1
|
Duarte JMN. Challenges of Investigating Compartmentalized Brain Energy Metabolism Using Nuclear Magnetic Resonance Spectroscopy in vivo. Neurochem Res 2025; 50:73. [PMID: 39754627 PMCID: PMC11700056 DOI: 10.1007/s11064-024-04324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
Brain function requires continuous energy supply. Thus, unraveling brain metabolic regulation is critical not only for our basic understanding of overall brain function, but also for the cellular basis of functional neuroimaging techniques. While it is known that brain energy metabolism is exquisitely compartmentalized between astrocytes and neurons, the metabolic and neuro-energetic basis of brain activity is far from fully understood. 1H nuclear magnetic resonance (NMR) spectroscopy has been widely used to detect variations in metabolite levels, including glutamate and GABA, while 13C NMR spectroscopy has been employed to study metabolic compartmentation and to determine metabolic rates coupled brain activity, focusing mainly on the component corresponding to excitatory glutamatergic neurotransmission. The rates of oxidative metabolism in neurons and astrocytes are both associated with the rate of the glutamate-glutamine cycle between neurons and astrocytes. However, any possible correlation between energy metabolism pathways and the inhibitory GABAergic neurotransmission rate in the living brain remains to be experimentally demonstrated. That is due to low GABA levels, and the consequent challenge of determining GABAergic rates in a non-invasive manner. This brief review surveys the state-of-the-art analyses of energy metabolism in neurons and astrocytes contributing to glutamate and GABA synthesis using 13C NMR spectroscopy in vivo, and identifies limitations that need to be overcome in future studies.
Collapse
Affiliation(s)
- João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Astrocytes regulate inhibitory neurotransmission through GABA uptake, metabolism, and recycling. Essays Biochem 2023; 67:77-91. [PMID: 36806927 DOI: 10.1042/ebc20220208] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/23/2023]
Abstract
Synaptic regulation of the primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) is essential for brain function. Cerebral GABA homeostasis is tightly regulated through multiple mechanisms and is directly coupled to the metabolic collaboration between neurons and astrocytes. In this essay, we outline and discuss the fundamental roles of astrocytes in regulating synaptic GABA signaling. A major fraction of synaptic GABA is removed from the synapse by astrocytic uptake. Astrocytes utilize GABA as a metabolic substrate to support glutamine synthesis. The astrocyte-derived glutamine is subsequently transferred to neurons where it serves as the primary precursor of neuronal GABA synthesis. The flow of GABA and glutamine between neurons and astrocytes is collectively termed the GABA-glutamine cycle and is essential to sustain GABA synthesis and inhibitory signaling. In certain brain areas, astrocytes are even capable of synthesizing and releasing GABA to modulate inhibitory transmission. The majority of oxidative GABA metabolism in the brain takes place in astrocytes, which also leads to synthesis of the GABA-related metabolite γ-hydroxybutyric acid (GHB). The physiological roles of endogenous GHB remain unclear, but may be related to regulation of tonic inhibition and synaptic plasticity. Disrupted inhibitory signaling and dysfunctional astrocyte GABA handling are implicated in several diseases including epilepsy and Alzheimer's disease. Synaptic GABA homeostasis is under astrocytic control and astrocyte GABA uptake, metabolism, and recycling may therefore serve as relevant targets to ameliorate pathological inhibitory signaling.
