1
|
Monteiro ÁB, Alves AF, Ribeiro Portela AC, Oliveira Pires HF, Pessoa de Melo M, Medeiros Vilar Barbosa NM, Bezerra Felipe CF. Pentylenetetrazole: A review. Neurochem Int 2024; 180:105841. [PMID: 39214154 DOI: 10.1016/j.neuint.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Pentylenetetrazole (PTZ), a tetrazole derivative, is commonly used as a chemical agent to induce neurological disorders and replicate the characteristics of human epileptic seizures in animal models. This review offers a comprehensive analysis of the behavioral, neurophysiological, and neurochemical changes induced by PTZ. The epileptogenic and neurotoxic mechanisms of PTZ are associated with an imbalance between the GABAergic and glutamatergic systems. At doses exceeding 60 mg/kg, PTZ exerts its epileptic effects by non-competitively antagonizing GABAA receptors and activating NMDA receptors, resulting in an increased influx of cations such as Na+ and Ca2+. Additionally, PTZ promotes oxidative stress, microglial activation, and the synthesis of pro-inflammatory mediators, all of which are features characteristic of glutamatergic excitotoxicity. These mechanisms ultimately lead to epileptic seizures and neuronal cell death, which depend on the dosage and method of administration. The behavioral, electroencephalographic, and histological changes associated with PTZ further establish it as a valuable preclinical model for the study of epileptic seizures, owing to its simplicity, cost-effectiveness, and reproducibility.
Collapse
Affiliation(s)
- Álefe Brito Monteiro
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | - Alan Ferreira Alves
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | | - Mayara Pessoa de Melo
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | |
Collapse
|
2
|
Chandía-Cristi A, Gutiérrez DA, Dulcey AE, Lara M, Vargas L, Lin YH, Jimenez-Muñoz P, Larenas G, Xu X, Wang A, Owens A, Dextras C, Chen Y, Pinto C, Marín T, Almarza-Salazar H, Acevedo K, Cancino GI, Hu X, Rojas P, Ferrer M, Southall N, Henderson MJ, Zanlungo S, Marugan JJ, Álvarez R A. Prophylactic treatment with the c-Abl inhibitor, neurotinib, diminishes neuronal damage and the convulsive state in pilocarpine-induced mice. Cell Rep 2024; 43:114144. [PMID: 38656874 PMCID: PMC11230136 DOI: 10.1016/j.celrep.2024.114144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The molecular mechanisms underlying seizure generation remain elusive, yet they are crucial for developing effective treatments for epilepsy. The current study shows that inhibiting c-Abl tyrosine kinase prevents apoptosis, reduces dendritic spine loss, and maintains N-methyl-d-aspartate (NMDA) receptor subunit 2B (NR2B) phosphorylated in in vitro models of excitotoxicity. Pilocarpine-induced status epilepticus (SE) in mice promotes c-Abl phosphorylation, and disrupting c-Abl activity leads to fewer seizures, increases latency toward SE, and improved animal survival. Currently, clinically used c-Abl inhibitors are non-selective and have poor brain penetration. The allosteric c-Abl inhibitor, neurotinib, used here has favorable potency, selectivity, pharmacokinetics, and vastly improved brain penetration. Neurotinib-administered mice have fewer seizures and improved survival following pilocarpine-SE induction. Our findings reveal c-Abl kinase activation as a key factor in ictogenesis and highlight the impact of its inhibition in preventing the insurgence of epileptic-like seizures in rodents and humans.
Collapse
Affiliation(s)
- América Chandía-Cristi
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile
| | - Daniela A Gutiérrez
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile
| | - Andrés E Dulcey
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA
| | - Marcelo Lara
- Neuroscience Laboratory, Biology and Chemistry Faculty, Universidad de Santiago de Chile, Avenue Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Lina Vargas
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile
| | - Yi-Han Lin
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA
| | - Pablo Jimenez-Muñoz
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile
| | - Gabriela Larenas
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile
| | - Xin Xu
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA
| | - Amy Wang
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA
| | - Ashley Owens
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA
| | - Christopher Dextras
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA
| | - YuChi Chen
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA
| | - Claudio Pinto
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile
| | - Tamara Marín
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile
| | - Hugo Almarza-Salazar
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile
| | - Keryma Acevedo
- Neurology Unit of Pediatric Division, Pontificia Universidad Católica de Chile, Avenue Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Gonzalo I Cancino
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile
| | - Xin Hu
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA
| | - Patricio Rojas
- Neuroscience Laboratory, Biology and Chemistry Faculty, Universidad de Santiago de Chile, Avenue Libertador Bernardo O'Higgins, Santiago 3363, Chile
| | - Marc Ferrer
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA
| | - Noel Southall
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA
| | - Mark J Henderson
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Avenue Libertador Bernardo O'Higgins 340, Santiago, Chile.
