1
|
Williams MR, Macdonald CM, Turkheimer FE. Histological examination of choroid plexus epithelia changes in schizophrenia. Brain Behav Immun 2023; 111:292-297. [PMID: 37150267 DOI: 10.1016/j.bbi.2023.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND The choroid plexus (CP) produces and secretes most of the cerebrospinal fluid (CSF) of the central nervous system. The CP is suggested to be regulated by descending neurons and by circulating factors and is involved in the interaction between central and peripheral inflammation. Quantitative imaging has demonstrated volumetric CP changes in psychosis, schizophrenia and depression. This study histologically examines CP epithelial cell morphology in these illnesses to identify the biological source of such volumetric changes. METHODS Formalin-fixed paraffin-embedded (FFPE) blocks were obtained bilaterally from the lateral ventricles of 13 cases of sex- and age-matched brains from each of schizophrenia (SZ) with psychosis, major depressive disorder (MDD) and matched controls (NPD). FFPE blocks were sectioned at 7 μm and routinely stained for H&E. Morphological analysis of 180 CP epithelia/case was conducted blindly on digital images collected at x600 magnification. Calcification was assessed in all CP regions manually. RESULTS Analysis with a General Linear Model demonstrated a significant effect of diagnosis on somal width (p = 0.006, R2 = 0.33 R2(adj) = 0.25) demonstrating increased somal width in SZ without psychotic medication versus controls (p = 0.032), but not in medicated SZ cases. No effects were observed in calcification. DISCUSSION The epithelial cells that were examined were attached to the CP fibrous surface, so width expansion describes the primary methods for these cells to expand with adherence to this surface in SZ. The interaction of antipsychotic medication and diagnosis demonstrates that this is an illness-specific change mediated through the DA-system with likely neuronal origin. CP alterations were not found in MDD where they are instead generally associated with heightened allostatic load that was unknown in this cohort.
Collapse
Affiliation(s)
- M R Williams
- Segmentum Analysis, St John's Innovation Park, Cambridge Science Park, UK
| | | | - F E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Gennarelli M, Monteleone P, Minelli A, Monteleone AM, Rossi A, Rocca P, Bertolino A, Aguglia E, Amore M, Bellino S, Bellomo A, Biondi M, Bucci P, Carpiniello B, Cascino G, Cuomo A, Dell'Osso L, di Giannantonio M, Giordano GM, Marchesi C, Oldani L, Pompili M, Roncone R, Rossi R, Siracusano A, Tenconi E, Vita A, Zeppegno P, Galderisi S, Maj M. Genome-wide association study detected novel susceptibility genes for social cognition impairment in people with schizophrenia. World J Biol Psychiatry 2022; 23:46-54. [PMID: 34132174 DOI: 10.1080/15622975.2021.1907722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES People with schizophrenia (SCZ) present serious and generalised deficits in social cognition (SC), which affect negatively patients' functioning and treatment outcomes. The genetic background of SC has been investigated in disorders other than SCZ providing weak and sparse results. Thus, our aim was to explore possible genetic correlates of SC dysfunctions in SCZ patients with a genome-wide study (GWAS) approach. METHODS We performed a GWAS meta-analysis of data coming from two cohorts made of 242 and 160 SCZ patients, respectively. SC was assessed with different tools in order to cover its different domains. RESULTS We found GWAS significant association between the TMEM74 gene and the patients' ability in social inference as assessed by The Awareness of Social Inference Test; this association was confirmed by both SNP-based analysis (lead SNP rs3019332 p-value = 5.24 × 10-9) and gene-based analysis (p-value = 1.09 × 10-7). Moreover, suggestive associations of other genes with different dimensions of SC were also found. CONCLUSIONS Our study shows for the first time GWAS significant or suggestive associations of some gene variants with SC domains in people with SCZ. These findings should stimulate further studies to characterise the genetic underpinning of SC dysfunctions in SCZ.
Collapse
Affiliation(s)
- Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Palmiero Monteleone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" Section of Neuroscience, University of Salerno, Salerno, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Genetics Unit, IRCCS Istituto Centro S. Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessio Maria Monteleone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" Section of Neuroscience, University of Salerno, Salerno, Italy
| | - Alessandro Rossi
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paola Rocca
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Alessandro Bertolino
- Department of Neurological and Psychiatric Sciences, University of Bari, Bari, Italy
| | - Eugenio Aguglia
- Department of Clinical and Molecular Biomedicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Silvio Bellino
- Department of Neuroscience, Section of Psychiatry, University of Turin, Turin, Italy
| | - Antonello Bellomo
- Psychiatry Unit, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Biondi
- Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Paola Bucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
| | - Giammarco Cascino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" Section of Neuroscience, University of Salerno, Salerno, Italy
| | - Alessandro Cuomo
- Department of Molecular Medicine and Clinical Department of Mental Health, University of Siena, Siena, Italy
| | - Liliana Dell'Osso
- Section of Psychiatry, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Carlo Marchesi
- Department of Neuroscience, Psychiatry Unit, University of Parma, Parma, Italy
| | - Lucio Oldani
- Department of Psychiatry, University of Milan, Milan, Italy
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, S. Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Rita Roncone
- Unit of Psychiatry, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Rossi
- Section of Psychiatry, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alberto Siracusano
- Department of Systems Medicine, Psychiatry and Clinical Psychology Unit, Tor Vergata University of Rome, Rome, Italy
| | - Elena Tenconi
- Psychiatric Clinic, Department of Neurosciences, University of Padua, Padua, Italy
| | - Antonio Vita
