1
|
Fang L, Li J, Cheng H, Liu H, Zhang C. Dual fluorescence images, transport pathway, and blood-brain barrier penetration of B-Met-W/O/W SE. Int J Pharm 2024; 652:123854. [PMID: 38280499 DOI: 10.1016/j.ijpharm.2024.123854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Borneol is an aromatic traditional Chinese medicine that can improve the permeability of the blood-brain barrier (BBB), enter the brain, and promote the brain tissue distribution of many other drugs. In our previous study, borneol-metformin hydrochloride water/oil/water composite submicron emulsion (B-Met-W/O/W SE) was prepared using borneol and SE to promote BBB penetration, which significantly increased the brain distribution of Met. However, the dynamic images, transport pathway (uptake and efflux), promotion of BBB permeability, and mechanisms of B-Met-W/O/W SE before and after entering cells have not been clarified. In this study, rhodamine B and coumarin-6 were selected as water-soluble and oil-soluble fluorescent probes to prepare B-Met-W/O/W dual-fluorescent SE (B-Met-W/O/W DFSE) with concentric circle imaging. B-Met-W/O/W SE can be well taken up by brain microvascular endothelial cells (BMECs). The addition of three inhibitors (chlorpromazine hydrochloride, methyl-β-cyclodextrin, and amiloride hydrochloride) indicated that its main pathway may be clathrin-mediated and fossa protein-mediated endocytosis. Meanwhile, B-Met-W/O/W SE was obviously shown to inhibit the efflux of BMECs. Next, BMECs were cultured in the Transwell chamber to establish a BBB model, and Western blot was employed to detect the protein expressions of Occludin, Zona Occludens 1 (ZO-1), and p-glycoprotein (P-gp) after B-Met-W/O/W SE treatment. The results showed that B-Met-W/O/W SE significantly down-regulated the expression of Occludin, ZO-1, and P-gp, which increased the permeability of BBB, promoted drug entry into the brain through BBB, and inhibited BBB efflux. Furthermore, 11 differentially expressed genes (DEGs) and 7 related signaling pathways in BMECs treated with B-W/O/W SE were detected by transcriptome sequencing and verified by quantitative real-time polymerase chain reaction (qRT-PCR). These results provide a scientific experimental basis for the dynamic monitoring, transmembrane transport mode, and permeation-promoting mechanism of B-Met-W/O/W SE as a new brain-targeting drug delivery system.
Collapse
Affiliation(s)
- Liang Fang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Junying Li
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Hongyan Cheng
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Huanhuan Liu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Caiyun Zhang
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
2
|
Valipour M. Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 2023; 37:3724-3743. [PMID: 37282807 DOI: 10.1002/ptr.7902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
P38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is closely related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication and hyperinflammatory responses in coronavirus disease 2019 (COVID-19). Therefore, blood-brain barrier-penetrating p38 MAPK inhibitors have good potential for the treatment of central nervous system (CNS) complications of COVID-19. The aim of the present study is the characterization of the therapeutic potential of tanshinone IIA and pinocembrin for the treatment of CNS complications of COVID-19. Studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so forth were used to review the therapeutic capabilities of selected compounds. In continuation of our previous efforts to identify agents with favorable activity/toxicity profiles for the treatment of COVID-19, tanshinone IIA and pinocembrin were identified with a high ability to penetrate the CNS. Considering the nature of the study, no specific time frame was determined for the selection of studies, but the focus was strongly on studies published after the emergence of COVID-19. By describing the association of COVID-19-induced CNS disorders with p38 MAPK pathway disruption, this study concludes that tanshinone IIA and pinocembrin have great potential for better treatment of these complications. The inclusion of these compounds in the drug regimen of COVID-19 patients requires confirmation of their effectiveness through the conduction of high-quality clinical trials.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