| | - Juan J Marugan
- Early Translation Branch, National Center for Advancing Translational Sciences (NCATS), NIH, 9800 Medical Center Drive, Rockville, MD, USA.
| | - Alejandra Álvarez R
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Biological Sciences Faculty, Pontificia Universidad Católica de Chile, Portugal 49, Santiago, Chile.
| |
Collapse
|
3
|
Chen L, Yang W, Yang F, Xu T, Yu Y, Wu Q, Han Y. Astrocyte mitochondria: Potential therapeutic targets for epilepsy. Heliyon 2024; 10:e29950. [PMID: 38756598 PMCID: PMC11096718 DOI: 10.1016/j.heliyon.2024.e29950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Epilepsy is a chronic, relapsing neurological disorder, and current treatments focus primarily on neurons, yet one-third of patients still develop drug-resistant epilepsy. Therefore, there is an urgent need to explore new therapeutic targets. Interestingly, astrocytes can transfer their healthy mitochondria into neighboring neurons, thus preventing neuronal damage. Astrocyte mitochondria have been shown to have a therapeutic role in stroke and neurodegenerative diseases. However, their therapeutic effect in epilepsy and its related mechanisms have been less studied. In this review, we mainly summarize the regulatory role of astrocyte mitochondria in glutamate, calcium ion, and adenosine triphosphate (ATP) homeostasis and outline the protective role of astrocyte mitochondria in nervous system diseases, revealing a new target for epilepsy treatment.
Collapse
Affiliation(s)
| | | | - Fei Yang
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Tingwan Xu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanying Yu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Qian Wu
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| | - Yanbing Han
- First Department of Neurology, First Affiliated Hospital, Kunming Medical University, 295 Xi Chang Road, Kunming, Yunnan 650032, PR China
| |
Collapse
|
4
|
A Warburg-like metabolic program coordinates Wnt, AMPK, and mTOR signaling pathways in epileptogenesis. PLoS One 2021; 16:e0252282. [PMID: 34358226 PMCID: PMC8345866 DOI: 10.1371/journal.pone.0252282] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a complex neurological condition characterized by repeated spontaneous seizures and can be induced by initiating seizures known as status epilepticus (SE). Elaborating the critical molecular mechanisms following SE are central to understanding the establishment of chronic seizures. Here, we identify a transient program of molecular and metabolic signaling in the early epileptogenic period, centered on day five following SE in the pre-clinical kainate or pilocarpine models of temporal lobe epilepsy. Our work now elaborates a new molecular mechanism centered around Wnt signaling and a growing network comprised of metabolic reprogramming and mTOR activation. Biochemical, metabolomic, confocal microscopy and mouse genetics experiments all demonstrate coordinated activation of Wnt signaling, predominantly in neurons, and the ensuing induction of an overall aerobic glycolysis (Warburg-like phenomenon) and an altered TCA cycle in early epileptogenesis. A centerpiece of the mechanism is the regulation of pyruvate dehydrogenase (PDH) through its kinase and Wnt target genes PDK4. Intriguingly, PDH is a central gene in certain genetic epilepsies, underscoring the relevance of our elaborated mechanisms. While sharing some features with cancers, the Warburg-like metabolism in early epileptogenesis is uniquely split between neurons and astrocytes to achieve an overall novel metabolic reprogramming. This split Warburg metabolic reprogramming triggers an inhibition of AMPK and subsequent activation of mTOR, which is a signature event of epileptogenesis. Interrogation of the mechanism with the metabolic inhibitor 2-deoxyglucose surprisingly demonstrated that Wnt signaling and the resulting metabolic reprogramming lies upstream of mTOR activation in epileptogenesis. To augment the pre-clinical pilocarpine and kainate models, aspects of the proposed mechanisms were also investigated and correlated in a genetic model of constitutive Wnt signaling (deletion of the transcriptional repressor and Wnt pathway inhibitor HBP1). The results from the HBP1-/- mice provide a genetic evidence that Wnt signaling may set the threshold of acquired seizure susceptibility with a similar molecular framework. Using biochemistry and genetics, this paper outlines a new molecular framework of early epileptogenesis and advances a potential molecular platform for refining therapeutic strategies in attenuating recurrent seizures.
