Functional (sciatic function index, hip circumference, withdrawal reflex latency, muscle weight ratio), electrophysiological, histomorphometric, and immunohistochemical analyses were performed in each group. Sciatic function index was significantly higher (-51.98 ± 5.94, P < 0.01) and withdrawal reflex latency was shorter (-6.21 ± 2.14, P < 0.01), in the group 4 as compared with all other groups on day 21. Amplitude of contraction was significantly lower in the group 4 as compared with all other groups (0.22 ± 0.05 vs 0.34 ± 0.07, 0.50 ± 0.11, and 0.61 ± 0.16, P < 0.01 for each). Immunohistochemical analysis revealed presence of green fluorescent protein, vimentin-stained cells, and single neural progenitor cells indicating that induction of neuronal differentiation by ASCs and direct involvement of ASCs within the axonal structure alongside extension of ASCs to the muscular layer of the group 4. In conclusion, our findings revealed that use of ENT plus intratubal ASC injection in a rat sciatic nerve transection model was associated with satisfactory functional outcome and improved peripheral axonal regeneration along with stem cell neural differentiation.
Collapse
Affiliation(s)
- Perçin Karakol
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, University of Health Sciences, Bagcilar Research and Training Hospital, Istanbul
| | - Emin Kapi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Health Application and Research Center, University of Health Sciences, Adana Faculty of Medicine, Adana
| | - Erdal Karaöz
- Department of Histology and Embriology, Istinye University, Faculty of Medicine, Diyarbakir
| | - Selçuk Tunik
- Department of Histology and Embriology, Dicle University, Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Bozkurt
- From the Department of Plastic, Reconstructive and Aesthetic Surgery, University of Health Sciences, Bagcilar Research and Training Hospital, Istanbul
| |
Collapse
|
13
|
Irfan M, Kim JH, Druzinsky RE, Ravindran S, Chung S. Complement C5aR/LPS-induced BDNF and NGF modulation in human dental pulp stem cells. Sci Rep 2022; 12:2042. [PMID: 35132159 PMCID: PMC8821590 DOI: 10.1038/s41598-022-06110-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells with the ability to differentiate into a variety of cells and secrete nerve regeneration factors have become an emerging option in nerve regeneration. Dental pulp stem cells (DPSCs) appear to be a good candidate for nerve regeneration given their accessibility, neural crest origin, and neural repair qualities. We have recently demonstrated that the complement C5a system, which is an important mediator of inflammation and tissue regeneration, is activated by lipoteichoic acid-treated pulp fibroblasts, and governs the production of brain-derived nerve growth factor (BDNF). This BDNF secretion promotes neurite outgrowth towards the injury site. Here, we extend our observation to DPSCs and compare their neurogenic ability to bone marrow-derived mesenchymal stem cells (BM-MSCs) under inflammatory stimulation. Our ELISA and immunostaining data demonstrate that blocking the C5a receptor (C5aR) reduced BDNF production in DPSCs, while treatment with C5aR agonist increased the BDNF expression, which suggests that C5aR has a positive regulatory role in the BDNF modulation of DPSCs. Inflammation induced by lipopolysaccharide (LPS) treatment potentiated this effect and is C5aR dependent. Most important, DPSCs produced significantly higher levels of C5aR-mediated BDNF compared to BM-MSCs. Taken together, our data reveal novel roles for C5aR and inflammation in modulation of BDNF and NGF in DPSCs.
Collapse
Affiliation(s)
- Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA
| | - Ji Hyun Kim
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA
| | - Robert E Druzinsky
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA
| | - Seung Chung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Zhang Z, Zhang M, Zhang Z, Sun Y, Wang J, Chang C, Zhu X, Li M, Liu Y. ADSCs Combined with Melatonin Promote Peripheral Nerve Regeneration through Autophagy. Int J Endocrinol 2022; 2022:5861553. [PMID: 35910940 PMCID: PMC9329031 DOI: 10.1155/2022/5861553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In the early stage of nerve injury, damaged tissue is cleared by autophagy. ADSCs can promote nerve axon regeneration. However, the microenvironment of the injury was changed, and ADSCs are easily apoptotic after transplantation. Mel plays a role in the apoptosis, proliferation, and differentiation of ADSCs. Therefore, we investigated whether Mel combined with ADSCs promoted peripheral nerve regeneration by enhancing early autophagy of injured nerves. MATERIALS AND METHODS SD rats were randomly split into the control group, model group, Mel group, ADSCs group, ADSCs + Mel group, and 3-MA group. On day 7, autophagy was observed and gait was detected on days 7, 14, 21, and 28. On the 28th day, the sciatic nerve of rats' renewal was detected. RESULTS After 1 w, compare with the model group, the number of autophagosomes and lysosomes and the expressions of protein of LC3-II/LC3-I and Beclin-1 in the ADSCs + Mel group were prominently increased, while the 3-MA group was significantly decreased. After 4 w, the function of the sciatic nerve in ADSCs + Mel was similar to that in the control group. Compared with the model group, the ADSCs + Mel group significantly increased myelin regeneration and the number of motor neurons and reduced gastrocnemius atrophy. CONCLUSIONS It was confirmed that ADSCs combined with Mel could promote sciatic nerve regeneration in rats by changing the early autophagy activity of the injured sciatic nerve.
Collapse
Affiliation(s)
- Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Mengyu Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Zhixiang Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yingying Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Jiajia Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Chenhao Chang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Xinyan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Monan Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
15
|
Weiss JB, Phillips CJ, Malin EW, Gorantla VS, Harding JW, Salgar SK. Stem cell, Granulocyte-Colony Stimulating Factor and/or Dihexa to promote limb function recovery in a rat sciatic nerve damage-repair model: Experimental animal studies. Ann Med Surg (Lond) 2021; 71:102917. [PMID: 34703584 PMCID: PMC8524106 DOI: 10.1016/j.amsu.2021.102917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 11/04/2022] Open
Abstract
Background Optimizing nerve regeneration and re-innervation of target muscle/s is the key for improved functional recovery following peripheral nerve damage. We investigated whether administration of mesenchymal stem cell (MSC), Granulocyte-Colony Stimulating Factor (G-CSF) and/or Dihexa can improve recovery of limb function following peripheral nerve damage in rat sciatic nerve transection-repair model. Materials and methods There were 10 experimental groups (n = 6–8 rats/group). Bone marrow derived syngeneic MSCs (2 × 106; passage≤6), G-CSF (200–400 μg/kg b.wt.), Dihexa (2–4 mg/kg b.wt.) and/or Vehicle were administered to male Lewis rats locally via hydrogel at the site of nerve repair, systemically (i.v./i.p), and/or to gastrocnemius muscle. The limb sensory and motor functions were assessed at 1–2 week intervals post nerve repair until the study endpoint (16 weeks). Results The sensory function in all nerve boundaries (peroneal, tibial, sural) returned to nearly normal by 8 weeks (Grade 2.7 on a scale of Grade 0–3 [0 = No function; 3 = Normal function]) in all groups combined. The peroneal nerve function recovered quickly with return of function at one week (∼2.0) while sural nerve function recovered rather slowly at four weeks (∼1.0). Motor function at 8–16 weeks post-nerve repair as determined by walking foot print grades significantly (P < 0.05) improved with MSC + G-CSF or MSC + Dihexa administrations into gastrocnemius muscle and mitigated foot flexion contractures. Conclusions These findings demonstrate MSC, G-CSF and Dihexa are promising candidates for adjunct therapies to promote limb functional recovery after surgical nerve repair, and have implications in peripheral nerve injury and limb transplantation. IACUC No.215064. G-CSF in combination with MSCs improved limb function recovery in sciatic nerve transection- repair model. Dihexa in combination with MSC improved limb function recovery in sciatic nerve transection- repair model. Foot flexion contractures were reduced with G-CSF & MSC or Dihexa & MSC administration into target muscle gastrocnemius. MSC, G-CSF or Dihexa combination therapy is attractive, feasible & promising in peripheral nerve injury repair and have implications in limb transplantation. The findings warrant further investigation to understand the cellular/molecular mechanisms.
