1
|
You DJ, Gorman BM, Goshi N, Hum NR, Sebastian A, Kim YH, Enright HA, Buchholz BA. Eucalyptus Wood Smoke Extract Elicits a Dose-Dependent Effect in Brain Endothelial Cells. Int J Mol Sci 2024; 25:10288. [PMID: 39408618 PMCID: PMC11476751 DOI: 10.3390/ijms251910288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood-brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells.
Collapse
Affiliation(s)
- Dorothy J. You
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bria M. Gorman
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Noah Goshi
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Nicholas R. Hum
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Heather A. Enright
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bruce A. Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
2
|
Aguilera-Rodriguez D, Ortega-Alarcon D, Vazquez-Calvo A, Ricci V, Abian O, Velazquez-Campoy A, Alcami A, Palomo JM. Inhibition of SARS-CoV-2 3CLpro by chemically modified tyrosinase from Agaricus bisporus. RSC Med Chem 2024:d4md00289j. [PMID: 39371431 PMCID: PMC11451904 DOI: 10.1039/d4md00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Antiviral compounds are crucial to controlling the SARS-CoV-2 pandemic. Approved drugs have been tested for their efficacy against COVID-19, and new pharmaceuticals are being developed as a complementary tool to vaccines. In this work, a cheap and fast purification method for natural tyrosinase from Agaricus bisporus (AbTyr) fresh mushrooms was developed to evaluate the potential of this enzyme as a therapeutic protein via the inhibition of SARS-CoV-2 3CLpro protease activity in vitro. AbTyr showed a mild inhibition of 3CLpro. Thus, different variants of this protein were synthesized through chemical modifications, covalently binding different tailor-made glycans and peptides to the amino terminal groups of the protein. These new tyrosinase conjugates were purified and characterized through circular dichroism and fluorescence spectroscopy analyses, and their stability was evaluated under different conditions. Subsequently, all these tyrosinase conjugates were tested for 3CLpro protease inhibition. From them, the conjugate between tyrosinase and a dextran-aspartic acid (6 kDa) polymer showed the highest inhibition, with an IC50 of 2.5 μg ml-1 and IC90 of 5 μg ml-1, with no cytotoxicity activity by polymer insertion. Finally, SARS-CoV-2 virus infection was studied. It was found that this new AbTyr-Dext6000 protein showed an 80% decrease in viral load. These results show the capacity of these tyrosinase bioconjugates as potential therapeutic proteins, opening the possibility of extension and applicability against other different viruses.
Collapse
Affiliation(s)
| | - David Ortega-Alarcon
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
| | - Angela Vazquez-Calvo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Veronica Ricci
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC C/Marie Curie 2 28049 Madrid Spain
| | - Olga Abian
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza Spain
| | - Adrian Velazquez-Campoy
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza Spain
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Jose M Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC C/Marie Curie 2 28049 Madrid Spain
| |
Collapse
|
3
|
Liu G, Wang Q, Tian L, Wang M, Duo D, Duan Y, Lin Y, Han J, Jia Q, Zhu J, Li X. Blood-Brain Barrier Permeability is Affected by Changes in Tight Junction Protein Expression at High-Altitude Hypoxic Conditions-this may have Implications for Brain Drug Transport. AAPS J 2024; 26:90. [PMID: 39107477 DOI: 10.1208/s12248-024-00957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 09/14/2024] Open
Abstract
Changes to blood-brain barrier structure and function may affect the delivery of drugs into the brain. It is worthwhile to exploring more study on how the blood-brain barrier changes in structure and function and how that affects drug transport in high-altitude hypoxic environment. The DIA high-throughput sequencing technique indicate that the rats blood-brain barrier has been identified to have 7252 proteins overall and 8 tight junction proteins, among which Claudin-7 was a plateau-specific tight junction protein under high-altitude hypoxia, and based on the interaction network study, 2421 proteins are found to interact with one another, with ZO-1 being the primary target. The results of the projected gene function analysis demonstrated that changes in tight junction proteins are related to the control of TRP channels by inflammatory mediators, the wnt signaling pathway, the ABC transporter system, and drug metabolism-CYP450 enzyme regulation. Additionally, the electron microscopy, the Evans blue combination with confocal laser scanning microscopy, and the Western Blot and RT-qPCR revealed that high-altitude hypoxic environment induces blood-brain barrier tight junctions to open, blood-brain barrier permeability increases, ZO-1, Occludin, Claudin-5 protein and mRNA expression decreased. Our research implies that structural and functional alterations in the blood-brain barrier induced by high altitude hypoxia may impact drug transport inside the central nervous system, and that drug transporters and drug-metabolizing enzymes may be key players in this process.
Collapse
Affiliation(s)
- Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Qian Wang
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Lu Tian
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China
| | - Mengyue Wang
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China
| | - Delong Duo
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Yabin Duan
- Affiliated Hospital of Qinghai University, Xining, China
| | - Yue Lin
- Affiliated Hospital of Qinghai University, Xining, China
| | - Junjun Han
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 256 Ningda Road, Xining, 810016, China
| | - Junbo Zhu
- Medical College of Qinghai University, No.16 Kunlun Road, Xining, 810001, China.
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, No. 256 Ningda Road, Xining, 810016, China.