Collapse
|
5
|
Mice Lacking Connective Tissue Growth Factor in the Forebrain Exhibit Delayed Seizure Response, Reduced C-Fos Expression and Different Microglial Phenotype Following Acute PTZ Injection. Int J Mol Sci 2020; 21:ijms21144921. [PMID: 32664674 PMCID: PMC7404259 DOI: 10.3390/ijms21144921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 01/03/2023] Open
Abstract
Connective tissue growth factor (CTGF) plays important roles in the development and regeneration of the connective tissue, yet its function in the nervous system is still not clear. CTGF is expressed in some distinct regions of the brain, including the dorsal endopiriform nucleus (DEPN) which has been recognized as an epileptogenic zone. We generated a forebrain-specific Ctgf knockout (FbCtgf KO) mouse line in which the expression of Ctgf in the DEPN is eliminated. In this study, we adopted a pentylenetetrazole (PTZ)-induced seizure model and found similar severity and latencies to death between FbCtgf KO and WT mice. Interestingly, there was a delay in the seizure reactions in the mutant mice. We further observed reduced c-fos expression subsequent to PTZ treatment in the KO mice, especially in the hippocampus. While the densities of astrocytes and microglia in the hippocampus were kept constant after acute PTZ treatment, microglial morphology was different between genotypes. Our present study demonstrated that in the FbCtgf KO mice, PTZ failed to increase neuronal activity and microglial response in the hippocampus. Our results suggested that inhibition of Ctgf function may have a therapeutic potential in preventing the pathophysiology of epilepsy.
Collapse
|
6
|
Abstract
[Box: see text].
Collapse
|
7
|
Thangaraj A, Sil S, Tripathi A, Chivero ET, Periyasamy P, Buch S. Targeting endoplasmic reticulum stress and autophagy as therapeutic approaches for neurological diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:285-325. [DOI: 10.1016/bs.ircmb.2019.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Gimenes AD, Andrade BFD, Pinotti JVP, Oliani SM, Galvis-Alonso OY, Gil CD. Annexin A1-derived peptide Ac 2-26 in a pilocarpine-induced status epilepticus model: anti-inflammatory and neuroprotective effects. J Neuroinflammation 2019; 16:32. [PMID: 30755225 PMCID: PMC6371492 DOI: 10.1186/s12974-019-1414-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background The inflammatory process has been described as a crucial mechanism in the pathophysiology of temporal lobe epilepsy. The anti-inflammatory protein annexin A1 (ANXA1) represents an interesting target in the regulation of neuroinflammation through the inhibition of leukocyte transmigration and the release of proinflammatory mediators. In this study, the role of the ANXA1-derived peptide Ac2-26 in an experimental model of status epilepticus (SE) was evaluated. Methods Male Wistar rats were divided into Naive, Sham, SE and SE+Ac2-26 groups, and SE was induced by intrahippocampal injection of pilocarpine. In Sham animals, saline was applied into the hippocampus, and Naive rats were only handled. Three doses of Ac2-26 (1 mg/kg) were administered intraperitoneally (i.p.) after 2, 8 and 14 h of SE induction. Finally, 24 h after the experiment-onset, rats were euthanized for analyses of neuronal lesion and inflammation. Results Pilocarpine induced generalised SE in all animals, causing neuronal damage, and systemic treatment with Ac2-26 decreased neuronal degeneration and albumin levels in the hippocampus. Also, both SE groups showed an intense influx of microglia, which was corroborated by high levels of ionised calcium binding adaptor molecule 1(Iba-1) and monocyte chemoattractant protein-1 (MCP-1) in the hippocampus. Ac2-26 reduced the astrocyte marker (glial fibrillary acidic protein; GFAP) levels, as well as interleukin-1β (IL-1β), interleukin-6 (IL-6) and growth-regulated alpha protein (GRO/KC). These effects of the peptide were associated with the modulation of the levels of formyl peptide receptor 2, a G-protein-coupled receptor that binds to Ac2-26, and the phosphorylated extracellular signal-regulated kinase (ERK) in the hippocampal neurons. Conclusions The data suggest a neuroprotective effect of Ac2-26 in the epileptogenic processes through downregulation of inflammatory mediators and neuronal loss.