Collapse
Affiliation(s)
- Jessica B Weiss
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Cody J Phillips
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Edward W Malin
- Department of Surgery, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| | - Vijay S Gorantla
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph W Harding
- Department of Integrative Physiology & Neuroscience, Washington State University, Pullman, WA, USA
| | - Shashikumar K Salgar
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Fort Lewis, Washington, USA
| |
Collapse
|
16
|
Wu SH, Liao YT, Huang CH, Chen YC, Chiang ER, Wang JP. Comparison of the Confluence-Initiated Neurogenic Differentiation Tendency of Adipose-Derived and Bone Marrow-Derived Mesenchymal Stem Cells. Biomedicines 2021; 9:biomedicines9111503. [PMID: 34829732 PMCID: PMC8615071 DOI: 10.3390/biomedicines9111503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs), which tended to neurogenically differentiate spontaneously after achieving high confluence, were observed. Human ADSCs reaching 80% confluence were cultured in DMEM without an inducing factor for 24 h and then maintained in DMEM plus 1% FBS medium for 7 days. The neurogenic, adipogenic, and osteogenic genes of the factor-induced and confluence-initiated differentiation of the ADSCs and bone marrow-derived mesenchymal stem cells (BMSCs) at passages 3 to 5 were determined and compared using RT-qPCR, and the neurogenic differentiation was confirmed using immunofluorescent staining. In vitro tests revealed that the RNA and protein expression of neuronal markers, including class III β-tubulin (TUBB3), microtubule-associated protein 2 (MAP2), neurofilament medium polypeptide (NEFM), neurofilament heavy polypeptide (NEFH), and neurofilament light polypeptide (NEFL), had been enhanced in the confluence-initiated differentiation of the ADSCs. In addition, the expressions of neurotrophins, such as the nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF), were also elevated in the confluence-initiated differentiation of the ADSCs. However, the confluent ADSCs did not show a tendency toward spontaneous adipogenic and osteogenic differentiation. Moreover, compared with the confluent ADSCs, the tendency of spontaneous neurogenic, adipogenic, and osteogenic differentiation of the confluent human bone marrow mesenchymal stem cells (BMSCs) was not observed. The results indicated that ADSCs had the potential to spontaneously differentiate into neuron-like cells during the confluent culture period; however, this tendency was not observed in BMSCs.
Collapse
Affiliation(s)
- Szu-Hsien Wu
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan; (S.-H.W.); (C.-H.H.)
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, National Defense Medical Center, Taipei 112, Taiwan
| | - Yu-Ting Liao
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Chi-Han Huang
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan; (S.-H.W.); (C.-H.H.)
| | - Yi-Chou Chen
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan;
| | - En-Rung Chiang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Jung-Pan Wang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Correspondence: ; Tel.: +886-2-2875-7557; Fax: +886-2-2875-7657
| |
Collapse
|
17
|
Dong S, Feng S, Chen Y, Chen M, Yang Y, Zhang J, Li H, Li X, Ji L, Yang X, Hao Y, Chen J, Wo Y. Nerve Suture Combined With ADSCs Injection Under Real-Time and Dynamic NIR-II Fluorescence Imaging in Peripheral Nerve Regeneration in vivo. Front Chem 2021; 9:676928. [PMID: 34336784 PMCID: PMC8317167 DOI: 10.3389/fchem.2021.676928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injury gives rise to devastating conditions including neural dysfunction, unbearable pain and even paralysis. The therapeutic effect of current treatment for peripheral nerve injury is unsatisfactory, resulting in slow nerve regeneration and incomplete recovery of neural function. In this study, nerve suture combined with ADSCs injection was adopted in rat model of sciatic nerve injury. Under real-time visualization of the injected cells with the guidance of NIR-II fluorescence imaging in vivo, a spatio-temporal map displaying cell migration from the proximal injection site (0 day post-injection) of the nerve to the sutured site (7 days post-injection), and then to the distal section (14 days post-injection) was demonstrated. Furthermore, the results of electromyography and mechanical pain threshold indicated nerve regeneration and functional recovery after the combined therapy. Therefore, in the current study, the observed ADSCs migration in vivo, electrophysiological examination results and pathological changes all provided robust evidence for the efficacy of the applied treatment. Our approach of nerve suture combined with ADSCs injection in treating peripheral nerve injury under real-time NIR-II imaging monitoring in vivo added novel insights into the treatment for peripheral nerve injury, thus further enhancing in-depth understanding of peripheral nerve regeneration and the mechanism behind.
Collapse
Affiliation(s)
- Shixian Dong
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sijia Feng
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuzhou Chen
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Mo Chen
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Yimeng Yang
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Huizhu Li
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaotong Li
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Ji
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Yang
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yuefeng Hao
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Chen
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Wo
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Sumarwoto T, Suroto H, Mahyudin F, Utomo DN, Romaniyanto, Tinduh D, Notobroto HB, Sigit Prakoeswa CR, Rantam FA, Rhatomy S. Role of adipose mesenchymal stem cells and secretome in peripheral nerve regeneration. Ann Med Surg (Lond) 2021; 67:102482. [PMID: 34168873 PMCID: PMC8209190 DOI: 10.1016/j.amsu.2021.102482] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 01/08/2023] Open
Abstract
The use of stem cells is a breakthrough in medical biotechnology which brings regenerative therapy into a new era. Over the past several decades, stem cells had been widely used as regenerative therapy and Mesenchymal Stem Cells (MSCs) had emerged as a promising therapeutic option. Currently stem cells are effective therapeutic agents againts several diseases due to their tissue protective and repair mechanisms. This therapeutic effect is largely due to the biomolecular properties including secretomes. Injury to peripheral nerves has significant health and economic consequences, and no surgical procedure can completely restore sensory and motor function. Stem cell therapy in peripheral nerve injury is an important future intervention to achieve the best clinical outcome improvement. Adipose mesenchymal stem cells (AdMSCs) are multipotent mesenchymal stem cells which are similar to bone marrow-derived mesenchymal stem cells (BM-MSCs). The following review aims to provide an overview of the use of AdMSCs and their secretomes in regenerating peripheral nerves.
Collapse
Affiliation(s)
- Tito Sumarwoto
- Doctoral Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital, Sebelas Maret University, Surakarta, Indonesia.,Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Heri Suroto
- Department of Orthopaedic and Traumatology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedic and Traumatology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Dwikora Novembri Utomo
- Department of Orthopaedic and Traumatology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Romaniyanto
- Department of Orthopaedics and Traumatology, Prof Soeharso Orthopaedic Hospital, Sebelas Maret University, Surakarta, Indonesia.,Faculty of Medicine, Sebelas Maret University, Surakarta, Indonesia
| | - Damayanti Tinduh
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Physical Medicine and Rehabilitation Department, Universitas Airlangga, Surabaya, Indonesia
| | | | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology and Venereology, dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia.,Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Virology and Immunology Laboratory, Microbiology Department, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia.,Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Sholahuddin Rhatomy
- Department of Orthopaedics and Traumatology, dr. Soeradji Tirtonegoro General Hospital, Klaten, Indonesia.,Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
19
|
Wu SH, Liao YT, Hsueh KK, Huang HK, Chen TM, Chiang ER, Hsu SH, Tseng TC, Wang JP. Adipose-Derived Mesenchymal Stem Cells From a Hypoxic Culture Improve Neuronal Differentiation and Nerve Repair. Front Cell Dev Biol 2021; 9:658099. [PMID: 33996818 PMCID: PMC8120285 DOI: 10.3389/fcell.2021.658099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023] Open
Abstract
Hypoxic expansion has been demonstrated to enhance in vitro neuronal differentiation of bone-marrow derived mesenchymal stem cells (BMSCs). Whether adipose-derived mesenchymal stem cells (ADSCs) increase their neuronal differentiation potential following hypoxic expansion has been examined in the study. Real-time quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were employed to detect the expression of neuronal markers and compare the differentiation efficiency of hypoxic and normoxic ADSCs. A sciatic nerve injury animal model was used to analyze the gastrocnemius muscle weights as the outcomes of hypoxic and normoxic ADSC treatments, and sections of the regenerated nerve fibers taken from the conduits were analyzed by histological staining and immunohistochemical staining. Comparisons of the treatment effects of ADSCs and BMSCs following hypoxic expansion were also conducted in vitro and in vivo. Hypoxic expansion prior to the differentiation procedure promoted the expression of the neuronal markers in ADSC differentiated neuron-like cells. Moreover, the conduit connecting the sciatic nerve gap injected with hypoxic ADSCs showed the highest recovery rate of the gastrocnemius muscle weights in the animal model, suggesting a conceivable treatment for hypoxic ADSCs. The percentages of the regenerated myelinated fibers from the hypoxic ADSCs detected by toluidine blue staining and myelin basic protein (MBP) immunostaining were higher than those of the normoxic ones. On the other hand, hypoxic expansion increased the neuronal differentiation potential of ADSCs compared with that of the hypoxic BMSCs in vitro. The outcomes of animals treated with hypoxic ADSCs and hypoxic BMSCs showed similar results, confirming that hypoxic expansion enhances the neuronal differentiation potential of ADSCs in vitro and improves in vivo therapeutic potential.