Collapse
|
3
|
Bhatt M, Gauthier-Manuel L, Lazzarin E, Zerlotti R, Ziegler C, Bazzone A, Stockner T, Bossi E. A comparative review on the well-studied GAT1 and the understudied BGT-1 in the brain. Front Physiol 2023; 14:1145973. [PMID: 37123280 PMCID: PMC10137170 DOI: 10.3389/fphys.2023.1145973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system (CNS). Its homeostasis is maintained by neuronal and glial GABA transporters (GATs). The four GATs identified in humans are GAT1 (SLC6A1), GAT2 (SLC6A13), GAT3 (SLC6A11), and betaine/GABA transporter-1 BGT-1 (SLC6A12) which are all members of the solute carrier 6 (SLC6) family of sodium-dependent transporters. While GAT1 has been investigated extensively, the other GABA transporters are less studied and their role in CNS is not clearly defined. Altered GABAergic neurotransmission is involved in different diseases, but the importance of the different transporters remained understudied and limits drug targeting. In this review, the well-studied GABA transporter GAT1 is compared with the less-studied BGT-1 with the aim to leverage the knowledge on GAT1 to shed new light on the open questions concerning BGT-1. The most recent knowledge on transporter structure, functions, expression, and localization is discussed along with their specific role as drug targets for neurological and neurodegenerative disorders. We review and discuss data on the binding sites for Na+, Cl-, substrates, and inhibitors by building on the recent cryo-EM structure of GAT1 to highlight specific molecular determinants of transporter functions. The role of the two proteins in GABA homeostasis is investigated by looking at the transport coupling mechanism, as well as structural and kinetic transport models. Furthermore, we review information on selective inhibitors together with the pharmacophore hypothesis of transporter substrates.
Collapse
Affiliation(s)
- Manan Bhatt
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Centre for Neuroscience—University of Insubria, Varese, Italy
| | - Laure Gauthier-Manuel
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
| | - Erika Lazzarin
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstr, Vienna
| | - Rocco Zerlotti
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Christine Ziegler
- Department of Biophysics II/Structural Biology, University of Regensburg, Regensburg, Germany
| | | | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Waehringerstr, Vienna
- *Correspondence: Thomas Stockner, ; Elena Bossi,
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Centre for Neuroscience—University of Insubria, Varese, Italy
- *Correspondence: Thomas Stockner, ; Elena Bossi,
| |
Collapse
|
4
|
Tong H, Tang W. Crystal structure of 4-methyl-4-nitropentanoic acid, C 6H 11NO 4. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C6H11NO4, monoclinic, P21/c (no. 14), a = 19.1903(7) Å, b = 18.4525(6) Å, c = 9.2197(3) Å, β = 95.879(1)°, V = 3247.61(19) Å3, Z = 16, Rgt
(F) = 0.0495, wRref
(F
2) = 0.1194, T = 173 K.
Collapse
Affiliation(s)
- Hongjuan Tong
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province , School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xi’an , China
| | - Wenqiang Tang
- Collaborative Innovation Center of Green Manufacturing Technology for Traditional Chinese Medicine in Shaanxi Province , School of Pharmacy, Shaanxi Institute of International Trade & Commerce , Xi’an , China
| |
Collapse
|
5
|
Andersen JV, Jakobsen E, Westi EW, Lie MEK, Voss CM, Aldana BI, Schousboe A, Wellendorph P, Bak LK, Pinborg LH, Waagepetersen HS. Extensive astrocyte metabolism of γ-aminobutyric acid (GABA) sustains glutamine synthesis in the mammalian cerebral cortex. Glia 2020; 68:2601-2612. [PMID: 32584476 DOI: 10.1002/glia.23872] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
Synaptic transmission is closely linked to brain energy and neurotransmitter metabolism. However, the extent of brain metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), and the relative metabolic contributions of neurons and astrocytes, are yet unknown. The present study was designed to investigate the functional significance of brain GABA metabolism using isolated mouse cerebral cortical slices and slices of neurosurgically resected neocortical human tissue of the temporal lobe. By using dynamic isotope labeling, with [15 N]GABA and [U-13 C]GABA as metabolic substrates, we show that both mouse and human brain slices exhibit a large capacity for GABA metabolism. Both the nitrogen and the carbon backbone of GABA strongly support glutamine synthesis, particularly in the human cerebral cortex, indicative of active astrocytic GABA metabolism. This was further substantiated by pharmacological inhibition of the primary astrocytic GABA transporter subtype 3 (GAT3), by (S)-SNAP-5114 or 1-benzyl-5-chloro-2,3-dihydro-1H-indole-2,3-dione (compound 34), leading to significant reductions in oxidative GABA carbon metabolism. Interestingly, this was not the case when tiagabine was used to specifically inhibit GAT1, which is predominantly found on neurons. Finally, we show that acute GABA exposure does not directly stimulate glycolytic activity nor oxidative metabolism in cultured astrocytes, but can be used as an additional substrate to enhance uncoupled respiration. These results clearly show that GABA is actively metabolized in astrocytes, particularly for the synthesis of glutamine, and challenge the current view that synaptic GABA homeostasis is maintained primarily by presynaptic recycling.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil Jakobsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil W Westi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maria E K Lie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline M Voss