Collapse
Affiliation(s)
- Alexandre D Gimenes
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil
| | - Bruna F D Andrade
- Department of Molecular Biology, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, SP, 15090-000, Brazil
| | - José Victor P Pinotti
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil
| | - Sonia M Oliani
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil.,From the Post-Graduation in Biosciences, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University (IBILCE/UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | - Orfa Y Galvis-Alonso
- Department of Molecular Biology, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, SP, 15090-000, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil. .,From the Post-Graduation in Biosciences, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University (IBILCE/UNESP), São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
9
|
Ourdev D, Schmaus A, Kar S. Kainate Receptor Activation Enhances Amyloidogenic Processing of APP in Astrocytes. Mol Neurobiol 2018; 56:5095-5110. [PMID: 30484111 DOI: 10.1007/s12035-018-1427-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Kainic acid (KA) is an analogue of the excitatory neurotransmitter glutamate that, when injected systemically into adult rats, can trigger seizures and progressive neuronal loss in a manner that mirrors the neuropathology of human mesial temporal lobe epilepsy. However, biomolecular mechanisms responsible for the neuronal loss that occurs as a consequence of this treatment remains elusive. We have recently reported that toxicity induced by KA can partly be mediated by astrocyte-derived amyloid β (Aβ) peptides, which are critical in the development of Alzheimer's disease (AD). Nonetheless, little is known how KA can influence amyloid precursor protein (APP) levels and processing in astrocytes. Thus, in the present study using human U-373 astrocytoma and rat primary astrocytes, we evaluated the role of KA on APP metabolism. Our results revealed that KA treatment increased the levels of APP and its cleaved products (α-/β-CTFs) in cultured U-373 astrocytoma and primary astrocytes, without altering the cell viability. The cellular and secretory levels of Aβ1-40/Aβ1-42 were markedly increased in KA-treated astrocytes. We also demonstrated that the steady-state levels of APP-secretases were not altered but the activity of γ-secretase is enhanced in KA-treated U-373 astrocytoma. Furthermore, using selective receptor antagonists, we showed that the effects of KA is mediated by activation of kainate receptors and not NMDA or AMPA receptors. These results suggest that KA can enhance amyloidogenic processing of APP by activating its own receptor leading to increased production/secretion of Aβ-related peptides from activated astrocytes which may contribute to the pathogenesis of temporal lobe epilepsy.
Collapse
Affiliation(s)
- D Ourdev
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - A Schmaus
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Satyabrata Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada. .,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
10
|
Zhang Y, Dong H, Duan L, Yuan G, Liang W, Li Q, Zhang X, Pan Y. SLC1A2 mediates refractory temporal lobe epilepsy with an initial precipitating injury by targeting the glutamatergic synapse pathway. IUBMB Life 2018; 71:213-222. [PMID: 30360015 DOI: 10.1002/iub.1956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/30/2018] [Accepted: 09/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Yinian Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery; Lanzhou University Second Hospital; Lanzhou, 730030 Gansu China
- Institute of Neurology, Lanzhou University; Lanzhou, 730030 Gansu China
| | - Huateng Dong
- Department of Pediatric Neurology; Gansu Provincial Maternity and Child-care Hospital; Lanzhou, 730050 Gansu China
| | - Lei Duan
- Department of Neurosurgery and Laboratory of Neurosurgery; Lanzhou University Second Hospital; Lanzhou, 730030 Gansu China
- Institute of Neurology, Lanzhou University; Lanzhou, 730030 Gansu China
| | - Guoqiang Yuan
- Department of Neurosurgery and Laboratory of Neurosurgery; Lanzhou University Second Hospital; Lanzhou, 730030 Gansu China
- Institute of Neurology, Lanzhou University; Lanzhou, 730030 Gansu China
| | - Wentao Liang
- Department of Neurosurgery and Laboratory of Neurosurgery; Lanzhou University Second Hospital; Lanzhou, 730030 Gansu China
- Institute of Neurology, Lanzhou University; Lanzhou, 730030 Gansu China
| | - Qiao Li
- Department of Neurosurgery and Laboratory of Neurosurgery; Lanzhou University Second Hospital; Lanzhou, 730030 Gansu China
- Institute of Neurology, Lanzhou University; Lanzhou, 730030 Gansu China
| | - Xinding Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery; Lanzhou University Second Hospital; Lanzhou, 730030 Gansu China
- Institute of Neurology, Lanzhou University; Lanzhou, 730030 Gansu China
| | - Yawen Pan
- Department of Neurosurgery and Laboratory of Neurosurgery; Lanzhou University Second Hospital; Lanzhou, 730030 Gansu China