Collapse
Affiliation(s)
- Szu-Hsien Wu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ting Liao
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuang-Kai Hsueh
- Department of Orthopedics, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Hui-Kuang Huang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Orthopaedics, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan.,Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Tung-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Orthopedics, Taipei City Hospital-Zhong Xiao Branch, Taipei, Taiwan
| | - En-Rung Chiang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Ting-Chen Tseng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Jung-Pan Wang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
20
|
Lavorato A, Raimondo S, Boido M, Muratori L, Durante G, Cofano F, Vincitorio F, Petrone S, Titolo P, Tartara F, Vercelli A, Garbossa D. Mesenchymal Stem Cell Treatment Perspectives in Peripheral Nerve Regeneration: Systematic Review. Int J Mol Sci 2021; 22:E572. [PMID: 33430035 PMCID: PMC7827385 DOI: 10.3390/ijms22020572] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic peripheral nerve lesions affect hundreds of thousands of patients every year; their consequences are life-altering and often devastating and cause alterations in movement and sensitivity. Spontaneous peripheral nerve recovery is often inadequate. In this context, nowadays, cell therapy represents one of the most innovative approaches in the field of nerve repair therapies. The purpose of this systematic review is to discuss the features of different types of mesenchymal stem cells (MSCs) relevant for peripheral nerve regeneration after nerve injury. The published literature was reviewed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A combination of the keywords "nerve regeneration", "stem cells", "peripheral nerve injury", "rat", and "human" were used. Additionally, a "MeSH" research was performed in PubMed using the terms "stem cells" and "nerve regeneration". The characteristics of the most widely used MSCs, their paracrine potential, targeted stimulation, and differentiation potentials into Schwann-like and neuronal-like cells are described in this paper. Considering their ability to support and stimulate axonal growth, their remarkable paracrine activity, their presumed differentiation potential, their extremely low immunogenicity, and their high survival rate after transplantation, ADSCs appear to be the most suitable and promising MSCs for the recovery of peripheral nerve lesion. Clinical considerations are finally reported.
Collapse
Affiliation(s)
- Andrea Lavorato
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, TO, Italy; (F.C.); (F.V.); (S.P.); (D.G.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, TO, Italy; (S.R.); (L.M.)
| | - Marina Boido
- Department of Neuroscience “Rita Levi Montalcini”, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, TO, Italy; (M.B.); (A.V.)
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, TO, Italy; (S.R.); (L.M.)
| | - Giorgia Durante
- Faculty of Medicine and Surgery, University of Turin, 10126 Turin, TO, Italy;
| | - Fabio Cofano
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, TO, Italy; (F.C.); (F.V.); (S.P.); (D.G.)
| | - Francesca Vincitorio
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, TO, Italy; (F.C.); (F.V.); (S.P.); (D.G.)
| | - Salvatore Petrone
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, TO, Italy; (F.C.); (F.V.); (S.P.); (D.G.)
| | - Paolo Titolo
- Traumatology–Reconstructive Microsurgery, Department of Orthopaedics and Traumatology, CTO Hospital, 10126 Turin, TO, Italy;
| | - Fulvio Tartara
- Neurosurgery Unit, Istituto Clinico Città Studi (ICCS), 20131 Milan, MI, Italy;
| | - Alessandro Vercelli
- Department of Neuroscience “Rita Levi Montalcini”, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10043 Orbassano, TO, Italy; (M.B.); (A.V.)
| | - Diego Garbossa
- Neurosurgery Unit, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, TO, Italy; (F.C.); (F.V.); (S.P.); (D.G.)
| |
Collapse
|
21
|
Mazini L, Ezzoubi M, Malka G. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: flow chart and regulation updates before and after COVID-19. Stem Cell Res Ther 2021; 12:1. [PMID: 33397467 PMCID: PMC7781178 DOI: 10.1186/s13287-020-02006-w] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have raised big interest in therapeutic applications in regenerative medicine and appear to fulfill the criteria for a successful cell therapy. Their low immunogenicity and their ability to self-renew, to differentiate into different tissue-specific progenitors, to migrate into damaged sites, and to act through autocrine and paracrine pathways have been altogether testified as the main mechanisms whereby cell repair and regeneration occur. The absence of standardization protocols in cell management within laboratories or facilities added to the new technologies improved at patient's bedside and the discrepancies in cell outcomes and engraftment increase the limitations on their widespread use by balancing their real benefit versus the patient safety and security. Also, comparisons across pooled patients are particularly difficult in the fact that multiple medical devices are used and there is absence of harmonized assessment assays despite meeting regulations agencies and efficient GMP protocols. Moreover, the emergence of the COVID-19 breakdown added to the complexity of implementing standardization. Cell- and tissue-based therapies are completely dependent on the biological manifestations and parameters associated to and induced by this virus where the scope is still unknown. The initial flow chart identified for stem cell therapies should be reformulated and updated to overcome patient infection and avoid significant variability, thus enabling more patient safety and therapeutic efficiency. The aim of this work is to highlight the major guidelines and differences in ADSC processing meeting the current good manufacturing practices (cGMP) and the cellular therapy-related policies. Specific insights on standardization of ADSCs proceeding at different check points are also presented as a setup for the cord blood and bone marrow.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Center of Biological and Medical Sciences CIAM, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mohamed Ezzoubi
- Centre des Brûlés et chirurgie réparatrice, Centre Hospitalier Universitaire Ibn Rochd Casablanca, Faculté de Médecine et de Pharmacie Casablanca, Casablanca, Morocco
| | - Gabriel Malka
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Center of Biological and Medical Sciences CIAM, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
22
|
Zhao J, Ding Y, He R, Huang K, Liu L, Jiang C, Liu Z, Wang Y, Yan X, Cao F, Huang X, Peng Y, Ren R, He Y, Cui T, Zhang Q, Zhang X, Liu Q, Li Y, Ma Z, Yi X. Dose-effect relationship and molecular mechanism by which BMSC-derived exosomes promote peripheral nerve regeneration after crush injury. Stem Cell Res Ther 2020; 11:360. [PMID: 32811548 PMCID: PMC7437056 DOI: 10.1186/s13287-020-01872-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background The development of new treatment strategies to improve peripheral nerve repair after injury, especially those that accelerate axonal nerve regeneration, is very important. The aim of this study is to elucidate the molecular mechanisms of how bone marrow stromal cell (BMSC)-derived exosomes (EXOs) participate in peripheral nerve regeneration and whether the regenerative effect of EXOs is correlated with dose. Method BMSCs were transfected with or without an siRNA targeting Ago2 (SiAgo2). EXOs extracted from the BMSCs were administered to dorsal root ganglion (DRG) neurons in vitro. After 48 h of culture, the neurite length was measured. Moreover, EXOs at four different doses were injected into the gastrocnemius muscles of rats with sciatic nerve crush injury. The sciatic nerve functional index (SFI) and latency of thermal pain (LTP) of the hind leg sciatic nerve were measured before the operation and at 7, 14, 21, and 28 days after the operation. Then, the number and diameter of the regenerated fibers in the injured distal sciatic nerve were quantified. Seven genes associated with nerve regeneration were investigated by qRT-PCR in DRG neurons extracted from rats 7 days after the sciatic nerve crush. Results We showed that after 48 h of culture, the mean number of neurites and the length of cultured DRG neurons in the SiAgo2-BMSC-EXO and SiAgo2-BMSC groups were smaller than that in the untreated and siRNA control groups. The average number and diameter of regenerated axons, LTP, and SFI in the group with 0.9 × 1010 particles/ml EXOs were better than those in other groups, while the group that received a minimum EXO dose (0.4 × 1010 particles/ml) was not significantly different from the PBS group. The expression of PMP22, VEGFA, NGFr, and S100b in DRGs from the EXO-treated group was significantly higher than that in the PBS control group. No significant difference was observed in the expression of HGF and Akt1 among the groups. Conclusions These results showed that BMSC-derived EXOs can promote the regeneration of peripheral nerves and that the mechanism may involve miRNA-mediated regulation of regeneration-related genes, such as VEGFA. Finally, a dose-effect relationship between EXO treatment and nerve regeneration was shown.