| |
Collapse
|
4
|
Zhang H, Wang Z, Qiao X, Peng N, Wu J, Chen Y, Cheng C. Unveiling the therapeutic potential of IHMT-337 in glioma treatment: targeting the EZH2-SLC12A5 axis. Mol Med 2024; 30:91. [PMID: 38886655 PMCID: PMC11184773 DOI: 10.1186/s10020-024-00857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Glioma is the most common malignant tumor of the central nervous system, with EZH2 playing a crucial regulatory role. This study further explores the abnormal expression of EZH2 and its mechanisms in regulating glioma progression. Additionally, it was found that IHMT-337 can potentially be a therapeutic agent for glioma. The prognosis, expression, and localization of EZH2 were determined using bioinformatics, IHC staining, Western blot (WB) analysis, and immunofluorescence (IF) localization. The effects of EZH2 on cell function were assessed using CCK-8 assays, Transwell assays, and wound healing assays. Public databases and RT-qPCR were utilized to identify downstream targets. The mechanisms regulating these downstream targets were elucidated using MS-PCR and WB analysis. The efficacy of IHMT-337 was demonstrated through IC50 measurements, WB analysis, and RT-qPCR. The effects of IHMT-337 on glioma cells in vitro were evaluated using Transwell assays, EdU incorporation assays, and flow cytometry. The potential of IHMT-337 as a treatment for glioma was assessed using a blood-brain barrier (BBB) model and an orthotopic glioma model. Our research confirms significantly elevated EZH2 expression in gliomas, correlating with patient prognosis. EZH2 facilitates glioma proliferation, migration, and invasion alongside promoting SLC12A5 DNA methylation. By regulating SLC12A5 expression, EZH2 activates the WNK1-OSR1-NKCC1 pathway, enhancing its interaction with ERM to promote glioma migration. IHMT-337 targets EZH2 in vitro to inhibit WNK1 activation, thereby suppressing glioma cell migration. Additionally, it inhibits cell proliferation and arrests the cell cycle. IHMT-337 has the potential to cross the BBB and has successfully inhibited glioma progression in vivo. This study expands our understanding of the EZH2-SLC12A5 axis in gliomas, laying a new foundation for the clinical translation of IHMT-337 and offering new insights for precision glioma therapy.
Collapse
Affiliation(s)
- Hongwei Zhang
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zixuan Wang
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaolong Qiao
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Nan Peng
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jiaxing Wu
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Bengbu Medical University, Bengbu, 233000, Anhui, China
| | - Yinan Chen
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chuandong Cheng
- Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
- Division of Life Sciences and Medicine, Department of Neurosurgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
5
|
Gopinadhan A, Hughes JM, Conroy AL, John CC, Canfield SG, Datta D. A human pluripotent stem cell-derived in vitro model of the blood-brain barrier in cerebral malaria. Fluids Barriers CNS 2024; 21:38. [PMID: 38693577 PMCID: PMC11064301 DOI: 10.1186/s12987-024-00541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Blood-brain barrier (BBB) disruption is a central feature of cerebral malaria (CM), a severe complication of Plasmodium falciparum (Pf) infections. In CM, sequestration of Pf-infected red blood cells (Pf-iRBCs) to brain endothelial cells combined with inflammation, hemolysis, microvasculature obstruction and endothelial dysfunction mediates BBB disruption, resulting in severe neurologic symptoms including coma and seizures, potentially leading to death or long-term sequelae. In vitro models have advanced our knowledge of CM-mediated BBB disruption, but their physiological relevance remains uncertain. Using human induced pluripotent stem cell-derived brain microvascular endothelial cells (hiPSC-BMECs), we aimed to develop a novel in vitro model of the BBB in CM, exhibiting enhanced barrier properties. METHODS hiPSC-BMECs were co-cultured with HB3var03 strain Pf-iRBCs up to 9 h. Barrier integrity was measured using transendothelial electrical resistance (TEER) and sodium fluorescein permeability assays. Localization and expression of tight junction (TJ) proteins (occludin, zonula occludens-1, claudin-5), cellular adhesion molecules (ICAM-1, VCAM-1), and endothelial surface markers (EPCR) were determined using immunofluorescence imaging (IF) and western blotting (WB). Expression of angiogenic and cell stress markers were measured using multiplex proteome profiler arrays. RESULTS After 6-h of co-culture with Pf-iRBCs, hiPSC-BMECs showed reduced TEER and increased sodium fluorescein permeability compared to co-culture with uninfected RBCs, indicative of a leaky barrier. We observed disruptions in localization of occludin, zonula occludens-1, and claudin-5 by IF, but no change in protein expression by WB in Pf-iRBC co-cultures. Expression of ICAM-1 and VCAM-1 but not EPCR was elevated in hiPSC-BMECs with Pf-iRBC co-culture compared to uninfected RBC co-culture. In addition, there was an increase in expression of angiogenin, platelet factor-4, and phospho-heat shock protein-27 in the Pf-iRBCs co-culture compared to uninfected RBC co-culture. CONCLUSION These findings demonstrate the validity of our hiPSC-BMECs based model of the BBB, that displays enhanced barrier integrity and appropriate TJ protein localization. In the hiPSC-BMEC co-culture with Pf-iRBCs, reduced TEER, increased paracellular permeability, changes in TJ protein localization, increase in expression of adhesion molecules, and markers of angiogenesis and cellular stress all point towards a novel model with enhanced barrier properties, suitable for investigating pathogenic mechanisms underlying BBB disruption in CM.
Collapse
Affiliation(s)
- Adnan Gopinadhan
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jason M Hughes
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, 620 Chestnut Street, Terre Haute, IN, 47809, USA
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA
| | - Scott G Canfield
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, 620 Chestnut Street, Terre Haute, IN, 47809, USA.
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4-402D 1044 W. Walnut St., Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Yamaguchi T, Sako D, Kurosawa T, Nishijima M, Miyano A, Kubo Y, Ohtsuki S, Kawabata K, Deguchi Y. Development and Functional Evaluation of MDR1-expressing Microvascular Endothelial-like Cells Derived from Human iPS Cells as an In vitro Blood-brain Barrier Model. J Pharm Sci 2023; 112:3216-3223. [PMID: 37690777 DOI: 10.1016/j.xphs.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
In order to establish an in vitro model of the human blood-brain barrier (BBB), MDR1-overexpressing human induced pluripotent stem cells (hiPSCs) were generated, and they were differentiated to MDR1-expressing brain microvascular endothelial-like cells (MDR1-expressing hiPS-BMECs). MDR1-expressing hiPS-BMECs monolayers showed good barrier function in terms of tight junction protein expression and trans-epithelial electrical resistance (TEER). In sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS), MDR1 protein expression was markedly increased in MDR1-expressing hiPS-BMECs, whereas other ABC and SLC transporters showed almost identical expression between MDR1-expressing hiPS-BMECs and mock hiPS-BMECs, suggesting that MDR1 overexpression had little or no knock-on effect on other proteins. The basolateral-to-apical transport of MDR1 substrates, such as quinidine, [3H]digoxin and [3H]vinblastine, was higher than the apical-to-basolateral transport, and the efflux-dominant transport was attenuated by PSC833, an MDR1-specific inhibitor, indicating that MDR1-mediated efflux transport is functional. The robust MDR1 function was also supported by the efflux-dominant transports of [3H]cyclosporin A, loperamide, cetirizine, and verapamil by MDR1-expressing hiPS-BMECs. These results suggest that MDR1-expressing hiPS-BMECs can be used as an in vitro model of the human BBB.