- Psychiatric Unit, School of Medicine, University of Brescia, Brescia, Italy.,Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Patrizia Zeppegno
- Department of Translational Medicine, Psychiatric Unit, University of Eastern Piedmont, Novara, Italy
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Maj
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
3
|
Barth C, Nerland S, de Lange AMG, Wortinger LA, Hilland E, Andreassen OA, Jørgensen KN, Agartz I. In Vivo Amygdala Nuclei Volumes in Schizophrenia and Bipolar Disorders. Schizophr Bull 2021; 47:1431-1441. [PMID: 33479754 PMCID: PMC8379533 DOI: 10.1093/schbul/sbaa192] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abnormalities in amygdala volume are well-established in schizophrenia and commonly reported in bipolar disorders. However, the specificity of volumetric differences in individual amygdala nuclei is largely unknown. Patients with schizophrenia disorders (SCZ, N = 452, mean age 30.7 ± 9.2 [SD] years, females 44.4%), bipolar disorders (BP, N = 316, 33.7 ± 11.4, 58.5%), and healthy controls (N = 753, 34.1 ± 9.1, 40.9%) underwent T1-weighted magnetic resonance imaging. Total amygdala, nuclei, and intracranial volume (ICV) were estimated with Freesurfer (v6.0.0). Analysis of covariance and multiple linear regression models, adjusting for age, age2, ICV, and sex, were fitted to examine diagnostic group and subgroup differences in volume, respectively. Bilateral total amygdala and all nuclei volumes, except the medial and central nuclei, were significantly smaller in patients relative to controls. The largest effect sizes were found for the basal nucleus, accessory basal nucleus, and cortico-amygdaloid transition area (partial η2 > 0.02). The diagnostic subgroup analysis showed that reductions in amygdala nuclei volume were most widespread in schizophrenia, with the lateral, cortical, paralaminar, and central nuclei being solely reduced in this disorder. The right accessory basal nucleus was marginally smaller in SCZ relative to BP (t = 2.32, P = .05). Our study is the first to demonstrate distinct patterns of amygdala nuclei volume reductions in a well-powered sample of patients with schizophrenia and bipolar disorders. Volume differences in the basolateral complex (lateral, basal, and accessory basal nuclei), an integral part of the threat processing circuitry, were most prominent in schizophrenia.
Collapse
Affiliation(s)
- Claudia Barth
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway,To whom correspondence should be addressed; tel: +47 22 02 99 67, fax: +47 22 02 99 01, e-mail:
| | - Stener Nerland
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ann-Marie G de Lange
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatry, University of Oxford, Oxford, UK,Department of Psychology, University of Oslo, Oslo, Norway
| | - Laura A Wortinger
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Eva Hilland
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Norwegian Centre for Mental Disorders Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kjetil N Jørgensen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Section Vinderen, Oslo, Norway,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
4
|
Armio RL, Laurikainen H, Ilonen T, Walta M, Salokangas RKR, Koutsouleris N, Hietala J, Tuominen L. Amygdala subnucleus volumes in psychosis high-risk state and first-episode psychosis. Schizophr Res 2020; 215:284-292. [PMID: 31744752 DOI: 10.1016/j.schres.2019.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/17/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022]
Abstract
Structural and functional abnormalities of the amygdala in schizophrenia have been well documented. Post-mortem studies suggest that the lateral nucleus is particularly affected in schizophrenia. It is not known whether the amygdala subnuclei are differently affected at the time of the first-episode psychosis or already at high-risk state. 75 first-episode psychosis patients (FEP), 45 clinical high-risk patients (CHR) and 76 population controls participated in this cross-sectional case-control study. Participants underwent T1-weighted 3T MRI scans, from which the amygdala was segmented using a newly developed automated algorithm. Because early adverse events increase risk for psychosis and affect the amygdala, we also tested whether experiences of childhood maltreatment associate with the putative amygdala subnuclei abnormalities. Compared to the population controls, FEP had smaller volumes of the lateral, and basal nuclei. In CHR, only the lateral nucleus was significantly smaller compared to the control subjects. Experience of childhood maltreatment was inversely associated with lateral nucleus volumes in FEP but not in CHR. These results show that the lateral and basal nuclei of the amygdala are already affected in FEP. These volumetric changes may reflect specific cellular abnormalities that have been observed in post-mortem studies in schizophrenia in the same subnuclei. Decreased volume of the lateral nucleus in CHR suggest that a smaller lateral nucleus could serve as a potential biomarker for psychosis risk. Finally, we found that the lateral nucleus volumes in FEP may be sensitive to the effects of childhood maltreatment.
Collapse
Affiliation(s)
- Reetta-Liina Armio
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
| | - Heikki Laurikainen
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Tuula Ilonen
- Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland
| | - Maija Walta
- Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Raimo K R Salokangas
- Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Nussbaumstr. 7, D-80336, Munich, Germany
| | - Jarmo Hietala
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; Department of Psychiatry, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| | - Lauri Tuominen
- PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland; Department of Psychiatry, University of Turku, Kunnallissairaalantie 20, building 9, 20700, Turku, Finland; University of Ottawa Institute of Mental Health Research, Ottawa, ON, K1Z 8N3, Canada
| |
Collapse
|
5
|
Prager EM, Wynn GH, Ursano RJ. The tenth annual amygdala, stress, and PTSD conference: "The amygdala: Dysfunction, hyperfunction, and connectivity". J Neurosci Res 2016; 94:433-6. [PMID: 27091310 DOI: 10.1002/jnr.23742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Gary H Wynn
- Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Robert J Ursano
- Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|