Collapse
Affiliation(s)
- Jiuhong Zhao
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Yali Ding
- School of Medicine, Tibet University, Lhasa, China
| | - Rui He
- Department of Anatomy, Hainan Medical University, Haikou, China.,Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kui Huang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Lu Liu
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Chaona Jiang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Zhuozhou Liu
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yuanlan Wang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Xiaokai Yan
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Fuyang Cao
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Xueying Huang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Yanan Peng
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Rui Ren
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Yuebin He
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Tianwei Cui
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Quanpeng Zhang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Xianfang Zhang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China.,Department of Anatomy, Hainan Medical University, Haikou, China
| | - Qibing Liu
- Department of Anatomy, Hainan Medical University, Haikou, China
| | - Yunqing Li
- Department of Anatomy, Hainan Medical University, Haikou, China
| | - Zhijian Ma
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China. .,Department of Anatomy, Hainan Medical University, Haikou, China.
| | - Xinan Yi
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China. .,Department of Anatomy, Hainan Medical University, Haikou, China.
| |
Collapse
|
23
|
A Systematic Review of the Effectiveness of Cell-Based Therapy in Repairing Peripheral Nerve Gap Defects. PROSTHESIS 2020. [DOI: 10.3390/prosthesis2030014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nerve prostheses are widely utilized to reconstruct segmental (gap) defects in peripheral nerves as an alternative to nerve grafting. However, with increasing gap length, the effectiveness of a nerve prosthesis becomes sub-optimal, which subsequently has made repairing larger gaps in peripheral nerves a significant challenge in the field of regenerative medicine. Recently, the structure of nerve prostheses has been significantly revised, which interestingly, has provided a promising avenue for the housing and proliferation of supportive cells. In this systematic review, cell implantation in synthetic nerve prostheses to enhance the regenerative capability of an injured nerve with a focus on identifying the cell type and mode of cell delivery is discussed. Of interest are the studies employing supportive cells to bridge gaps greater than 10 mm without the aid of nerve growth factors. The results have shown that cell therapy in conjunction with nerve prostheses becomes inevitable and has dramatically boosted the ability of these prostheses to maintain sustainable nerve regeneration across larger gaps and helped to attain functional recovery, which is the ultimate goal. The statistical analysis supports the use of differentiated bone-marrow-derived mesenchymal stem cells suspended in oxygen-carrying hydrogels in chitosan prostheses for bridging gaps of up to 40 mm; however, based on the imperfect repair outcomes, nerve grafting should not yet be replaced altogether.
Collapse
|
24
|
Ex-Vivo Stimulation of Adipose Stem Cells by Growth Factors and Fibrin-Hydrogel Assisted Delivery Strategies for Treating Nerve Gap-Injuries. Bioengineering (Basel) 2020; 7:bioengineering7020042. [PMID: 32380789 PMCID: PMC7357460 DOI: 10.3390/bioengineering7020042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022] Open
Abstract
Peripheral nerve injuries often result in lifelong disabilities despite advanced surgical interventions, indicating the urgent clinical need for effective therapies. In order to improve the potency of adipose-derived stem cells (ASC) for nerve regeneration, the present study focused primarily on ex-vivo stimulation of ASC by using growth factors, i.e., nerve growth factor (NGF) or vascular endothelial growth factor (VEGF) and secondly on fibrin-hydrogel nerve conduits (FNC) assisted ASC delivery strategies, i.e., intramural vs. intraluminal loading. ASC were stimulated by NGF or VEGF for 3 days and the resulting secretome was subsequently evaluated in an in vitro axonal outgrowth assay. For the animal study, a 10 mm sciatic nerve gap-injury was created in rats and reconstructed using FNC loaded with ASC. Secretome derived from NGF-stimulated ASC promoted significant axonal outgrowth from the DRG-explants in comparison to all other conditions. Thus, NGF-stimulated ASC were further investigated in animals and found to enhance early nerve regeneration as evidenced by the increased number of β-Tubulin III+ axons. Notably, FNC assisted intramural delivery enabled the improvement of ASC’s therapeutic efficacy in comparison to the intraluminal delivery system. Thus, ex-vivo stimulation of ASC by NGF and FNC assisted intramural delivery may offer new options for developing effective therapies.
Collapse
|
25
|
Yamamoto D, Tada K, Suganuma S, Hayashi K, Nakajima T, Nakada M, Matsuta M, Tsuchiya H. Differentiated adipose-derived stem cells promote peripheral nerve regeneration. Muscle Nerve 2020; 62:119-127. [PMID: 32243602 DOI: 10.1002/mus.26879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Many reports have indicated that adipose-derived stem cells (ADSCs) are effective for nerve regeneration. We investigated nerve regeneration by combining a polyglycolic acid collagen (PGA-c) tube, which is approved for clinical use, and Schwann cell-like differentiated ADSCs (dADSCs). METHODS Fifteen-millimeter-long gaps in the sciatic nerve of rats were bridged in each group using tubes (group I), with tubes injected with dADSCs (group II), or by resected nerve (group III). RESULTS Axonal outgrowth was greater in group II than in group I. Tibialis anterior muscle weight revealed recovery only in group III. Latency in nerve conduction studies was equivalent in group II and III, but action potential was lower in group II. Transplanted dADSCs maintained Schwann cell marker expression. ATF3 expression level in the dorsal root ganglia was equivalent in groups II and III. DISCUSSION dADSCs maintained their differentiated state in the tubes and are believed to have contributed to nerve regeneration.
Collapse
Affiliation(s)
- Daiki Yamamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Japan
| | - Kaoru Tada
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Japan
| | - Seigo Suganuma
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Japan
| | - Tadahiro Nakajima
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Japan
| | - Mika Nakada
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Japan
| | - Masashi Matsuta
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopaedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa, Japan
| |
Collapse
|
26
|
Zhou LN, Wang JC, Zilundu PLM, Wang YQ, Guo WP, Zhang SX, Luo H, Zhou JH, Deng RD, Chen DF. A comparison of the use of adipose-derived and bone marrow-derived stem cells for peripheral nerve regeneration in vitro and in vivo. Stem Cell Res Ther 2020; 11:153. [PMID: 32272974 PMCID: PMC7147018 DOI: 10.1186/s13287-020-01661-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
Background To date, it has repeatedly been demonstrated that infusing bone marrow-derived stem cells (BMSCs) into acellular nerve scaffolds can promote and support axon regeneration through a peripheral nerve defect. However, harvesting BMSCs is an invasive and painful process fraught with a low cellular yield. Methods In pursuit of alternative stem cell sources, we isolated stem cells from the inguinal subcutaneous adipose tissue of adult Sprague–Dawley rats (adipose-derived stem cells, ADSCs). We used a co-culture system that allows isolated adult mesenchymal stem cells (MSCs) and Schwann cells (SCs) to grow in the same culture medium but without direct cellular contact. We verified SC phenotype in vitro by cell marker analysis and used red fluorescent protein-tagged ADSCs to detect their fate after being injected into a chemically extracted acellular nerve allograft (CEANA). To compare the regenerative effects of CEANA containing either BMSCs or ADSCs with an autograft and CEANA only on the sciatic nerve defect in vivo, we performed histological and functional assessments up to 16 weeks after grafting. Results In vitro, we observed reciprocal beneficial effects of ADSCs and SCs in the ADSC–SC co-culture system. Moreover, ADSCs were able to survive in CEANA for 5 days after in vitro implantation. Sixteen weeks after grafting, all results consistently showed that CEANA infused with BMSCs or ADSCs enhanced injured sciatic nerve repair compared to the acellular CEANA-only treatment. Furthermore, their beneficial effects on sciatic injury regeneration were comparable as histological and functional parameters evaluated showed no statistically significant differences. However, the autograft group was roundly superior to both the BMSC- or ADSC-loaded CEANA groups. Conclusion The results of the present study show that ADSCs are a viable alternative stem cell source for treating sciatic nerve injury in lieu of BMSCs.