WANG KAI, ZHANG FENGTIAN, WEN CHANGLONG, HUANG ZHIHUA, HU ZHIHAO, ZHANG YUWEN, HU FUQIANG, WEN LIJUAN. Regulation of pathological blood-brain barrier for intracranial enhanced drug delivery and anti-glioblastoma therapeutics. Oncol Res 2021. [DOI: 10.32604/or.2022.025696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
4
|
Wen L, Wang K, Zhang F, Tan Y, Shang X, Zhu Y, Zhou X, Yuan H, Hu F. AKT activation by SC79 to transiently re-open pathological blood brain barrier for improved functionalized nanoparticles therapy of glioblastoma. Biomaterials 2020; 237:119793. [PMID: 32044521 DOI: 10.1016/j.biomaterials.2020.119793] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is one of the malignant tumors with high mortality, and the presence of the blood brain barrier (BBB) severely limits the penetration and tissue accumulation of therapeutic agents in the lesion of GBM. Active targeting nanotechnologies can achieve efficient drug delivery in the brain, while still have a very low success rate. Here we revealed a previously unexplored phenomenon that chemotherapy with active targeting nanotechnologies causes pathological BBB functional recovery through VEGF-PI3K-AKT signaling pathway inhibition, accompanied with up-regulated expression of Claudin-5 and Occludin. Seriously, pathological BBB functional recovery induces a significant decrease of intracerebral active targeting nanotechnologies transport during GBM multiple administration, leading to chemotherapy failure in GBM therapeutics. To address this issue, we chose AKT agonist SC79 to transiently re-open functional recovering pathological BBB for continuously intracerebral delivery of brain targeted nanotherapeutics, finally producing an observable anti-GBM effect in vivo, which may offer new sight for other CNS disease treatment.
Collapse
Affiliation(s)
- Lijuan Wen
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China; National Engineering Research Center for Modernization of Tranditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China
| | - Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Fengtian Zhang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China; Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Yanan Tan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, PR China
| | - Xuwei Shang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Yun Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China; Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Xueqing Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| |
Collapse
|
5
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
6
|
Yu XR, Cao BL, Li W, Tian Y, Du ZL. Accuracy of Tumor Perfusion Assessment in Rat C6 Gliomas Model with USPIO. Open Med (Wars) 2019; 14:778-784. [PMID: 31737781 PMCID: PMC6843489 DOI: 10.1515/med-2019-0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022] Open
Abstract
Detailed characterization of the permeability and vascular volume of brain tumor vasculature can provide essential insights into tumor physiology. In this study, we evaluated the consistency of measurements in tumor blood volume and examined the feasibility of using ultrasmall superparamagnetic iron oxide (USPIO) versus gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA) as contrast agents for MR perfusion imaging of brain gliomas in C6 Rats. Eighteen rats were intracerebrally implanted with C6 glioma cells, randomly divided into two groups and examined by 3.0T perfusion MR imaging with Gd-DTPA and USPIO. Tumor relative cerebral blood volume (rCBV) and relative maximum signal reduction ratio (rSRRmax) were created based on analysis of MR perfusion images. The mean values for rCBV were 2.09 and 1.57 in the USPIO and the Gd-DTPA groups, respectively, and rSRRmax values were 1.92 and 1.02 in the USPIO and the Gd-DTPA groups, respectively, showing signifi cant differences in both rCBV and rSRRmax between the USPIO and the Gd-DTPA groups (P < 0.05). The results showed that early vascular leakage occurred with gadolinium rather than USPIO in perfusion assessment, revealing that USPIO was useful in perfusion MR imaging for the assessment of tumor vasculature.