Collapse
Affiliation(s)
- Tomoko Yamaguchi
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, 567-0085, Japan
| | - Daiki Sako
- Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Toshiki Kurosawa
- Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Misae Nishijima
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, 567-0085, Japan
| | - Ayaka Miyano
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-Ku, Kumamoto 862-0973, Japan
| | - Yoshiyuki Kubo
- Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-Ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-Ku, Kumamoto 862-0973, Japan
| | - Kenji Kawabata
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, 567-0085, Japan; Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Yoshiharu Deguchi
- Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
| |
Collapse
|
7
|
Liu J, Wei Q, Man K, Liang C, Zhou Y, Liu X, Xin HB, Yang Y. Nanofibrous Membrane Promotes and Sustains Vascular Endothelial Barrier Function. ACS APPLIED BIO MATERIALS 2023; 6:4988-4997. [PMID: 37862245 DOI: 10.1021/acsabm.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The vascular endothelium serves as a physical barrier between the circulating blood and surrounding tissue and acts as a critical regulator of various physiological processes. In vitro models involving vasculature rely on the maintenance of the endothelial barrier function. In this study, we fabricated 2D aligned nanofibrous membranes with distinct pore sizes via electrospinning and investigated the effect of membrane pore size on endothelial barrier function. Our results demonstrated that the use of the nanofibrous membranes promoted the formation of a tight vascular endothelium and sustained barrier function for over one month in comparison with conventional transwell setups. Moreover, the examination of the nucleocytoplasmic localization of yes-associated protein (YAP) in the endothelial cells indicated that nanofibrous membrane promoted YAP expression and its nuclear localization, critical to endothelial barrier function. Furthermore, the comparison of permeability between random and aligned nanofibrous membranes underscored the importance of pore size in preserving barrier function. Our findings offer a valuable strategy for creating more physiologically relevant in vitro vascular models and contribute to the understanding of endothelial barrier formation and maintenance mechanisms.
Collapse
Affiliation(s)
- Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Qiang Wei
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Kun Man
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Cindy Liang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yuting Zhou
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266073, P. R. China
| | - Xiaohua Liu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Hong-Bo Xin
- School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
| |
Collapse
|
8
|
Wang Z, Sharda N, Omtri RS, Li L, Kandimalla KK. Amyloid-Beta Peptides 40 and 42 Employ Distinct Molecular Pathways for Cell Entry and Intracellular Transit at the Blood-Brain Barrier Endothelium. Mol Pharmacol 2023; 104:203-213. [PMID: 37541759 PMCID: PMC10586509 DOI: 10.1124/molpharm.123.000670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 08/06/2023] Open
Abstract
The blood-brain barrier (BBB) plays a critical role in maintaining the equilibrium between amyloid beta (Aβ) levels in blood and the brain by regulating Aβ transport. Our previous publications demonstrated that BBB trafficking of Aβ42 and Aβ40 is distinct and is disrupted under various pathophysiological conditions. However, the intracellular mechanisms that allow BBB endothelium to differentially handle Aβ40 and Aβ42 have not been clearly elucidated. In this study, we identified mechanisms of Aβ endocytosis in polarized human cerebral microvascular endothelial cell monolayers. Our studies demonstrated that Aβ peptides with fluorescent label (F-Aβ) were internalized by BBB endothelial cells via energy, dynamin, and actin-dependent endocytosis. Interestingly, endocytosis of F-Aβ40 but not F-Aβ42 was substantially reduced by clathrin inhibition, whereas F-Aβ42 but not F-Aβ40 endocytosis was reduced by half after inhibiting the caveolae-mediated pathway. Following endocytosis, both isoforms were sorted by the endo-lysosomal system. Although Aβ42 was shown to accumulate more in the lysosomes, which could lead to its higher degradation and/or aggregation at lower lysosomal pH, Aβ40 demonstrated robust accumulation in recycling endosomes, which may facilitate its exocytosis by the endothelial cells. These results provide a mechanistic insight into the selective ability of BBB endothelium to transport Aβ40 versus Aβ42. This knowledge contributes to the understanding of molecular pathways underlying Aβ accumulation in the BBB endothelium and associated BBB dysfunction. Moreover, it allows us to establish mechanistic rationale for altered Aβ40:Aβ42 ratios and anomalous amyloid deposition in the cerebral vasculature as well as brain parenchyma during Alzheimer's disease progression. SIGNIFICANCE STATEMENT: Differential interaction of Aβ40 and Aβ42 isoforms with the blood-brain barrier (BBB) endothelium may contribute to perturbation in Aβ42:Aβ40 ratio, which is associated with Alzheimer's disease (AD) progression and severity. The current study identified distinct molecular pathways by which Aβ40 and Aβ42 are trafficked at the BBB, which regulates equilibrium between blood and brain Aβ levels. These findings provide molecular insights into mechanisms that engender BBB dysfunction and promote Aβ accumulation in AD brain.
Collapse
Affiliation(s)
- Zengtao Wang
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Nidhi Sharda
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Rajesh S Omtri
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Ling Li
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (Z.W., N.S., R.S.O., K.K.K.); and Department of Experimental and Clinical Pharmacology, University of Minnesota, College of Pharmacy, Minneapolis, Minnesota (L.L.)
| |
Collapse
|
9
|
Lo YC, Lin WJ. Improve BBB Penetration and Cytotoxicity of Palbociclib in U87-MG Glioblastoma Cells Delivered by Dual Peptide Functionalized Nanoparticles. Pharmaceutics 2023; 15:2429. [PMID: 37896189 PMCID: PMC10610156 DOI: 10.3390/pharmaceutics15102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Palbociclib (PBC) is an FDA-approved CDK4/6 inhibitor used for breast cancer treatment. PBC has been demonstrated its ability to suppress the proliferation of glioma cells by inducing cell cycle arrest. However, the efflux transporters on the blood-brain barrier (BBB) restricts the delivery of PBC to the brain. The nano-delivery strategy with BBB-penetrating and glioma-targeting abilities was designed. Poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) was functionalized with the potential peptide, T7 targeting peptide and/or R9 penetrating peptide, to prepare PBC-loaded nanoparticles (PBC@NPs). The size of PBC@NPs was in the range of 168.4 ± 4.3-185.8 ± 4.4 nm (PDI < 0.2), and the zeta potential ranged from -17.8 ± 1.4 mV to -14.3 ± 1.0 mV dependent of conjugated peptide. The transport of PBC@NPs across the bEnd.3 cell model was in the order of dual-peptide modified NPs > T7-peptide modified NPs > peptide-free NPs > free PBC, indicating facilitated delivery of PBC by NPs, particularly the T7/R9 dual-peptide modified NPs. Moreover, PBC@NPs significantly enhanced U87-MG glioma cell apoptosis by 2.3-6.5 folds relative to PBC, where the dual-peptide modified NPs was the most effective one. In conclusion, the PBC loaded dual-peptide functionalized NPs improved cellular uptake in bEnd.3 cells followed by targeting to U87-MG glioma cells, leading to effective cytotoxicity and promoting cell death.