Collapse
Affiliation(s)
- Li Na Zhou
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| | - Jia Chuan Wang
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | | | - Ya Qiong Wang
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wen Ping Guo
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Sai Xia Zhang
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Hui Luo
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Jian Hong Zhou
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Ru Dong Deng
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Dong Feng Chen
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
27
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019; 20:ijms20102523. [PMID: 31121953 PMCID: PMC6566837 DOI: 10.3390/ijms20102523] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
28
|
Mazini L, Rochette L, Amine M, Malka G. Regenerative Capacity of Adipose Derived Stem Cells (ADSCs), Comparison with Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2019. [PMID: 31121953 DOI: 10.3390/ijms20102523.pmid:31121953;pmcid:pmc6566837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Adipose tissue is now on the top one of stem cell sources regarding its accessibility, abundance, and less painful collection procedure when compared to other sources. The adipose derived stem cells (ADSCs) that it contains can be maintained and expanded in culture for long periods of time without losing their differentiation capacity, leading to large cell quantities being increasingly used in cell therapy purposes. Many reports showed that ADSCs-based cell therapy products demonstrated optimal efficacy and efficiency in some clinical indications for both autologous and allogeneic purposes, hence becoming considered as potential tools for replacing, repairing, and regenerating dead or damaged cells. In this review, we analyzed the therapeutic advancement of ADSCs in comparison to bone marrow (BM) and umbilical cord (UC)-mesenchymal stem cells (MSCs) and designed the specific requirements to their best clinical practices and safety. Our analysis was focused on the ADSCs, rather than the whole stromal vascular fraction (SVF) cell populations, to facilitate characterization that is related to their source of origins. Clinical outcomes improvement suggested that these cells hold great promise in stem cell-based therapies in neurodegenerative, cardiovascular, and auto-immunes diseases.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| | - Luc Rochette
- Equipe d'Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Mohamed Amine
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Département de Santé Publique et de Médecine Communautaire, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco.
| | - Gabriel Malka
- Laboratoire Cellules Souches et Ingénierie Tissulaire, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
- Laboratoire d'Epidémiologie et de Biostatique, Centre Interface Applications Médicales CIAM, Université Mohammed VI polytechnique, Ben Guérir 43150, Morocco.
| |
Collapse
|
29
|
Sun AX, Prest TA, Fowler JR, Brick RM, Gloss KM, Li X, DeHart M, Shen H, Yang G, Brown BN, Alexander PG, Tuan RS. Conduits harnessing spatially controlled cell-secreted neurotrophic factors improve peripheral nerve regeneration. Biomaterials 2019; 203:86-95. [DOI: 10.1016/j.biomaterials.2019.01.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/15/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
|
30
|
Bingham JR, Kniery KR, Jorstad NL, Horkayne-Szakaly I, Hoffer ZS, Salgar SK. "Stem cell therapy to promote limb function recovery in peripheral nerve damage in a rat model" - Experimental research. Ann Med Surg (Lond) 2019; 41:20-28. [PMID: 31011420 PMCID: PMC6463551 DOI: 10.1016/j.amsu.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/26/2019] [Accepted: 03/24/2019] [Indexed: 02/06/2023] Open
Abstract
Background Optimizing nerve regeneration and mitigating muscle atrophy are the keys to successful outcomes in peripheral nerve damage. We investigated whether mesenchymal stem cell (MSC) therapy can improve limb function recovery in peripheral nerve damage. Materials and methods We used sciatic nerve transection/repair (SNR) and individual nerve transection/repair (INR; branches of sciatic nerve - tibial, peroneal, sural) models to study the effect of MSCs on proximal and distal peripheral nerve damages, respectively, in male Lewis rats. Syngeneic MSCs (5 × 106; passage≤6) or saline were administered locally and intravenously. Sensory/motor functions (SF/MF) of the limb were assessed. Results Rat MSCs (>90%) were CD29+, CD90+, CD34−, CD31− and multipotent. Total SF at two weeks post-SNR & INR with or without MSC therapy was ∼1.2 on a 0–3 grading scale (0 = No function; 3 = Normal); by 12 weeks it was 2.6–2.8 in all groups (n ≥ 9/group). MSCs accelerated SF onset. At eight weeks post-INR, sciatic function index (SFI), a measure of MF (0 = Normal; −100 = Nonfunctional) was −34 and −77 in MSC and vehicle groups, respectively (n ≥ 9); post-SNR it was −72 and −92 in MSC and vehicle groups, respectively. Long-term MF (24 weeks) was apparent in MSC treated INR (SFI -63) but not in SNR (SFI -100). Gastrocnemius muscle atrophy was significantly reduced (P < 0.05) in INR. Nerve histomorphometry revealed reduced axonal area (P < 0.01) but no difference in myelination (P > 0.05) in MSC treated INR compared to the naive contralateral nerve. Conclusion MSC therapy in peripheral nerve damage appears to improve nerve regeneration, mitigate flexion-contractures, and promote limb functional recovery. Mesenchymal stem cell (MSC) therapy improved limb functional recovery. MSCs improved nerve regeneration and mitigated foot flexion-contractures. Limb muscle atrophy was significantly reduced in individual nerve repair (INR). Functional recovery in distal nerve repair (INR) was superior to proximal (SNR). MSC therapy is attractive, feasible & promising in peripheral nerve injury repair.
Collapse
Affiliation(s)
- Jason R Bingham
- Department of Surgery, Madigan Army Medical Center, Tacoma, WA, 98431, USA
| | - Kevin R Kniery
- Department of Surgery, Madigan Army Medical Center, Tacoma, WA, 98431, USA
| | - Nikolas L Jorstad
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Iren Horkayne-Szakaly
- Department of Neuropathology & Ophthalmic Pathology, Joint Pathology Center, Defense Health Agency, Silver Spring, MD, 20910, USA
| | - Zachary S Hoffer
- Department of Pathology, Madigan Army Medical Center, Tacoma, WA, 98431, USA
| | - Shashikumar K Salgar
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, 98431, USA
| |
Collapse
|
31
|
Zhang R, Zhang Y, Yi S. Identification of critical growth factors for peripheral nerve regeneration. RSC Adv 2019; 9:10760-10765. [PMID: 35515307 PMCID: PMC9062509 DOI: 10.1039/c9ra01710k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Growth factors are essential for the repair and regeneration of tissues and organs, including injured peripheral nerves. However, the expression changes of growth factors during peripheral nerve regeneration have not been fully elucidated. To obtain a global view of alternations of growth factors during the regeneration process, we explored previously achieved sequencing data of rat sciatic nerve stumps at 0 h, 1 d, 4 d, 7 d, and 14 d after nerve crush injury and screened differentially expressed upstream growth factors using Ingenuity Pathway Analysis (IPA) bioinformatic software. Differentially expressed growth factors were then subjected to Gene Ontology (GO) annotation and Kyoto Enrichment of Genes and Genomes (KEGG) pathway analysis. Regulatory networks of the differentially expressed growth factors in axon growth-related biological processes were constructed. Pivotal growth factors involved in axon growth were identified and validated by qRT-PCR. Our current study identified differentially expressed growth factors in the injured nerve stumps after peripheral nerve injury, discovered key growth factors for axon growth and nerve regeneration, and might facilitate the discovery of potential therapeutic targets of peripheral nerve injury. Growth factors are essential for the repair and regeneration of tissues and organs, including injured peripheral nerves.![]()
Collapse
Affiliation(s)
- Ruirui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education
- Co-innovation Center of Neuroregeneration
- Nantong University
- Nantong
- China
| | - Yan Zhang
- Department of Respiratory and Critical Care Medicine
- Affiliated Hospital of Nantong University
- Nantong
- China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education
- Co-innovation Center of Neuroregeneration
- Nantong University
- Nantong
- China
| |
Collapse
|
32
|
Uz M, Das SR, Ding S, Sakaguchi DS, Claussen JC, Mallapragada SK. Advances in Controlling Differentiation of Adult Stem Cells for Peripheral Nerve Regeneration. Adv Healthc Mater 2018; 7:e1701046. [PMID: 29656561 DOI: 10.1002/adhm.201701046] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