Collapse
Affiliation(s)
- Xiang-Rong Yu
- Department of Radiology, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, China
| | - Bo-Ling Cao
- Department of Radiology, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, China
| | - Wei Li
- Department of Radiology, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, China
| | - Ye Tian
- Department of Radiology, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, China
| | - Zhong-Li Du
- Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, Zhuhai, 519000, China
| |
Collapse
|
7
|
Eser Ocak P, Ocak U, Tang J, Zhang JH. The role of caveolin-1 in tumors of the brain - functional and clinical implications. Cell Oncol (Dordr) 2019; 42:423-447. [PMID: 30993541 DOI: 10.1007/s13402-019-00447-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Caveolin-1 (cav-1) is the major structural protein of caveolae, the flask-shaped invaginations of the plasma membrane mainly involved in cell signaling. Today, cav-1 is believed to play a role in a variety of disease processes including cancer, owing to the variations of its expression in association with tumor progression, invasive behavior, metastasis and therapy resistance. Since first detected in the brain, a number of studies has particularly focused on the role of cav-1 in the various steps of brain tumorigenesis. In this review, we discuss the different roles of cav-1 and its contributions to the molecular mechanisms underlying the pathobiology and natural behavior of brain tumors including glial, non-glial and metastatic subtypes. These contributions could be attributed to its co-localization with important players in tumorigenesis within the lipid-enriched domains of the plasma membrane. In that regard, the ability of cav-1 to interact with various cell signaling molecules as well as the impact of caveolae depletion on important pathways acting in brain tumor pathogenesis are noteworthy. We also discuss conversant causes hampering the treatment of malignant glial tumors such as limited transport of chemotherapeutics across the blood tumor barrier and resistance to chemoradiotherapy, by focusing on the molecular fundamentals involving cav-1 participation. CONCLUSIONS Cav-1 has the potential to pivot the molecular basis underlying the pathobiology of brain tumors, particularly the malignant glial subtype. In addition, the regulatory effect of cav-1-dependent and caveola-mediated transcellular transport on the permeability of the blood tumor barrier could be of benefit to overcome the restricted transport across brain barriers when applying chemotherapeutics. The association of cav-1 with tumors of the brain other than malignant gliomas deserves to be underlined, as well given the evidence suggesting its potential in predicting tumor grade and recurrence rates together with determining patient prognosis in oligodendrogliomas, ependymomas, meningiomas, vestibular schwannomas and brain metastases.
Collapse
Affiliation(s)
- Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
8
|
Role of p120 Catenin in Epac1-Induced Chronic Postsurgical Pain in Rats. Pain Res Manag 2019; 2019:9017931. [PMID: 30863475 PMCID: PMC6377980 DOI: 10.1155/2019/9017931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/28/2022]
Abstract
Chronic postsurgical pain (CPSP) is a chronic pain state that is difficult to be treated clinically. A series of complicated changes have been produced from nociceptive stimulation to the occurrence and development of postsurgical pain. Many mechanisms remain unclear. In order to study the role of intercellular gap junctions in inducing inflammatory microenvironment at the beginning of nociceptor after operation, the model of skin/muscle incision and retraction (SMIR) was established. We observed the changes of the expression of exchange proteins directly activated by cAMP-1 (Epac1) and p120 catenin (p120), the quantities of macrophages and endothelial cells, vascular endothelial permeability, and mechanical withdrawal threshold (MWT). It was found that macrophages and endothelial cells were functionally coupled through Epac1-p120. Adhesive linkage disorder remodeled the chronic, inflammatory, and eutrophic microenvironment at the beginning of nociceptor after operation through macrophages, endothelial cells, and endothelial paracellular pathways. It might be an early event and a key step in peripheral sensitization of CPSP. The expression of p120 in muscle tissue around the incision might become a prognostic marker for the conversion of acute postsurgical pain into CPSP. Targeted intervention of Epac1-p120 might be a clinical strategy for inhibiting the conversion of acute postsurgical pain into CPSP.
Collapse
|
9
|
Disassembling a cancer puzzle: Cell junctions and plasma membrane as targets for anticancer therapy. J Control Release 2018; 286:125-136. [PMID: 30030181 DOI: 10.1016/j.jconrel.2018.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
Despite an enhanced permeability and retention effect typical of many solid tumors, drug penetration is not always sufficient. Possible strategies for the drug delivery improvement are a modification of the tumor cell-to-cell junctions and usage of cell membrane permeabilization proteins. In this review we discuss epithelial cell junctions as targets for a combined anticancer therapy and propose new possible sources of such agents. We suggest considering viral and bacterial pathogens disrupting epithelial layers as plentiful sources of new therapeutic agents for increasing tumor permeability for other effector agents. We also observe the application of pore forming proteins and peptides of different origin for cytoplasmic delivery of anti-cancer agents and consider the main obstacles of their use in vivo.