- Institute of Neurology, Lanzhou University; Lanzhou, 730030 Gansu China
| |
Collapse
|
11
|
Kodam A, Ourdev D, Maulik M, Hariharakrishnan J, Banerjee M, Wang Y, Kar S. A role for astrocyte-derived amyloid β peptides in the degeneration of neurons in an animal model of temporal lobe epilepsy. Brain Pathol 2018; 29:28-44. [PMID: 29665128 DOI: 10.1111/bpa.12617] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/11/2018] [Indexed: 12/13/2022] Open
Abstract
Kainic acid, an analogue of the excitatory neurotransmitter glutamate, can trigger seizures and neurotoxicity in the hippocampus and other limbic structures in a manner that mirrors the neuropathology of human temporal lobe epilepsy (TLE). However, the underlying mechanisms associated with the neurotoxicity remain unclear. Since amyloid-β (Aβ) peptides, which are critical in the development of Alzheimer's disease, can mediate toxicity by activating glutamatergic NMDA receptors, it is likely that the enhanced glutamatergic transmission that renders hippocampal neurons vulnerable to kainic acid treatment may involve Aβ peptides. Thus, we seek to establish what role Aβ plays in kainic acid-induced toxicity using in vivo and in vitro paradigms. Our results show that systemic injection of kainic acid to adult rats triggers seizures, gliosis and loss of hippocampal neurons, along with increased levels/processing of amyloid precursor protein (APP), resulting in the enhanced production of Aβ-related peptides. The changes in APP levels/processing were evident primarily in activated astrocytes, implying a role for astrocytic Aβ in kainic acid-induced toxicity. Accordingly, we showed that treating rat primary cultured astrocytes with kainic acid can lead to increased Aβ production/secretion without any compromise in cell viability. Additionally, we revealed that kainic acid reduces neuronal viability more in neuronal/astrocyte co-cultures than in pure neuronal culture, and this is attenuated by precluding Aβ production. Collectively, these results indicate that increased production/secretion of Aβ-related peptides from activated astrocytes can contribute to neurotoxicity in kainic acid-treated rats. Since kainic acid administration can lead to neuropathological changes resembling TLE, it is likely that APP/Aβ peptides derived from astrocytes may have a role in TLE pathogenesis.
Collapse
Affiliation(s)
- A Kodam
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - D Ourdev
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - M Maulik
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - J Hariharakrishnan
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - M Banerjee
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada, T6G 2M8
| |
Collapse
|
12
|
McKenna J, Kapfhamer D, Kinchen JM, Wasek B, Dunworth M, Murray-Stewart T, Bottiglieri T, Casero RA, Gambello MJ. Metabolomic studies identify changes in transmethylation and polyamine metabolism in a brain-specific mouse model of tuberous sclerosis complex. Hum Mol Genet 2018; 27:2113-2124. [PMID: 29635516 PMCID: PMC5985733 DOI: 10.1093/hmg/ddy118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/06/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant neurodevelopmental disorder and the quintessential disorder of mechanistic Target of Rapamycin Complex 1 (mTORC1) dysregulation. Loss of either causative gene, TSC1 or TSC2, leads to constitutive mTORC1 kinase activation and a pathologically anabolic state of macromolecular biosynthesis. Little is known about the organ-specific metabolic reprogramming that occurs in TSC-affected organs. Using a mouse model of TSC in which Tsc2 is disrupted in radial glial precursors and their neuronal and glial descendants, we performed an unbiased metabolomic analysis of hippocampi to identify Tsc2-dependent metabolic changes. Significant metabolic reprogramming was found in well-established pathways associated with mTORC1 activation, including redox homeostasis, glutamine/tricarboxylic acid cycle, pentose and nucleotide metabolism. Changes in two novel pathways were identified: transmethylation and polyamine metabolism. Changes in transmethylation included reduced methionine, cystathionine, S-adenosylmethionine (SAM-the major methyl donor), reduced SAM/S-adenosylhomocysteine ratio (cellular methylation potential), and elevated betaine, an alternative methyl donor. These changes were associated with alterations in SAM-dependent methylation pathways and expression of the enzymes methionine adenosyltransferase 2A and cystathionine beta synthase. We also found increased levels of the polyamine putrescine due to increased activity of ornithine decarboxylase, the rate-determining enzyme in polyamine synthesis. Treatment of Tsc2+/- mice with the ornithine decarboxylase inhibitor α-difluoromethylornithine, to reduce putrescine synthesis dose-dependently reduced hippocampal astrogliosis. These data establish roles for SAM-dependent methylation reactions and polyamine metabolism in TSC neuropathology. Importantly, both pathways are amenable to nutritional or pharmacologic therapy.