Adult stems cells, possessing the ability to grow, migrate, proliferate, and transdifferentiate into various specific phenotypes, constitute a great asset for peripheral nerve regeneration. Adult stem cells' ability to undergo transdifferentiation is sensitive to various cell-to-cell interactions and external stimuli involving interactions with physical, mechanical, and chemical cues within their microenvironment. Various studies have employed different techniques for transdifferentiating adult stem cells from distinct sources into specific lineages (e.g., glial cells and neurons). These techniques include chemical and/or electrical induction as well as cell-to-cell interactions via co-culture along with the use of various 3D conduit/scaffold designs. Such scaffolds consist of unique materials that possess controllable physical/mechanical properties mimicking cells' natural extracellular matrix. However, current limitations regarding non-scalable transdifferentiation protocols, fate commitment of transdifferentiated stem cells, and conduit/scaffold design have required new strategies for effective stem cells transdifferentiation and implantation. In this progress report, a comprehensive review of recent advances in the transdifferentiation of adult stem cells via different approaches along with multifunctional conduit/scaffolds designs is presented for peripheral nerve regeneration. Potential cellular mechanisms and signaling pathways associated with differentiation are also included. The discussion with current challenges in the field and an outlook toward future research directions is concluded.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
| | - Suprem R. Das
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Shaowei Ding
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
| | - Donald S. Sakaguchi
- Neuroscience Program Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering Iowa State University Ames IA 50011 USA
- Division of Materials Science and Engineering Ames Laboratory Ames IA 50011 USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering Iowa State University Ames IA 50011 USA
- Department of Genetics Development and Cell Biology Iowa State University Ames IA 50011 USA
| |
Collapse
|
33
|
Bucan V, Vaslaitis D, Peck CT, Strauß S, Vogt PM, Radtke C. Effect of Exosomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration After Crush Injury. Mol Neurobiol 2018; 56:1812-1824. [PMID: 29931510 PMCID: PMC6394792 DOI: 10.1007/s12035-018-1172-z] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 06/01/2018] [Indexed: 12/29/2022]
Abstract
Peripheral nerve injury requires optimal conditions in both macro-environment and microenvironment for promotion of axonal regeneration. However, most repair strategies of traumatic peripheral nerve injury often lead to dissatisfying results in clinical outcome. Though various strategies have been carried out to improve the macro-environment, the underlying molecular mechanism of axon regeneration in the microenvironment provided by nerve conduit remains unclear. In this study, we evaluate the effects of from adipose-derived mesenchymal stem cells (adMSCs) originating exosomes with respect to sciatic nerve regeneration and neurite growth. Molecular and immunohistochemical techniques were used to investigate the presence of characteristic exosome markers. A co-culture system was established to determine the effect of exosomes on neurite elongation in vitro. The in vivo walking behaviour of rats was evaluated by footprint analysis, and the nerve regeneration was assessed by immunocytochemistry. adMSCs secrete nano-vesicles known as exosomes, which increase neurite outgrowth in vitro and enhance regeneration after sciatic nerve injury in vivo. Furthermore, we showed the presence of neural growth factors transcripts in adMSC exosomes for the first time. Our results demonstrate that exosomes, constitutively produced by adMSCs, are involved in peripheral nerve regeneration and have the potential to be utilised as a therapeutic tool for effective tissue-engineered nerves.
Collapse
Affiliation(s)
- Vesna Bucan
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany.
| | - Desiree Vaslaitis
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Claas-Tido Peck
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Sarah Strauß
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Feodor-Lynen Str. 21, Hannover, Germany
| | - Christine Radtke
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
34
|
Chan KM, Beveridge J, Webber CA. Adipose-derived stem cells: From mice to man. Muscle Nerve 2018; 58:186-188. [PMID: 29742793 DOI: 10.1002/mus.26154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 11/06/2022]
Affiliation(s)
- K Ming Chan
- Division of Physical Medicine and Rehabilitation, 5005, Katz Group Centre, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1.,Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Julie Beveridge
- Division of Plastic Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
35
|
Petcu EB, Midha R, McColl E, Popa-Wagner A, Chirila TV, Dalton PD. 3D printing strategies for peripheral nerve regeneration. Biofabrication 2018; 10:032001. [DOI: 10.1088/1758-5090/aaaf50] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Zimmermann S, Fakin RM, Giovanoli P, Calcagni M. Outcome of Stromal Vascular Fraction-Enriched Fat Grafting Compared to Intramuscular Transposition in Painful End-Neuromas of Superficial Radial Nerve: Preliminary Results. Front Surg 2018; 5:10. [PMID: 29503822 PMCID: PMC5820332 DOI: 10.3389/fsurg.2018.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/01/2018] [Indexed: 12/02/2022] Open
Abstract
Introduction The management of painful end-neuromas of the superficial branch of the radial nerve (SBRN) remains challenging due to high levels of pain relapse. The novel technique of stromal vascular fraction (SVF)-enriched fat grafting showed continuous pain relief, although failed to prove statistically significant. Besides acting as a mechanical barrier, SVF-enriched fat grafting might also affect the cellular level. The aim of this study was to compare clinical outcomes of SVF to the widely popular intramuscular transposition technique. Patients and methods In this cohort study, 10 consecutive patients treated for painful end-neuromas of the SBRN between 2010 and 2013 were analyzed retrospectively. Microsurgical resection of end-neuromas was performed in all patients. Five patients were treated with subsequent intramuscular transposition into the brachioradialis muscle and five patients received SVF-enriched fat grafting. Five different pain modalities and various predictors were compared pre- and up to 36 months post-operatively. Results In the transposition group, sustained pain reduction was not observed after an initial significant reduction 2 months’ post-surgery, resulting in pain relapse at 36 months and comparable to the preoperative assessment. In the graft group, some degree of pain reduction was observed at 2 months after the surgery and proved to be constant in the long-term outcome, although not statistically significant compared to preoperative levels. Conclusion Both SVF-enriched fat grafting and intramuscular transposition failed to prove statistical significant pain reduction in treating symptomatic neuromas of peripheral nerves.
Collapse
Affiliation(s)
- Simon Zimmermann
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Richard M Fakin
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Liu Y, Yang F, Liang S, Liu Q, Fu S, Wang Z, Yang C, Lin J. N-Cadherin Upregulation Promotes the Neurogenic Differentiation of Menstrual Blood-Derived Endometrial Stem Cells. Stem Cells Int 2018; 2018:3250379. [PMID: 29692815 PMCID: PMC5859830 DOI: 10.1155/2018/3250379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/19/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023] Open
Abstract
Peripheral nerve injuries are typically caused by either trauma or medical disorders, and recently, stem cell-based therapies have provided a promising treatment approach. Menstrual blood-derived endometrial stem cells (MenSCs) are considered an ideal therapeutic option for peripheral nerve repair due to a noninvasive collection procedure and their high proliferation rate and immunological tolerance. Here, we successfully isolated MenSCs and examined their biological characteristics including their morphology, multipotency, and immunophenotype. Subsequent in vitro studies demonstrated that MenSCs express high levels of neurotrophic factors, such as NT3, NT4, BDNF, and NGF, and are capable of transdifferentiating into glial-like cells under conventional induction conditions. Moreover, upregulation of N-cadherin (N-cad) mRNA and protein expression was observed after neurogenic differentiation. In vivo studies clearly showed that N-cad knockdown via in utero electroporation perturbed the migration and maturation of mouse neural precursor cells (NPCs). Finally, a further transfection assay also confirmed that N-cad upregulation in MenSCs results in the expression of S100. Collectively, our results confirmed the paracrine effect of MenSCs on neuroprotection as well as their potential for transdifferentiation into glial-like cells and demonstrated that N-cad upregulation promotes the neurogenic differentiation of MenSCs, thereby providing support for transgenic MenSC-based therapy for peripheral nerve injury.