Collapse
Affiliation(s)
- Yu-Chen Lo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan;
| | - Wen-Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan;
- Drug Research Center, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| |
Collapse
|
10
|
Selvakumaran J, Ursu S, Bowerman M, Lu-Nguyen N, Wood MJ, Malerba A, Yáñez-Muñoz RJ. An Induced Pluripotent Stem Cell-Derived Human Blood-Brain Barrier (BBB) Model to Test the Crossing by Adeno-Associated Virus (AAV) Vectors and Antisense Oligonucleotides. Biomedicines 2023; 11:2700. [PMID: 37893074 PMCID: PMC10604610 DOI: 10.3390/biomedicines11102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The blood-brain barrier (BBB) is the specialised microvasculature system that shields the central nervous system (CNS) from potentially toxic agents. Attempts to develop therapeutic agents targeting the CNS have been hindered by the lack of predictive models of BBB crossing. In vitro models mimicking the human BBB are of great interest, and advances in induced pluripotent stem cell (iPSC) technologies and the availability of reproducible differentiation protocols have facilitated progress. In this study, we present the efficient differentiation of three different wild-type iPSC lines into brain microvascular endothelial cells (BMECs). Once differentiated, cells displayed several features of BMECs and exhibited significant barrier tightness as measured by trans-endothelial electrical resistance (TEER), ranging from 1500 to >6000 Ωcm2. To assess the functionality of our BBB models, we analysed the crossing efficiency of adeno-associated virus (AAV) vectors and peptide-conjugated antisense oligonucleotides, both currently used in genetic approaches for the treatment of rare diseases. We demonstrated superior barrier crossing by AAV serotype 9 compared to serotype 8, and no crossing by a cell-penetrating peptide-conjugated antisense oligonucleotide. In conclusion, our study shows that iPSC-based models of the human BBB display robust phenotypes and could be used to screen drugs for CNS penetration in culture.
Collapse
Affiliation(s)
- Jamuna Selvakumaran
- AGCTlab, Centre of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.S.); (S.U.)
| | - Simona Ursu
- AGCTlab, Centre of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.S.); (S.U.)
| | - Melissa Bowerman
- School of Medicine, Keele University, Staffordshire ST4 7QB, UK;
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Ngoc Lu-Nguyen
- Gene Medicine Laboratory for Rare Diseases, Centre of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (A.M.)
| | - Matthew J. Wood
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Oxford OX3 7TY, UK;
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford OX3 9DU, UK
| | - Alberto Malerba
- Gene Medicine Laboratory for Rare Diseases, Centre of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (N.L.-N.); (A.M.)
| | - Rafael J. Yáñez-Muñoz
- AGCTlab, Centre of Gene and Cell Therapy, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; (J.S.); (S.U.)
| |
Collapse
|
11
|
Deng K, Lu Y, Finnema SJ, Vangjeli K, Huang J, Huang L, Goodearl A. Application of In vitro transcytosis models to brain targeted biologics. PLoS One 2023; 18:e0289970. [PMID: 37611031 PMCID: PMC10446226 DOI: 10.1371/journal.pone.0289970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
The blood brain barrier (BBB) efficiently limits the penetration of biologics drugs from blood to brain. Establishment of an in vitro BBB model can facilitate screening of central nervous system (CNS) drug candidates and accelerate CNS drug development. Despite many established in vitro models, their application to biologics drug selection has been limited. Here, we report the evaluation of in vitro transcytosis of anti-human transferrin receptor (TfR) antibodies across human, cynomolgus and mouse species. We first evaluated human models including human cerebral microvascular endothelial cell line hCMEC/D3 and human colon epithelial cell line Caco-2 models. hCMEC/D3 model displayed low trans-epithelial electrical resistance (TEER), strong paracellular transport, and similar transcytosis of anti-TfR and control antibodies. In contrast, the Caco-2 model displayed high TEER value and low paracellular transport. Anti-hTfR antibodies demonstrated up to 70-fold better transcytosis compared to control IgG. Transcytosis of anti-hTfR.B1 antibody in Caco-2 model was dose-dependent and saturated at 3 μg/mL. Enhanced transcytosis of anti-hTfR.B1 was also observed in a monkey brain endothelial cell based (MBT) model. Importantly, anti-hTfR.B1 showed relatively high brain radioactivity concentration in a non-human primate positron emission tomography study indicating that the in vitro transcytosis from both Caco-2 and MBT models aligns with in vivo brain exposure. Typically, brain exposure of CNS targeted biologics is evaluated in mice. However, antibodies, such as the anti-human TfR antibodies, do not cross-react with the mouse target. Therefore, validation of a mouse in vitro transcytosis model is needed to better understand the in vitro in vivo correlation. Here, we performed transcytosis of anti-mouse TfR antibodies in mouse brain endothelial cell-based models, bEnd3 and the murine intestinal epithelial cell line mIEC. There is a good correlation between in vitro transcytosis of anti-mTfR antibodies and bispecifics in mIEC model and their mouse brain uptake. These data strengthen our confidence in the predictive power of the in vitro transcytosis models. Both mouse and human in vitro models will serve as important screening assays for brain targeted biologics selection in CNS drug development.