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars H Pinborg
- Epilepsy Clinic and Neurobiology Research Unit, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Chuang SH, Reddy DS. Isobolographic Analysis of Antiseizure Activity of the GABA Type A Receptor-Modulating Synthetic Neurosteroids Brexanolone and Ganaxolone with Tiagabine and Midazolam. J Pharmacol Exp Ther 2019; 372:285-298. [PMID: 31843812 DOI: 10.1124/jpet.119.261735] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is often treated with a combination of antiepileptic drugs. Although neurosteroids are potent anticonvulsants, little is known about their combination potential for the treatment of refractory epilepsy. Here, we investigated the combination efficacy of neurosteroids allopregnanolone (AP, brexanolone) and ganaxolone (GX) with the GABA-reuptake inhibitor tiagabine (TG) or the benzodiazepine midazolam (MDZ) on tonic inhibition in dentate gyrus granule cells and seizure protection in the hippocampus kindling and 6-Hz seizure models. Isobolographic analysis indicated that combinations of GX and TG or AP and TG at three standard ratios (1:1, 3:1, and 1:3) displayed significant synergism in augmenting tonic inhibition. In pharmacological studies, GX, AP, and TG produced dose-dependent antiseizure effects in mice (ED50 = 1.46, 4.20, and 0.20 mg/kg, respectively). The combination of GX and TG at the fixed ratio of 1:1 exerted the greatest combination index (CI = 0.53), indicating strong synergistic interaction in seizure protection. In addition, combination regimens of AP and TG showed robust synergism for seizure protection (CI = 0.4). Finally, combination regimens of GX and MDZ elicited synergistic (CI = 0.6) responses for seizure protection. These results demonstrate striking synergism of neurosteroids and TG combination for seizure protection, likely because of their effects at extrasynaptic GABA type A (GABA-A) receptors from TG-induced elevation in GABA levels. Superadditive antiseizure activity of neurosteroid-MDZ combinations may stem from their actions at both synaptic and extrasynaptic GABA-A receptors. Together, these findings provide a potential mechanistic basis for combination potential of neurosteroids with TG or benzodiazepines for the management of refractory epilepsy, status epilepticus, and seizure disorders. SIGNIFICANCE STATEMENT: This paper investigates for the first time the potential synergistic interactions between two neurosteroids with anticonvulsant properties, allopregnanolone (brexanolone) and the very similar synthetic analog, ganaxolone, and two conventional antiepileptic drugs active at GABA type A receptors: the GABA-reuptake inhibitor tiagabine and a benzodiazepine, midazolam. The results demonstrate a synergistic protective effect of neurosteroid-tiagabine combinations, as well as neurosteroid-midazolam regimens in seizure models.
Collapse
Affiliation(s)
- Shu-Hui Chuang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
7
|
Dobberthien BJ, Tessier AG, Stanislaus AE, Sawyer MB, Fallone BG, Yahya A. PRESS timings for resolving 13 C 4 -glutamate 1 H signal at 9.4 T: Demonstration in rat with uniformly labelled 13 C-glucose. NMR IN BIOMEDICINE 2019; 32:e4180. [PMID: 31518031 DOI: 10.1002/nbm.4180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/30/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
MRS of 13 C4 -labelled glutamate (13 C4 -Glu) during an infusion of a carbon-13 (13 C)-labelled substrate, such as uniformly labelled glucose ([U-13 C6 ]-Glc), provides a measure of Glc metabolism. The presented work provides a single-shot indirect 13 C detection technique to quantify the approximately 2.51 ppm 13 C4 -Glu satellite proton (1 H) peak at 9.4 T. The methodology is an optimized point-resolved spectroscopy (PRESS) sequence that minimizes signal contamination from the strongly coupled protons of N-acetylaspartate (NAA), which resonate at approximately 2.49 ppm. J-coupling evolution of protons was characterized numerically and verified experimentally. A (TE1 , TE2 ) combination of (20 ms, 106 ms) was found to be suitable for minimizing NAA signal in the 2.51 ppm 1 H 13 C4 -Glu spectral region, while retaining the 13 C4 -Glu 1 H satellite peak. The efficacy of the technique was verified on phantom solutions and on two rat brains in vivo during an infusion of [U-13 C6 ]-Glc. LCModel was employed for analysis of the in vivo spectra to quantify the 2.51 ppm 1 H 13 C4 -Glu signal to obtain Glu C4 fractional enrichment time courses during the infusions. Cramér-Rao lower bounds of about 8% were obtained for the 2.51 ppm 13 C4 -Glu 1 H satellite peak with the optimal TE combination.