Collapse
Affiliation(s)
- Yanli Liu
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
| | - Fen Yang
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Shengying Liang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
| | - Qing Liu
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Sulei Fu
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhenyu Wang
- School of Biological and Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, China
| | - Ciqing Yang
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
| | - Juntang Lin
- Stem Cell Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang 453003, China
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
38
|
D’Arpa S, Zabbia G, Cannizzaro C, Salimbeni G, Plescia F, Mariolo AV, Cassata G, Cicero L, Puleio R, Martorana A, Moschella F, Cordova A. Seeding nerve sutures with minced nerve-graft (MINE-G): a simple method to improve nerve regeneration in rats. Acta Chir Belg 2018; 118:27-35. [PMID: 28738725 DOI: 10.1080/00015458.2017.1353237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of this study was to assess the effect of seeding the distal nerve suture with nerve fragments in rats. METHODS On 20 rats, a 15 mm sciatic nerve defect was reconstructed with a nerve autograft. In the Study Group (10 rats), a minced 1 mm nerve segment was seeded around the nerve suture. In the Control Group (10 rats), a nerve graft alone was used. At 4 and 12 weeks, a walking track analysis with open field test (WTA), hystomorphometry (number of myelinated fibers (n), fiber density (FD) and fiber area (FA) and soleus and gastrocnemius muscle weight ratios (MWR) were evaluated. The Student t-test was used for statistical analysis. RESULTS At 4 and 12 weeks the Study Group had a significantly higher n and FD (p = .043 and .033). The SMWR was significantly higher in the Study Group at 12 weeks (p = .0207). CONCLUSIONS Seeding the distal nerve suture with nerve fragments increases the number of myelinated fibers, the FD and the SMWR. The technique seems promising and deserves further investigation to clarify the mechanisms involved and its functional effects.
Collapse
Affiliation(s)
- Salvatore D’Arpa
- Plastische Heelkunde, Universitair Ziekenhuis Gent, Gent, Belgium
| | - Giovanni Zabbia
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care ‘GIUSEPPE D’ALESSANDRO’, University of Palermo, Palermo, Italy
| | | | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care ‘GIUSEPPE D’ALESSANDRO’, University of Palermo, Palermo, Italy
| | - Alessio Vincenzo Mariolo
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giovanni Cassata
- Laboratory Animal House/Unit, Institute of Experimental Zooprophylactic of Sicily, Palermo, Italy
| | - Luca Cicero
- Laboratory Animal House/Unit, Institute of Experimental Zooprophylactic of Sicily, Palermo, Italy
| | - Roberto Puleio
- Histopathology and Immunohistochemistry Laboratory, Institute Experimental Zooprophylactic of Sicily, Palermo, Italy
| | - Anna Martorana
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Francesco Moschella
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Adriana Cordova
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
39
|
Muhammad AKMG, Kim K, Epifantseva I, Aghamaleky-Sarvestany A, Simpkinson ME, Carmona S, Landeros J, Bell S, Svaren J, Baloh RH. Cell transplantation strategies for acquired and inherited disorders of peripheral myelin. Ann Clin Transl Neurol 2018; 5:186-200. [PMID: 29468179 PMCID: PMC5817839 DOI: 10.1002/acn3.517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 01/26/2023] Open
Abstract
Objective To investigate transplantation of rat Schwann cells or human iPSC-derived neural crest cells and derivatives into models of acquired and inherited peripheral myelin damage. Methods Primary cultured rat Schwann cells labeled with a fluorescent protein for monitoring at various times after transplantation. Human-induced pluripotent stem cells (iPSCs) were differentiated into neural crest stem cells, and subsequently toward a Schwann cell lineage via two different protocols. Cell types were characterized using flow cytometry, immunocytochemistry, and transcriptomics. Rat Schwann cells and human iPSC derivatives were transplanted into (1) nude rats pretreated with lysolecithin to induce demyelination or (2) a transgenic rat model of dysmyelination due to PMP22 overexpression. Results Rat Schwann cells transplanted into sciatic nerves with either toxic demyelination or genetic dysmyelination engrafted successfully, and migrated longitudinally for relatively long distances, with more limited axial migration. Transplanted Schwann cells engaged existing axons and displaced dysfunctional Schwann cells to form normal-appearing myelin. Human iPSC-derived neural crest stem cells and their derivatives shared similar engraftment and migration characteristics to rat Schwann cells after transplantation, but did not further differentiate into Schwann cells or form myelin. Interpretation These results indicate that cultured Schwann cells surgically delivered to peripheral nerve can engraft and form myelin in either acquired or inherited myelin injury, as proof of concept for pursuing cell therapy for diseases of peripheral nerve. However, lack of reliable technology for generating human iPSC-derived Schwann cells for transplantation therapy remains a barrier in the field.
Collapse
Affiliation(s)
- A K M G Muhammad
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Kevin Kim
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Irina Epifantseva
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Arwin Aghamaleky-Sarvestany
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Megan E Simpkinson
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Sharon Carmona
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Jesse Landeros
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - Shaughn Bell
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences University of Wisconsin-Madison Madison Wisconsin 53706
| | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048.,Department of Neurology Cedars-Sinai Medical Center 8700 Beverly Boulevard Los Angeles California 90048
| |
Collapse
|
40
|
Sayad Fathi S, Zaminy A. Stem cell therapy for nerve injury. World J Stem Cells 2017; 9:144-151. [PMID: 29026460 PMCID: PMC5620423 DOI: 10.4252/wjsc.v9.i9.144] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023] Open
Abstract
Peripheral nerve injury has remained a substantial clinical complication with no satisfactory treatment options. Despite the great development in the field of microsurgery, some severe types of neural injuries cannot be treated without causing tension to the injured nerve. Thus, current studies have focused on the new approaches for the treatment of peripheral nerve injuries. Stem cells with the ability to differentiate into a variety of cell types have brought a new perspective to this matter. In this review, we will discuss the use of three main sources of mesenchymal stem cells in the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Sara Sayad Fathi
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht 41996-13769, Iran
| | - Arash Zaminy
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht 41996-13769, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht 41996-13769, Iran.
| |
Collapse
|
41
|
|
42
|
Calcagni M, Zimmermann S, Scaglioni MF, Giesen T, Giovanoli P, Fakin RM. The novel treatment of SVF-enriched fat grafting for painful end-neuromas of superficial radial nerve. Microsurgery 2016; 38:264-269. [PMID: 27731522 DOI: 10.1002/micr.30122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/11/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Abstract
INTRODUCTION None of the existing treatments in the management of painful end-neuromas of the superficial branch of the radial nerve (SBRN) has been proven superior due to high levels of pain relapse. Fat grafts enriched with the stromal vascular fraction (SVF) could act as a mechanic barrier with biological effects decreasing the resorption rate and boosting the graft's regenerative potential. This study describes the novel surgical treatment technique of SVF-enriched fat grafting. PATIENTS AND METHODS In this clinical study, five consecutive patients treated for painful end-neuromas of the SBRN between 2012 and 2013 were analyzed retrospectively. Microsurgical resection of end-neuromas followed by SVF-enriched fat grafting around the nerve stump was performed in all patients. Five different pain modalities and various predictors were compared pre- and up to 36 months postoperatively. RESULTS Pain reduction observed at 2 months after surgery was constant over time, though not statistically significant compared to preoperative levels. Spontaneous pain could be reduced from 1.6 ± 0.55 to 1.2 ± 1.1 (p = 0.414), spikes from 2.2 ± 1.3 to 1.4 ± 1.34 (p = 0.180), hyperaesthesia from 1.6 ± 1.14 to 1.2 ± 1.64 (p = 0.713), tap pain from 2.8 ± 0.45 to 1.8 ± 1.3 (p = 0.197) and motion pain from 2.8 ± 0.45 to 1.4 ± 1.34 (p = 0.066). An improvement in overall pain reduction could be observed from 2.2 ± 0.97 to 1.4 ± 1.26 3 years after the surgery (p = 0.104). CONCLUSION SVF-enriched fat grafting represents another alternative to numerous available treatments of painful end-neuromas of the SBRN. Our preliminary results could not show any significant difference in pain reduction following SVF-enriched fat grafting. Further larger trials are required in order to evaluate the therapeutic potential of SVF-enriched fat grafting.