Collapse
Affiliation(s)
- Kangwen Deng
- AbbVie Bioresearch Center, Worcester, MA, United States of America
| | - Yifeng Lu
- AbbVie Bioresearch Center, Worcester, MA, United States of America
| | | | - Kostika Vangjeli
- AbbVie Bioresearch Center, Worcester, MA, United States of America
| | - Junwei Huang
- AbbVie Bioresearch Center, Worcester, MA, United States of America
| | - Lili Huang
- AbbVie Bioresearch Center, Worcester, MA, United States of America
| | - Andrew Goodearl
- AbbVie Bioresearch Center, Worcester, MA, United States of America
| |
Collapse
|
12
|
Qiao N, An Z, Fu Z, Chen X, Tong Q, Zhang Y, Ren H. Kinsenoside alleviates oxidative stress-induced blood-brain barrier dysfunction via promoting Nrf2/HO-1 pathway in ischemic stroke. Eur J Pharmacol 2023; 949:175717. [PMID: 37054938 DOI: 10.1016/j.ejphar.2023.175717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
An ischemic stroke usually causes blood-brain barrier (BBB) damage and excessive oxidative stress (OS) levels. Kinsenoside (KD), a major effective compound extracted in Chinese herbal medicine Anoectochilus roxburghii (Orchidaceae), has anti-OS effects. The present study focused on exploring KD's protection against OS-mediated cerebral endothelial cell damage and BBB damage within the mouse model. Intracerebroventricular administration of KD upon reperfusion after 1 h ischemia decreased infarct volumes, neurological deficit, brain edema, neuronal loss, and apoptosis 72 h post-ischemic stroke. KD improved BBB structure and function, as evidenced by a lower 18F-fluorodeoxyglucose pass rate of the BBB and upregulation of tight junction (TJ) proteins such as occludin, claudin-5, and zonula occludens-1 (ZO-1). KD protected bEnd.3 endothelial cells from oxygen and glucose deprivation/reoxygenation (OGD/R) injury in an in-vitro study. Meanwhile, OGD/R reduced transepithelial electronic resistance, whereas KD significantly increased TJ protein levels. Furthermore, based on in-vivo and in-vitro research, KD alleviated OS in endothelial cells, which is related to nuclear factor, erythroid 2 like 2 (Nrf2) nuclear translocation as well as Nrf2/haem oxygenase 1 signaling protein stimulation. Our findings demonstrated that KD might serve as a potential compound for treating ischemic stroke involving antioxidant mechanisms.
Collapse
Affiliation(s)
- Nan Qiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohong An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeyu Fu
- Department of Anesthesiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xingyu Chen
- Department of Clinical Laboratory, The Central Hospital of Wuhan, Wuhan, China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hong Ren
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Mannion AJ, Odell AF, Baker SM, Matthews LC, Jones PF, Cook GP. Pro- and anti-tumour activities of CD146/MCAM in breast cancer result from its heterogeneous expression and association with epithelial to mesenchymal transition. Front Cell Dev Biol 2023; 11:1129015. [PMID: 37138793 PMCID: PMC10150653 DOI: 10.3389/fcell.2023.1129015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
CD146, also known as melanoma cell adhesion molecule (MCAM), is expressed in numerous cancers and has been implicated in the regulation of metastasis. We show that CD146 negatively regulates transendothelial migration (TEM) in breast cancer. This inhibitory activity is reflected by a reduction in MCAM gene expression and increased promoter methylation in tumour tissue compared to normal breast tissue. However, increased CD146/MCAM expression is associated with poor prognosis in breast cancer, a characteristic that is difficult to reconcile with inhibition of TEM by CD146 and its epigenetic silencing. Single cell transcriptome data revealed MCAM expression in multiple cell types, including the malignant cells, tumour vasculature and normal epithelium. MCAM expressing malignant cells were in the minority and expression was associated with epithelial to mesenchymal transition (EMT). Furthermore, gene expression signatures defining invasiveness and a stem cell-like phenotype were most strongly associated with mesenchymal-like tumour cells with low levels of MCAM mRNA, likely to represent a hybrid epithelial/mesenchymal (E/M) state. Our results show that high levels of MCAM gene expression are associated with poor prognosis in breast cancer because they reflect tumour vascularisation and high levels of EMT. We suggest that high levels of mesenchymal-like malignant cells reflect large populations of hybrid E/M cells and that low CD146 expression on these hybrid cells is permissive for TEM, aiding metastasis.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Adam F. Odell
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Syed Murtuza Baker
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Laura C. Matthews
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Pamela F. Jones
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Graham P. Cook
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
- *Correspondence: Graham P. Cook,
| |
Collapse
|
14
|
Cai Y, Fan K, Lin J, Ma L, Li F. Advances in BBB on Chip and Application for Studying Reversible Opening of Blood-Brain Barrier by Sonoporation. MICROMACHINES 2022; 14:112. [PMID: 36677173 PMCID: PMC9861620 DOI: 10.3390/mi14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The complex structure of the blood-brain barrier (BBB), which blocks nearly all large biomolecules, hinders drug delivery to the brain and drug assessment, thus decelerating drug development. Conventional in vitro models of BBB cannot mimic some crucial features of BBB in vivo including a shear stress environment and the interaction between different types of cells. There is a great demand for a new in vitro platform of BBB that can be used for drug delivery studies. Compared with in vivo models, an in vitro platform has the merits of low cost, shorter test period, and simplicity of operation. Microfluidic technology and microfabrication are good tools in rebuilding the BBB in vitro. During the past decade, great efforts have been made to improve BBB penetration for drug delivery using biochemical or physical stimuli. In particular, compared with other drug delivery strategies, sonoporation is more attractive due to its minimized systemic exposure, high efficiency, controllability, and reversible manner. BBB on chips (BOC) holds great promise when combined with sonoporation. More details and mechanisms such as trans-endothelial electrical resistance (TEER) measurements and dynamic opening of tight junctions can be figured out when using sonoporation stimulating BOC, which will be of great benefit for drug development. Herein, we discuss the recent advances in BOC and sonoporation for BBB disruption with this in vitro platform.