Collapse
Affiliation(s)
| | - Anthony G Tessier
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | - Michael B Sawyer
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - B Gino Fallone
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Atiyah Yahya
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Sallam MY, El-Gowilly SM, Abdel-Galil AGA, El-Mas MM. Activation of central GABA B receptors offsets the cyclosporine counteraction of endotoxic cardiovascular outcomes in conscious rats. Fundam Clin Pharmacol 2018; 32:485-498. [PMID: 29667225 DOI: 10.1111/fcp.12375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/15/2018] [Accepted: 04/11/2018] [Indexed: 11/30/2022]
Abstract
We have previously shown that cyclosporine (CSA) counteracts cardiovascular manifestations induced by endotoxemia (lipopolysaccharide, LPS) such as hypotension and cardiac autonomic dysfunction in conscious rats. In this study, we investigated whether the facilitation of central γ-amino butyric acid (GABA) neurotransmission blunts these favorable influences of CSA. The LPS-CSA interaction was determined in the absence and presence of drugs that activate GABAA or GABAB receptors or elevate synaptic GABA levels in the central nervous system. The consequent i.v. administration of CSA (10 mg/kg) blunted the LPS-evoked hypotension, tachycardia, and reductions in time- and frequency-domain indices of heart rate variability (measures of cardiac autonomic control) evoked by LPS (10 mg/kg i.v.). The ability of CSA to reverse the LPS effects disappeared in rats treated intracisternally (i.c.) with baclofen (selective GABAB agonist, 2 μg/rat) but not muscimol (selective GABAA agonist, 1 μg/rat), indicating a preferential compromising action for central GABAB receptors on the advantageous effects of CSA. Moreover, the improvement by CSA of LPS-evoked cardiovascular derangements was also eliminated after concurrent i.c. administration of vigabatrin (GABA transaminase inhibitor, 200 μg/rat) or tiagabine (GABA reuptake inhibitor, 100 μg/rat). These results demonstrate that the activation of central GABAB receptors either directly via baclofen or indirectly following interventions that boost GABA levels in central synapses counterbalances the rectifying action of CSA on endotoxemia.