Collapse
Affiliation(s)
- Maurizio Calcagni
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Simon Zimmermann
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Mario F Scaglioni
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Giesen
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Pietro Giovanoli
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Richard M Fakin
- Division of Plastic and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Cruz Villagrán C, Schumacher J, Donnell R, Dhar MS. A Novel Model for Acute Peripheral Nerve Injury in the Horse and Evaluation of the Effect of Mesenchymal Stromal Cells Applied In Situ on Nerve Regeneration: A Preliminary Study. Front Vet Sci 2016; 3:80. [PMID: 27695697 PMCID: PMC5023688 DOI: 10.3389/fvets.2016.00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2022] Open
Abstract
Transplantation of mesenchymal stromal cells (MSCs) to sites of experimentally created nerve injury in laboratory animals has shown promising results in restoring nerve function. This approach for nerve regeneration has not been reported in horses. In this study, we first evaluated the in vitro ability of equine bone marrow-derived MSCs (EBM-MSCs) to trans-differentiate into Schwann-like cells and subsequently tested the MSCs in vivo for their potential to regenerate a transected nerve after implantation. The EBM-MSCs from three equine donors were differentiated into SCLs for 7 days, in vitro, in the presence of specialized differentiation medium and evaluated for morphological characteristics, by using confocal microscopy, and for protein characteristics, by using selected Schwann cell markers (GFAP and S100b). The EBM-MSCs were then implanted into the fascia surrounding the ramus communicans of one fore limb of three healthy horses after a portion of this nerve was excised. The excised portion of the nerve was examined histologically at the time of transection, and stumps of the nerve were examined histologically at day 45 after transplantation. The EBM-MSCs from all donors demonstrated morphological and protein characteristics of those of Schwann cells 7 days after differentiation. Nerves implanted with EBM-MSCs after nerve transection did not show evidence of nerve regeneration at day 45. Examination of peripheral nerves collected 45 days after injury and stem cell treatment revealed no histological differences between nerves treated with MSCs and those treated with isotonic saline solution (controls). The optimal delivery of MSCs and the model suitable to study the efficacy of MSCs in nerve regeneration should be investigated.
Collapse
Affiliation(s)
- Claudia Cruz Villagrán
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| | - Jim Schumacher
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| | - Robert Donnell
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| | - Madhu S Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| |
Collapse
|
44
|
Hu Y, Wu Y, Gou Z, Tao J, Zhang J, Liu Q, Kang T, Jiang S, Huang S, He J, Chen S, Du Y, Gou M. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration. Sci Rep 2016; 6:32184. [PMID: 27572698 PMCID: PMC5004136 DOI: 10.1038/srep32184] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/02/2016] [Indexed: 02/05/2023] Open
Abstract
Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Yao Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| | - Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| | - Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| | - Qianqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| | - Tianyi Kang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| | - Shu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Siqing Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Jiankang He
- State key laboratory for manufacturing systems engineering, Xi'an Jiaotong University, Xi'an, 710049,China
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| |
Collapse
|
45
|
Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair. Stem Cells Int 2016; 2016:7502178. [PMID: 27212954 PMCID: PMC4861803 DOI: 10.1155/2016/7502178] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury continues to pose a clinical hurdle despite its frequency and advances in treatment. Unlike the central nervous system, neurons of the peripheral nervous system have a greater ability to regenerate. However, due to a number of confounding factors, this is often both incomplete and inadequate. The lack of supportive Schwann cells or their inability to maintain a regenerative phenotype is a major factor. Advances in nervous system tissue engineering technology have led to efforts to build Schwann cell scaffolds to overcome this and enhance the regenerative capacity of neurons following injury. Stem cells that can differentiate along a neural lineage represent an essential resource and starting material for this process. In this review, we discuss the different stem cell types that are showing promise for nervous system tissue engineering in the context of peripheral nerve injury. We also discuss some of the biological, practical, ethical, and commercial considerations in using these different stem cells for future clinical application.
Collapse
|
46
|
Jeon SH, Shrestha KR, Kim RY, Jung AR, Park YH, Kwon O, Kim GE, Kim SH, Kim KH, Lee JY. Combination Therapy Using Human Adipose-derived Stem Cells on the Cavernous Nerve and Low-energy Shockwaves on the Corpus Cavernosum in a Rat Model of Post-prostatectomy Erectile Dysfunction. Urology 2015; 88:226.e1-9. [PMID: 26522972 DOI: 10.1016/j.urology.2015.10.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/30/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate combined therapeutic efficacy of human adipose-derived stem cells (h-ADSCs) application on injured cavernous nerve and low-energy shockwave therapy (SWT) on the corpus cavernosum in a rat model of post-prostatectomy erectile dysfunction. MATERIALS AND METHODS Rats were randomly divided into 5 groups: control, bilateral cavernous nerve injury (BCNI), adipose-derived stem cell (ADSC) (BCNI group with h-ADSCs on the cavernous nerve), SWT (BCNI group with low-energy SWT on the corpus cavernosum), and ADSC/SWT (BCNI group with a combination of h-ADSCs and low-energy SWT). After 4 weeks, erectile function was assessed using intracavernosal pressure. The cavernous nerves and penile tissue were evaluated through immunostaining, Western blotting, and a cyclic guanosine monophosphate assay. RESULTS ADSC/SWT significantly improved intracavernosal pressure compared to the other experimental group. ADSC had significantly increased β-III tubulin expression of the cavernous nerve, and SWT had a markedly enhanced vascular endothelial growth factor expression in corpus cavernosum. The ADSC/SWT group had a significantly increased in alpha smooth muscle actin content (P < .05), neural nitric oxide synthase (nNOS) of the dorsal penile nerve (P < .05), endothelial nitric oxide synthase (eNOS) protein expression (P < .05), and cyclic guanosine monophosphate level (P < .05) compared to the ADSC or SWT alone group. In addition, ADSC/SWT reduces the apoptotic index in the corpus cavernosum. CONCLUSION In this study, h-ADSCs showed an effect on the recovery of injured cavernous nerve and low-energy SWT improved angiogenesis in the corpus cavernosum. The h-ADSCs combined with low-energy SWT showed beneficial effect on the recovery of erectile function in a rat model of postprostatectomy erectile dysfunction.
Collapse
Affiliation(s)
- Seung Hwan Jeon
- Department of Urology, Seoul St. Mary's Hospital The Catholic University of Korea, Seoul, Republic of Korea
| | - Kshitiz Raj Shrestha
- Department of Urology, Seoul St. Mary's Hospital The Catholic University of Korea, Seoul, Republic of Korea
| | - Richard Y Kim
- Department of Urology, Seoul St. Mary's Hospital The Catholic University of Korea, Seoul, Republic of Korea
| | - Ae Ryang Jung
- Department of Urology, Seoul St. Mary's Hospital The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Hyun Park
- Department of Urology, Seoul St. Mary's Hospital The Catholic University of Korea, Seoul, Republic of Korea
| | - Ohseong Kwon
- Department of Urology, Seoul St. Mary's Hospital The Catholic University of Korea, Seoul, Republic of Korea
| | - Ga Eun Kim
- Department of Urology, Seoul St. Mary's Hospital The Catholic University of Korea, Seoul, Republic of Korea
| | - So Hyun Kim
- Department of Urology, Seoul St. Mary's Hospital The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Ji Youl Lee
- Department of Urology, Seoul St. Mary's Hospital The Catholic University of Korea, Seoul, Republic of Korea; Catholic Prostate Institute, The Catholic University of Korea, Seoul, Republic of Korea; Department of Bioinformatics, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Petrova ES. Injured Nerve Regeneration using Cell-Based Therapies: Current Challenges. Acta Naturae 2015; 7:38-47. [PMID: 26483958 PMCID: PMC4610163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper reviews the recent research progress in the past several years on promoting peripheral nerve recovery using stem and progenitory cells. The emphasis is placed on studies aimed at assessing various stem cells capable of expressing neurotrophic and growth factors and surviving after implantation in the nerve or a conduit. Approaches to improving nerve conduit design are summarized. The contribution of stem cells to axonal regeneration and neural repair is discussed. The side effects associated with cell-based treatment are highlighted. From the studies reviewed, it is concluded that the fate of transplanted stem cells needs further elucidation in a microenvironment-dependent manner.
Collapse
Affiliation(s)
- E. S. Petrova
- Federal State Budgetary Scientific Institution «Institute of Experimental Medicine», St. Petersburg, Akad. Pavlov str.,12, 197376, Russia
| |
Collapse
|
48
|
Zack-Williams SDL, Butler PE, Kalaskar DM. Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World J Stem Cells 2015; 7:51-64. [PMID: 25621105 PMCID: PMC4300936 DOI: 10.4252/wjsc.v7.i1.51] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental models have been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells (ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury (PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair.
Collapse
|
49
|
Cwykiel J, Tfaily EB, Siemionow MZ. Cellular Therapies in Nerve Regeneration. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Petrova ES, Isaeva EN. Study of effect of embryonic anlage allografts of the rat spinal cord on growth of regenerating fibers of the recipient nerve. BIOL BULL+ 2014. [DOI: 10.1134/s1062359014060089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|