Collapse
Affiliation(s)
- James McKenna
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David Kapfhamer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Brandi Wasek
- Center of Metabolomics, Baylor Scott and White Research Institute, Dallas 75204, TX, USA
| | - Matthew Dunworth
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Tracy Murray-Stewart
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Baylor Scott and White Research Institute, Dallas 75204, TX, USA
| | - Robert A Casero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Michael J Gambello
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Morphine-Mediated Brain Region-Specific Astrocytosis Involves the ER Stress-Autophagy Axis. Mol Neurobiol 2018; 55:6713-6733. [PMID: 29344928 DOI: 10.1007/s12035-018-0878-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/07/2018] [Indexed: 01/08/2023]
Abstract
A recent study from our lab has revealed a link between morphine-mediated autophagy and synaptic impairment. The current study was aimed at investigating whether morphine-mediated activation of astrocytes involved the ER stress/autophagy axis. Our in vitro findings demonstrated upregulation of GFAP indicating astrocyte activation with a concomitant increase in the production of proinflammatory cytokines in morphine-exposed human astrocytes. Using both pharmacological and gene-silencing approaches, it was demonstrated that morphine-mediated defective autophagy involved upstream activation of ER stress with subsequent downstream astrocyte activation via the μ-opioid receptor (MOR). In vivo validation demonstrated preferential activation of ER stress/autophagy axis in the areas of the brain not associated with pain such as the basal ganglia, frontal cortex, occipital cortex, and the cerebellum of morphine-dependent rhesus macaques, and this correlated with increased astrocyte activation and neuroinflammation. Interventions aimed at blocking either the MOR or ER stress could thus likely be developed as promising therapeutic targets for abrogating morphine-mediated astrocytosis.
Collapse
|
14
|
Łukawski K, Andres-Mach M, Czuczwar M, Łuszczki JJ, Kruszyński K, Czuczwar SJ. Mechanisms of epileptogenesis and preclinical approach to antiepileptogenic therapies. Pharmacol Rep 2017; 70:284-293. [PMID: 29477036 DOI: 10.1016/j.pharep.2017.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/30/2022]
Abstract
The prevalence of epilepsy is estimated 5-10 per 1000 population and around 70% of patients with epilepsy can be sufficiently controlled by antiepileptic drugs (AEDs). Epileptogenesis is the process responsible for converting normal into an epileptic brain and mechanisms responsible include among others: inflammation, neurodegeneration, neurogenesis, neural reorganization and plasticity. Some AEDs may be antiepileptiogenic (diazepam, eslicarbazepine) but the correlation between neuroprotection and inhibition of epileptogenesis is not evident. Antiepileptogenic activity has been postulated for mTOR ligands, resveratrol and losartan. So far, clinical evidence gives some hope for levetiracetam as an AED inhibiting epileptogenesis in neurosurgical patients. Biomarkers for epileptogenesis are needed for the proper selection of patients for evaluation of potential antiepileptogenic compounds.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland; Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Mirosław Czuczwar
- 2nd Department of Anesthesiology and Intensive Care, Medical University of Lublin, Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland; Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | | | - Stanisław J Czuczwar
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland; Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
15
|
Gulyaeva NV. Staging of neuroplasticity alterations during epileptogenesis (temporal lobe epileply as an example). Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:10-16. [DOI: 10.17116/jnevro20171179210-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem Res 2016; 42:1724-1734. [DOI: 10.1007/s11064-016-2105-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
|
17
|
A sub-threshold dose of pilocarpine increases glutamine synthetase in reactive astrocytes and enhances the progression of amygdaloid-kindling epilepsy in rats. Neuroreport 2016; 27:213-9. [DOI: 10.1097/wnr.0000000000000511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
O'Donnell JM, Morgan MK, Bervini D, Heller GZ, Assaad N. The Risk of Seizure After Surgery for Unruptured Intracranial Aneurysms. Neurosurgery 2015; 79:222-30. [DOI: 10.1227/neu.0000000000001176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
BACKGROUND:
We aimed to identify a group of patients with a low risk of seizure after surgery for unruptured intracranial aneurysms (UIA).