Collapse
Affiliation(s)
- Marwa Y Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, El-Azartia, 21521, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, El-Azartia, 21521, Alexandria, Egypt
| | - Abdel-Galil A Abdel-Galil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, El-Azartia, 21521, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, El-Azartia, 21521, Alexandria, Egypt
| |
Collapse
|
9
|
Hertz L, Chen Y. Additional mechanisms for brain activation failure due to reduced glucose metabolism-a commentary on Zilberter and Zilberter: The vicious circle of hypometabolism in neurodegenerative diseases. J Neurosci Res 2017; 96:757-761. [PMID: 29095528 DOI: 10.1002/jnr.24192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, Maryland
| |
Collapse
|
10
|
Hertz L, Chen Y. Glycogenolysis, an Astrocyte-Specific Reaction, is Essential for Both Astrocytic and Neuronal Activities Involved in Learning. Neuroscience 2017; 370:27-36. [PMID: 28668486 DOI: 10.1016/j.neuroscience.2017.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/10/2017] [Accepted: 06/19/2017] [Indexed: 01/26/2023]
Abstract
In brain glycogen, formed from glucose, is degraded (glycogenolysis) in astrocytes but not in neurons. Although most of the degradation follows the same pathway as glucose, its breakdown product, l-lactate, is released from astrocytes in larger amounts than glucose when glycogenolysis is activated by noradrenaline. However, this is not the case when glycogenolysis is activated by high potassium ion (K+) concentrations - possibly because noradrenaline in contrast to high K+ stimulates glycogenolysis by an increase not only in free cytosolic Ca2+ concentration ([Ca2+]i) but also in cyclic AMP (c-AMP), which may increase the expression of the monocarboxylate transporter through which it is released. Several transmitters activate glycogenolysis in astrocytes and do so at different time points after training. This stimulation is essential for memory consolidation because glycogenolysis is necessary for uptake of K+ and stimulates formation of glutamate from glucose, and therefore is needed both for removal of increased extracellular K+ following neuronal excitation (which initially occurs into astrocytes) and for formation of transmitter glutamate and GABA. In addition the released l-lactate has effects on neurons which are essential for learning and for learning-related long-term potentiation (LTP), including induction of the neuronal gene Arc/Arg3.1 and activation of gene cascades mediated by CREB and cofilin. Inhibition of glycogenolysis blocks learning, LTP and all related molecular events, but all changes can be reversed by injection of l-lactate. The effect of extracellular l-lactate is due to both astrocyte-mediated signaling which activates noradrenergic activity on all brain cells and to a minor uptake, possibly into dendritic spines.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, MD 20817, USA.
| |
Collapse
|
11
|
Hertz L, Rothman DL. Glutamine-Glutamate Cycle Flux Is Similar in Cultured Astrocytes and Brain and Both Glutamate Production and Oxidation Are Mainly Catalyzed by Aspartate Aminotransferase. BIOLOGY 2017; 6:biology6010017. [PMID: 28245547 PMCID: PMC5372010 DOI: 10.3390/biology6010017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 01/15/2023]
Abstract
The glutamine-glutamate cycle provides neurons with astrocyte-generated glutamate/γ-aminobutyric acid (GABA) and oxidizes glutamate in astrocytes, and it returns released transmitter glutamate/GABA to neurons after astrocytic uptake. This review deals primarily with the glutamate/GABA generation/oxidation, although it also shows similarity between metabolic rates in cultured astrocytes and intact brain. A key point is identification of the enzyme(s) converting astrocytic α-ketoglutarate to glutamate and vice versa. Most experiments in cultured astrocytes, including those by one of us, suggest that glutamate formation is catalyzed by aspartate aminotransferase (AAT) and its degradation by glutamate dehydrogenase (GDH). Strongly supported by results shown in Table 1 we now propose that both reactions are primarily catalyzed by AAT. This is possible because the formation occurs in the cytosol and the degradation in mitochondria and they are temporally separate. High glutamate/glutamine concentrations abolish the need for glutamate production from α-ketoglutarate and due to metabolic coupling between glutamate synthesis and oxidation these high concentrations render AAT-mediated glutamate oxidation impossible. This necessitates the use of GDH under these conditions, shown by insensitivity of the oxidation to the transamination inhibitor aminooxyacetic acid (AOAA). Experiments using lower glutamate/glutamine concentration show inhibition of glutamate oxidation by AOAA, consistent with the coupled transamination reactions described here.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Liaoning 110000, China.
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Radiology and Biomedical Engineering, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Valette J, Tiret B, Boumezbeur F. Experimental strategies for in vivo 13C NMR spectroscopy. Anal Biochem 2016; 529:216-228. [PMID: 27515993 DOI: 10.1016/j.ab.2016.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/24/2016] [Accepted: 08/04/2016] [Indexed: 11/15/2022]
Abstract
In vivo carbon-13 (13C) MRS opens unique insights into the metabolism of intact organisms, and has led to major advancements in the understanding of cellular metabolism under normal and pathological conditions in various organs such as skeletal muscles, the heart, the liver and the brain. However, the technique comes at the expense of significant experimental difficulties. In this review we focus on the experimental aspects of non-hyperpolarized 13C MRS in vivo. Some of the enrichment strategies which have been proposed so far are described; the various MRS acquisition paradigms to measure 13C labeling are then presented. Finally, practical aspects of 13C spectral quantification are discussed.