Collapse
Affiliation(s)
- Yicong Cai
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kexin Fan
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiawei Lin
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
| | - Lin Ma
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenfang Li
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518107, China
| |
Collapse
|
15
|
Barberio C, Withers A, Mishra Y, Couraud PO, Romero IA, Weksler B, Owens RM. A human-derived neurovascular unit in vitro model to study the effects of cellular cross-talk and soluble factors on barrier integrity. Front Cell Neurosci 2022; 16:1065193. [PMID: 36545654 PMCID: PMC9762047 DOI: 10.3389/fncel.2022.1065193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
The blood-brain barrier (BBB) restricts paracellular and transcellular diffusion of compounds and is part of a dynamic multicellular structure known as the "neurovascular unit" (NVU), which strictly regulates the brain homeostasis and microenvironment. Several neuropathological conditions (e.g., Parkinson's disease and Alzheimer's disease), are associated with BBB impairment yet the exact underlying pathophysiological mechanisms remain unclear. In total, 90% of drugs that pass animal testing fail human clinical trials, in part due to inter-species discrepancies. Thus, in vitro human-based models of the NVU are essential to better understand BBB mechanisms; connecting its dysfunction to neuropathological conditions for more effective and improved therapeutic treatments. Herein, we developed a biomimetic tri-culture NVU in vitro model consisting of 3 human-derived cell lines: human cerebral micro-vascular endothelial cells (hCMEC/D3), human 1321N1 (astrocyte) cells, and human SH-SY5Y neuroblastoma cells. The cells were grown in Transwell hanging inserts in a variety of configurations and the optimal setup was found to be the comprehensive tri-culture model, where endothelial cells express typical markers of the BBB and contribute to enhancing neural cell viability and neurite outgrowth. The tri-culture configuration was found to exhibit the highest transendothelial electrical resistance (TEER), suggesting that the cross-talk between astrocytes and neurons provides an important contribution to barrier integrity. Lastly, the model was validated upon exposure to several soluble factors [e.g., Lipopolysaccharides (LPS), sodium butyrate (NaB), and retinoic acid (RA)] known to affect BBB permeability and integrity. This in vitro biological model can be considered as a highly biomimetic recapitulation of the human NVU aiming to unravel brain pathophysiology mechanisms as well as improve testing and delivery of therapeutics.
Collapse
Affiliation(s)
- Chiara Barberio
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Aimee Withers
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Yash Mishra
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Pierre-Olivier Couraud
- Institut Cochin, Centre National de la Recherche Scientifique UMR 8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U567, Université René Descartes, Paris, France
| | - Ignacio A. Romero
- Department of Biological Sciences, The Open University, Milton Keynes, United Kingdom
| | - Babette Weksler
- Department of Medicine, Weill Medical College of Cornell University, New York, NY, United States
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Róisín M. Owens,
| |
Collapse
|
16
|
Yamaguchi T, Nishijima M, Kawabata K. Inhibition of Glycogen Synthase Kinase 3ß Enhances Functions of Induced Pluripotent Stem Cell-Derived Brain Microvascular Endothelial Cells in the Blood-Brain Barrier. Biol Pharm Bull 2022; 45:1525-1530. [PMID: 36184511 DOI: 10.1248/bpb.b22-00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain microvascular endothelial cells (BMECs) are essential component of the blood-brain barrier (BBB). BMECs strictly regulate the entry of various molecules into the central nervous system from the peripheral circulation by forming tight junctions and expressing various influx/efflux transporters and receptors. In vitro BBB models have been widely reported with primary BMECs isolated from animals, although it is known that the expression patterns and levels of transporters and receptors in BMECs differ between humans and animals. Recently, several methods to differentiate BMECs from human induced pluripotent stem (hiPS) cell have been developed. However, the expression of P-glycoprotein (P-gp), which is a key efflux transporter, in hiPS cell-derived BMECs was detected at a relatively low level compared with primary human BMECs. In this study, we examined the involvement of the canonical Wnt signaling pathway, which contributes to the development of BBB formation, in the regulation of P-gp expression in hiPS cell-derived BMECs. We found that the barrier integrity was significantly enhanced in hiPS cell-derived BMECs treated with glycogen synthase kinase-3ß (GSK-3ß) inhibitors, which are known to positively regulate the canonical Wnt signaling pathway. In addition, our data also showed P-gp expression level was increased by treatment with GSK-3ß inhibitors. In conclusion, physiological barrier function and P-gp expression in BMECs can be enhanced by the canonical Wnt signaling pathway. Our results may be useful for promoting the development of drugs for central nervous system diseases using in vitro BBB model.
Collapse
Affiliation(s)
- Tomoko Yamaguchi
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition
| | - Misae Nishijima
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition
| | - Kenji Kawabata
- Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition.,Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
17
|
Kowalik A, Majerek M, Mrowiec K, Solich J, Faron-Górecka A, Woźnicka O, Dziedzicka-Wasylewska M, Łukasiewicz S. Dopamine D 2 and Serotonin 5-HT 1A Dimeric Receptor-Binding Monomeric Antibody scFv as a Potential Ligand for Carrying Drugs Targeting Selected Areas of the Brain. Biomolecules 2022; 12:749. [PMID: 35740874 PMCID: PMC9221303 DOI: 10.3390/biom12060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Targeted therapy uses multiple ways of ensuring that the drug will be delivered to the desired site. One of these ways is an encapsulation of the drug and functionalization of the surface. Among the many molecules that can perform such a task, the present work focused on the antibodies of single-chain variable fragments (scFvs format). We studied scFv, which specifically recognizes the dopamine D2 and serotonin 5-HT1A receptor heteromers. The scFvD2-5-HT1A protein was analyzed biochemically and biologically, and the obtained results indicated that the antibody is properly folded and non-toxic and can be described as low-immunogenic. It is not only able to bind to the D2-5-HT1A receptor heteromer, but it also influences the cAMP signaling pathway and-when surfaced on nanogold particles-it can cross the blood-brain barrier in in vitro models. When administered to mice, it decreased locomotor activity, matching the effect induced by clozapine. Thus, we are strongly convinced that scFvD2-5-HT1A, which was a subject of the present investigation, is a promising targeting ligand with the potential for the functionalization of nanocarriers targeting selected areas of the brain.