OBJECTIVE:
To determine the risk of seizure after discharge from surgery for UIA.
METHODS:
A consecutive prospectively collected cohort database was interrogated for all surgical UIA cases. There were 726 cases of UIA (excluding cases proximal to the superior cerebellar artery on the vertebrobasilar system) identified and analyzed. Cox proportional hazards regression models and Kaplan-Meier life table analyses were generated assessing risk factors.
RESULTS:
Preoperative seizure history and complication of aneurysm repair were the only risk factors found to be significant. The risk of first seizure after discharge from hospital following surgery for patients with neither preoperative seizure, treated middle cerebral artery aneurysm, nor postoperative complications (leading to a modified Rankin Scale score >1) was <0.1% and 1.1% at 12 months and 7 years, respectively. The risk for those with preoperative seizures was 17.3% and 66% at 12 months and 7 years, respectively. The risk for seizures with either complications (leading to a modified Rankin Scale score >1) from surgery or treated middle cerebral artery aneurysm was 1.4% and 6.8% at 12 months and 7 years, respectively. These differences in the 3 Kaplan-Meier curves were significant (log-rank P <.001).
CONCLUSION:
The risk of seizures after discharge from hospital following surgery for UIA is very low when there is no preexisting history of seizures. If this result can be supported by other series, guidelines that restrict returning to driving because of the risk of postoperative seizures should be reconsidered.
Collapse
Affiliation(s)
| | | | - David Bervini
- Department of Clinical Medicine, Macquarie University, Sydney NSW, Australia
| | - Gillian Z. Heller
- Department of Clinical Medicine, Macquarie University, Sydney NSW, Australia
| | - Nazih Assaad
- Department of Clinical Medicine, Macquarie University, Sydney NSW, Australia
| |
Collapse
|
19
|
Kourdougli N, Varpula S, Chazal G, Rivera C. Detrimental effect of post Status Epilepticus treatment with ROCK inhibitor Y-27632 in a pilocarpine model of temporal lobe epilepsy. Front Cell Neurosci 2015; 9:413. [PMID: 26557054 PMCID: PMC4615811 DOI: 10.3389/fncel.2015.00413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/28/2015] [Indexed: 01/18/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults where 20-30% of the patients are refractory to currently available anti-epileptic drugs. The RhoA/Rho-kinase signaling pathway activation has been involved in inflammatory responses, neurite outgrowth and neuronal death under pathological conditions such as epileptic insults. Acute preventive administration of ROCK inhibitor has been reported to have beneficial outcomes in Status Epilepticus (SE) epilepsy. In the present study, we evaluate the effect of chronic post SE treatment with the ROCK inhibitor Y-27632 in a rat pilocarpine model of TLE. We used chronic i.p. injections of Y-27632 for 5 days in 6 week old control rats or rats subjected to pilocarpine treatment as a model of TLE. Surprisingly, our findings demonstrate that a systemic administration of Y-27632 in pilocarpine-treated rats increases neuronal death in the CA3 region and ectopic recurrent mossy fiber sprouting (rMFS) in the dentate gyrus of the hippocampal formation. Interestingly, we found that chronic treatment with Y-27632 exacerbates the down-regulation and pathological distribution of the K(+)-Cl(-) cotransporter KCC2, thus providing a putative mechanism for post SE induced neuronal death. The involvement of astrogliosis in this mechanism appears to be intricate as ROCK inhibition reduces reactive astrogliosis in pilocarpine rats. Conversely, in control rats, chronic Y-27632 treatment increases astrogliosis. Together, our findings suggest that Y-27632 has a detrimental effect when chronically used post SE in a rat pilocarpine model of TLE.
Collapse
Affiliation(s)
- Nazim Kourdougli
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
| | - Saara Varpula
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| | - Genevieve Chazal
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
| | - Claudio Rivera
- INSERM Unité 901, INMEDMarseille, France
- Aix-Marseille Université, UMR S901Marseille, France
- Neuroscience Center, University of HelsinkiHelsinki, Finland
| |
Collapse
|