Collapse
|
10
|
Li Q, Cai Y, Huang J, Yu X, Sun J, Yang Z, Zhou L. Resistin impairs glucose permeability in EA.hy926 cells by down-regulating GLUT1 expression. Mol Cell Endocrinol 2016; 434:127-34. [PMID: 27353463 DOI: 10.1016/j.mce.2016.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/17/2016] [Accepted: 06/25/2016] [Indexed: 11/23/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease which is now affecting the health of more and more people in the world. Resistin, discovered in 2001, is considered to be closely related to metabolic dysfunction and obesity. Previous study showed that hyperglycemia is always accompanied by a high serum resistin concentration. We therefore investigated whether resistin can mediate glucose transfer across the blood-tissue barrier. Here, we employed a transwell system to analyze glucose permeability in EA.hy926 human endothelial cells treated without or with human resistin. In EA.hy926 cells treated with resistin, the permeability to glucose was heavily impaired. This was due to the down-regulation of GLUT1 expression as a result of the treatment, rather than regulation of tight junctions. In addition, overexpression of GLUT1 in EA.hy926 cells was able to recover the blocking effect of resistin on glucose permeability. We further found that resistin could inhibit the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and consequently impede the transcription of GLUT1. The results of the present study suggested that resistin could cause glucose retention in serum and thus result in hyperglycemia. This provides a novel explanation for hyperglycemia and a potential new way of treating type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China
| | - Yuxi Cai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jing Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Xiaolan Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Jun Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Zaiqing Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China.
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, PR China.
| |
Collapse
|
11
|
A dual strategy to improve the penetration and treatment of breast cancer by combining shrinking nanoparticles with collagen depletion by losartan. Acta Biomater 2016; 31:186-196. [PMID: 26675124 DOI: 10.1016/j.actbio.2015.12.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/12/2015] [Accepted: 12/01/2015] [Indexed: 01/24/2023]
Abstract
Although development of nanomedicines has been a promising direction in tumor treatment, the therapeutic outcome of current nanomedicines is unsatisfying, partly because of the poor retention and penetration in tumors. Recently, a kind of tumor microenvironment sensitive size shrinkable nanoparticles (DOX-AuNPs-GNPs) has been developed by our lab, which could enhance the tumor penetration and retention depending on the size shrinking. However, the further enhancement is still restricted by dense collagen network in tumors. Thus in this study, we combined DOX-AuNPs-GNPs with losartan to deplete tumor collagen (constituted up to 90% of extracellular matrix) to further improve tumor penetration. In vitro, DOX-AuNPs-GNPs can shrink from over 117.8nm to less than 50.0nm and release DOX-AuNPs under the triggering of tumor overexpressed matrix metalloproteinases-2 (MMP-2). In vivo, pretreatment with losartan significantly decrease the collagen level and improve the tumor penetration. In combination, losartan combined with DOX-AuNPs-GNPs showed the best drug delivery efficiency, striking penetration efficiency and best 4T1 breast tumor inhibition effect. In conclusion, this study provided a promising synergetic strategy to improve the tumor treatment efficiency of nanomedicines. STATEMENT OF SIGNIFICANCE We have developed a dual strategy for deep tumor penetration through combining size shrinkable DOX-AuNPs-GNPs with depleting tumor collagen by losartan. Additionally, we demonstrate therapeutic efficacy in breast tumor bearing mouse model. DOX-AuNPs-GNPs co-administration with losartan is a novel and highly attractive strategy for anti-tumor drug delivery with the potential for broad applications in clinic.