Collapse
Affiliation(s)
- Agata Kowalik
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Mateusz Majerek
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Krzysztof Mrowiec
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| | - Joanna Solich
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Agata Faron-Górecka
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland;
| | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Science, 31-343 Krakow, Poland; (J.S.); (A.F.-G.)
| | - Sylwia Łukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (A.K.); (M.M.); (K.M.); (M.D.-W.)
| |
Collapse
|
18
|
Insights into the Steps of Breast Cancer-Brain Metastases Development: Tumor Cell Interactions with the Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23031900. [PMID: 35163822 PMCID: PMC8836543 DOI: 10.3390/ijms23031900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Brain metastases (BM) represent a growing problem for breast cancer (BC) patients. Recent studies have demonstrated a strong impact of the BC molecular subtype on the incidence of BM development. This study explores the interaction between BC cells of different molecular subtypes and the blood–brain barrier (BBB). We compared the ability of BC cells of different molecular subtypes to overcome several steps (adhesion to the brain endothelium, disruption of the BBB, and invasion through the endothelial layer) during cerebral metastases formation, in vitro as well as in vivo. Further, the impact of these cells on the BBB was deciphered at the molecular level by transcriptome analysis of the triple-negative (TNBC) cells themselves as well as of hBMECs after cocultivation with BC cell secretomes. Compared to luminal BC cells, TNBC cells have a greater ability to influence the BBB in vitro and consequently develop BM in vivo. The brain-seeking subline and parental TNBC cells behaved similarly in terms of adhesion, whereas the first showed a stronger impact on the brain endothelium integrity and increased invasive ability. The comparative transcriptome revealed potential brain-metastatic-specific key regulators involved in the aforementioned processes, e.g., the angiogenesis-related factors TNXIP and CXCL1. In addition, the transcriptomes of the two TNBC cell lines strongly differed in certain angiogenesis-associated factors and in several genes related to cell migration and invasion. Based on the present study, we hypothesize that the tumor cell’s ability to disrupt the BBB via angiogenesis activation, together with increased cellular motility, is required for BC cells to overcome the BBB and develop brain metastases.
Collapse
|
19
|
European Journal of Pharmaceutics and Biopharmaceutics “Re-evaluation of the hCMEC/D3 based in vitro BBB model for ABC transporter studies”. Eur J Pharm Biopharm 2022; 173:12-21. [DOI: 10.1016/j.ejpb.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/24/2022] [Accepted: 02/22/2022] [Indexed: 01/25/2023]
|
20
|
Raut S, Patel R, Pervaiz I, Al-Ahmad AJ. Abeta Peptides Disrupt the Barrier Integrity and Glucose Metabolism of Human Induced Pluripotent Stem Cell-Derived Brain Microvascular Endothelial Cells. Neurotoxicology 2022; 89:110-120. [DOI: 10.1016/j.neuro.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
|
21
|
Winkelman MA, Kim DY, Kakarla S, Grath A, Silvia N, Dai G. Interstitial flow enhances the formation, connectivity, and function of 3D brain microvascular networks generated within a microfluidic device. LAB ON A CHIP 2021; 22:170-192. [PMID: 34881385 PMCID: PMC9257897 DOI: 10.1039/d1lc00605c] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The bulk flow of interstitial fluid through tissue is an important factor in human biology, including the development of brain microvascular networks (MVNs) with the blood-brain barrier (BBB). Bioengineering perfused, functional brain MVNs has great potential for modeling neurovascular diseases and drug delivery. However, most in vitro models of brain MVNs do not implement interstitial flow during the generation of microvessels. Using a microfluidic device (MFD), we cultured primary human brain endothelial cells (BECs), pericytes, and astrocytes within a 3D fibrin matrix with (flow) and without (static) interstitial flow. We found that the bulk flow of interstitial fluid was beneficial for both BEC angiogenesis and vasculogenesis. Brain MVNs cultured under flow conditions achieved anastomosis and were perfusable, whereas those under static conditions lacked connectivity and the ability to be perfused. Compared to static culture, microvessels developed in flow culture exhibited an enhanced vessel area, branch length and diameter, connectivity, and longevity. Although there was no change in pericyte coverage of microvessels, a slight increase in astrocyte coverage was observed under flow conditions. In addition, the immunofluorescence intensity of basal lamina proteins, collagen IV and laminin, was nearly doubled in flow culture. Lastly, the barrier function of brain microvessels was enhanced under flow conditions, as demonstrated by decreased dextran permeability. Taken together, these results highlighted the importance of interstitial flow in the in vitro generation of perfused brain MVNs with characteristics similar to those of the human BBB.
Collapse
Affiliation(s)
- Max A Winkelman
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| | - Diana Y Kim
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| | - Shravani Kakarla
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| | - Alexander Grath
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| | - Nathaniel Silvia
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 224, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Ding Y, Shusta EV, Palecek SP. Integrating in vitro disease models of the neurovascular unit into discovery and development of neurotherapeutics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100341. [PMID: 34693102 PMCID: PMC8530278 DOI: 10.1016/j.cobme.2021.100341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The blood-brain barrier (BBB) regulates the transport of small molecules, proteins, and cells between the bloodstream and the central nervous system (CNS). Brain microvascular endothelial cells work with other resident brain cell types, including pericytes, astrocytes, neurons, and microglia, to form the neurovascular unit (NVU) and maintain BBB integrity. The restrictive barrier influences the pathogenesis of many CNS diseases, and impedes the delivery of neurotherapeutics into the CNS. In vitro NVU models enable the discovery of complex cell-cell interactions involved in human BBB pathophysiology in diseases including Alzheimer's Disease (AD), Parkinson's Disease (PD) and viral infections of the brain. In vitro NVU models have also been deployed to study the delivery of neurotherapeutics across the BBB, including small molecule drugs, monoclonal antibodies, gene therapy vectors and immune cells. The high scalability, accessibility, and phenotype fidelity of in vitro NVU models can facilitate the discovery and development of effective neurotherapeutics.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
23
|
Sharma NS, Karan A, Lee D, Yan Z, Xie J. Advances in Modeling Alzheimer's Disease In Vitro. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Navatha Shree Sharma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Anik Karan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Donghee Lee
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
| | - Zheng Yan
- Department of Mechanical & Aerospace Engineering and Department of Biomedical Biological and Chemical Engineering University of Missouri Columbia MO 65211 USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program University of Nebraska Medical Center Omaha NE 68198 USA