Collapse
Affiliation(s)
- Julien Valette
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France.
| | - Brice Tiret
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, F-92260 Fontenay-aux-Roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, F-92260 Fontenay-aux-Roses, France
| | - Fawzi Boumezbeur
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), NeuroSpin, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Myers JF, Nutt DJ, Lingford-Hughes AR. γ-aminobutyric acid as a metabolite: Interpreting magnetic resonance spectroscopy experiments. J Psychopharmacol 2016; 30:422-7. [PMID: 27005308 DOI: 10.1177/0269881116639298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current rise in the prevalence of magnetic resonance spectroscopy experiments to measure γ-aminobutyric acid in the living human brain is an exciting and productive area of research. As research spreads into clinical populations and cognitive research, it is important to fully understand the source of the magnetic resonance spectroscopy signal and apply appropriate interpretation to the results of the experiments. γ-aminobutyric acid is present in the brain not only as a neurotransmitter, but also in high intracellular concentrations, both as a transmitter precursor and a metabolite. γ-aminobutyric acid concentrations measured by magnetic resonance spectroscopy are not necessarily implicated in neurotransmission and therefore may reflect a very different brain activity to that commonly suggested. In this perspective, we examine some of the considerations to be taken in the interpretation of any γ-aminobutyric acid signal measured by magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- James Fm Myers
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| | - Anne R Lingford-Hughes
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
14
|
Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle. ADVANCES IN NEUROBIOLOGY 2016; 13:9-42. [PMID: 27885625 DOI: 10.1007/978-3-319-45096-4_2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.
Collapse
|
15
|
Hertz L, Chen Y, Waagepetersen HS. Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function. J Neurochem 2015; 134:7-20. [PMID: 25832906 DOI: 10.1111/jnc.13107] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Diet supplementation with ketone bodies (acetoacetate and β-hydroxybuturate) or medium-length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more pronounced if treatment was begun at a pre-clinical stage of the disease instead of well after its manifestation. The pre-clinical stage is characterized by decade-long glucose hypometabolism in brain, but ketone body metabolism is intact even initially after disease manifestation. One reason for the impaired glucose metabolism may be early destruction of the noradrenergic brain stem nucleus, locus coeruleus, which stimulates glucose metabolism, at least in astrocytes. These glial cells are essential in Alzheimer pathogenesis. The β-amyloid peptide Aβ interferes with their cholinergic innervation, which impairs synaptic function because of diminished astrocytic glutamate release. Aβ also reduces glucose metabolism and causes hyperexcitability. Ketone bodies are similarly used against seizures, but the effectively used concentrations are so high that they must interfere with glucose metabolism and de novo synthesis of neurotransmitter glutamate, reducing neuronal glutamatergic signaling. The lower ketone body concentrations used in Alzheimer's disease may owe their effect to support of energy metabolism, but might also inhibit release of gliotransmitter glutamate. Alzheimer's disease is a panglial-neuronal disorder with long-standing brain hypometabolism, aberrations in both neuronal and astrocytic glucose metabolism, inflammation, hyperexcitability, and dementia. Relatively low doses of β-hydroxybutyrate can have an ameliorating effect on cognitive function. This could be because of metabolic supplementation or inhibition of Aβ-induced release of glutamate as gliotransmitter, which is likely to reduce hyperexcitability and inflammation. The therapeutic β-hydroxybutyrate doses are too low to reduce neuronally released glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, Maryland, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Hertz L, Rothman DL, Li B, Peng L. Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci 2015; 9:25. [PMID: 25750618 PMCID: PMC4335176 DOI: 10.3389/fnbeh.2015.00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/23/2015] [Indexed: 11/13/2022] Open
Abstract
It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI's exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all five currently used SSRIs to stimulate the 5-HT2B receptor equipotentially in cultured astrocytes has been known for several years, and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 days together with effects of anti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Diagnostic Radiology and Biomedical Engineering, Yale University New Haven, CT, USA
| | - Baoman Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|