Collapse
|
12
|
Zhao L, Wang P, Liu Y, Ma J, Xue Y. miR-34c regulates the permeability of blood-tumor barrier via MAZ-mediated expression changes of ZO-1, occludin, and claudin-5. J Cell Physiol 2015; 230:716-31. [PMID: 25201524 DOI: 10.1002/jcp.24799] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 09/05/2014] [Indexed: 11/11/2022]
Abstract
The purposes of this study were to investigate the potential roles of miR-34c in regulating blood-tumor barrier (BTB) functions and its possible molecular mechanisms. The over-expression of miR-34c significantly impaired the integrity and increased the permeability of BTB, which were detected in an in vitro BTB model by transendothelial electric resistance and horseradish peroxidase flux assays, respectively. Meanwhile, real-time quantitative PCR (qRT-PCR), Western blot and immunofluorescence assays successively demonstrated downregulation of ZO-1, occludin, and claudin-5 and miR-34c silencing uncovered the opposite results. Dual-luciferase reporter assays results revealed myc-associated zinc-finger protein (MAZ) is a target gene of miR-34c. Besides, mRNA and protein expressions of MAZ were reversely regulated by miR-34c. The down-expression of MAZ significantly impaired the integrity and increased the permeability of BTB as well as downregulated the expressions of ZO-1, occludin, and claudin-5. And chromatin immunoprecipitation verified that MAZ interacted with "GGGCGGG," "CCCTCCC," and "GGGAGGG" DNA sequence of ZO-1, occludin, and claudin-5 promoter, respectively. The over-expression or silencing of either miR-34c or MAZ was performed simultaneously to further explore their functional relations, and results elucidated that miR-34c and MAZ displayed reverse regulatory effects on the integrity and permeability of BTB as well as the expressions of ZO-1, occludin, and claudin-5. In conclusion, our present study indicated that miR-34c regulated the permeability of BTB via MAZ-mediated expression changes of ZO-1, occludin, and claudin-5.
Collapse
Affiliation(s)
- Lini Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People's Republic of China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Miao YS, Zhao YY, Zhao LN, Wang P, Liu YH, Ma J, Xue YX. MiR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of ZO-1, occludin and claudin-5. Cell Signal 2014; 27:156-67. [PMID: 25452107 DOI: 10.1016/j.cellsig.2014.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/07/2014] [Accepted: 10/19/2014] [Indexed: 01/07/2023]
Abstract
The purposes of this study were to investigate the possible molecular mechanisms of miR-18a regulating the permeability of blood-tumor barrier (BTB) via down-regulated expression and distribution of runt-related transcription factor 1 (RUNX1). An in vitro BTB model was established with hCMEC/D3 cells and U87MG cells to obtain glioma vascular endothelial cells (GECs). The endogenous expressions of miR-18a and RUNX1 were converse in GECs. The overexpression of miR-18a significantly impaired the integrity and increased the permeability of BTB, which respectively were detected by TEER and HRP flux assays, accompanied by down-regulated mRNA and protein expressions and distributions of ZO-1, occludin and claudin-5 in GECs. Dual-luciferase reporter assay was carried out and revealed RUNX1 is a target gene of miR-18a. Meanwhile, mRNA and protein expressions and distribution of RUNX1 were downregulated by miR-18a. Most important, miR-18a and RUNX1 could reversely regulate the permeability of BTB as well as the expressions and distributions of ZO-1, occludin and claudin-5. Finally, chromatin immunoprecipitation verified that RUNX1 interacted with "TGGGGT" DNA sequence in promoter region of ZO-1, occludin and claudin-5 respectively. Taken together, our present study indicated that miR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of tight junction related proteins ZO-1, occludin and claudin-5, which would attract more attention to miR-18a and RUNX1 as potential targets of drug delivery across BTB and provide novel strategies for glioma treatment.
Collapse
Affiliation(s)
- Yin-Sha Miao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Ying-Yu Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Li-Ni Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China.
| |
Collapse
|
14
|
The role of tight junctions in cancer metastasis. Semin Cell Dev Biol 2014; 36:224-31. [PMID: 25239399 DOI: 10.1016/j.semcdb.2014.09.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Over the last decade, it has become apparent that the tight junction (TJ) is a key component in tumour progression and metastasis. In addition to its role in the control of paracellular diffusion of ions and certain molecules, the TJ has a vital role in maintaining cell to cell adhesion and tissue integrity. Changes in the expression and/or distribution of TJ proteins can result in loss in cohesion of the TJ structure, which in turn results in the ability of cancer cells to become invasive and then ultimately lead to the metastasis of cancer cells. This review will discuss recent insights into how TJ are involved in the process of tumour metastasis.
Collapse
|
15
|
Effects and Mechanism Analysis of Vascular Endothelial Growth Factor and Salvianolic Acid B on 125I-Low Density Lipoprotein Permeability of the Rabbit Aortary Endothelial Cells. Cell Biochem Biophys 2014; 70:1533-8. [DOI: 10.1007/s12013-014-0089-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|