- Department of Mechanical and Materials Engineering College of Engineering University of Nebraska Lincoln Lincoln NE 68588 USA
| |
Collapse
|
24
|
Kurz C, Walker L, Rauchmann BS, Perneczky R. Dysfunction of the blood-brain barrier in Alzheimer's disease: evidence from human studies. Neuropathol Appl Neurobiol 2021; 48:e12782. [PMID: 34823269 DOI: 10.1111/nan.12782] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
The pathological processes leading to synapse loss, neuronal loss, brain atrophy and gliosis in Alzheimer´s disease (AD) and their relation to vascular disease and immunological changes are yet to be fully explored. Amyloid-β (Aβ) aggregation, vascular damage and altered immune response interact at the blood-brain-barrier (BBB), affecting the brain endothelium and fuelling neurodegeneration. The aim of the present systematic literature review was to critically appraise and to summarise the published evidence on the clinical correlations and pathophysiological concepts of BBB damage in AD, focusing on human data. The PubMed, Cochrane, Medline and Embase databases were searched for original research articles, systematic reviews and meta-analyses, published in English language from 01/2000 to 07/2021, using the keywords Alzheimer*, amyloid-β or β-amyloid or abeta and brain-blood barrier or BBB. This review shows that specific changes of intercellular structures, reduced expression of transendothelial carriers, induction of vasoactive mediators and activation of both astroglia and monocytes/macrophages characterise blood-brain barrier damage in human AD and AD models. BBB dysfunction on magnetic resonance imaging takes place early in the disease course in AD-specific brain regions. The toxic effects of Aβ and apolipoprotein E (ApoE) are likely to induce a non-cerebral-amyloid-angiopathy-related degeneration of endothelial cells, independently of cerebrovascular disease; however, some of the observed structural changes may just arise with age. Small vessel disease, ApoE, loss of pericytes, pro-inflammatory signalling and cerebral amyloid angiopathy enhance blood-brain-barrier damage. Novel therapeutic approaches for AD, including magnetic resonance-guided focused ultrasound, aim to open the BBB, potentially leading to an improved drainage of Aβ along perivascular channels and increased elimination from the brain. In vitro treatments with ApoE-modifying agents yielded promising effects on modulating BBB function. Reducing cardiovascular risk factors represents one of the most promising interventions for dementia prevention at present. However, further research is needed to elucidate the connection of BBB damage and tau pathology, the role of pro-inflammatory mediators in draining macromolecules and cells from the cerebral parenchyma, including their contribution to cerebral amyloid angiopathy. Improved insight into these pathomechanisms may allow to shed light on the role of Aβ deposition as a primary vs. a secondary event in the complex pathogenesis of AD.
Collapse
Affiliation(s)
- Carolin Kurz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Lauren Walker
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Department of Radiology, Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,German Center for Neurodegenerative Disorders (DZNE) Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
25
|
Arora S, Singh J. In vitro and in vivo optimization of liposomal nanoparticles based brain targeted vgf gene therapy. Int J Pharm 2021; 608:121095. [PMID: 34543617 PMCID: PMC8574129 DOI: 10.1016/j.ijpharm.2021.121095] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022]
Abstract
Vgf (non-acronymic), a neurotrophin stimulated protein which plays a crucial role in learning, synaptic activity, and neurogenesis, is markedly downregulated in the brain of Alzheimer's disease (AD) patients. However, since vgf is a large polar protein, a safe and efficient gene delivery vector is critical for its delivery across the blood brain barrier (BBB). This research work demonstrates brain-targeted liposomal nanoparticles optimized for delivering plasmid encoding vgf across BBB and transfecting brain cells. Brain targeting was achieved by surface functionalization using glucose transporter-1 targeting ligand (mannose) and brain targeted cell-penetrating peptides (chimeric rabies virus glycoprotein fragment, rabies virus derived peptide, penetratin peptide, or CGNHPHLAKYNGT peptide). The ligands were conjugated to lipid via nucleophilic substitution reaction resulting in >75% binding efficiency. The liposomes were formed by film hydration technique demonstrating size <200 nm, positive zeta potential (15-20 mV), and polydispersity index <0.3. The bifunctionalized liposomes demonstrated ∼3 pg/µg protein vgf transfection across in vitro BBB, and ∼80 pg/mg protein in mice brain which was 1.5-2 fold (p < 0.05) higher compared to untreated control. The nanoparticles were also biocompatible in vitro and in vivo, suggesting a safe and efficient gene delivery system to treat AD.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
26
|
Vignon A, Salvador-Prince L, Lehmann S, Perrier V, Torrent J. Deconstructing Alzheimer's Disease: How to Bridge the Gap between Experimental Models and the Human Pathology? Int J Mol Sci 2021; 22:8769. [PMID: 34445475 PMCID: PMC8395727 DOI: 10.3390/ijms22168769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Discovered more than a century ago, Alzheimer's disease (AD) is not only still present in our societies but has also become the most common dementia, with 50 million people worldwide affected by the disease. This number is expected to double in the next generation, and no cure is currently available to slow down or stop the disease progression. Recently, some advances were made due to the approval of the aducanumab treatment by the American Food and Drug Administration. The etiology of this human-specific disease remains poorly understood, and the mechanisms of its development have not been completely clarified. Several hypotheses concerning the molecular mechanisms of AD have been proposed, but the existing studies focus primarily on the two main markers of the disease: the amyloid β peptides, whose aggregation in the brain generates amyloid plaques, and the abnormally phosphorylated tau proteins, which are responsible for neurofibrillary tangles. These protein aggregates induce neuroinflammation and neurodegeneration, which, in turn, lead to cognitive and behavioral deficits. The challenge is, therefore, to create models that best reproduce this pathology. This review aims at gathering the different existing AD models developed in vitro, in cellulo, and in vivo. Many models have already been set up, but it is necessary to identify the most relevant ones for our investigations. The purpose of the review is to help researchers to identify the most pertinent disease models, from the most often used to the most recently generated and from simple to complex, explaining their specificities and giving concrete examples.
Collapse
Affiliation(s)
- Anaïs Vignon
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Lucie Salvador-Prince
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| | - Sylvain Lehmann
- INM, University of Montpellier, INSERM, CHU Montpellier, 34095 Montpellier, France;
| | - Véronique Perrier
- INM, University of Montpellier, INSERM, CNRS, 34095 Montpellier, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, 34095 Montpellier, France; (A.V.); (L.S.-P.)
| |
Collapse
|
27
|
Inglut CT, Gray KM, Vig S, Jung JW, Stabile J, Zhang Y, Stroka KM, Huang HC. Photodynamic Priming Modulates Endothelial Cell-Cell Junction Phenotype for Light-activated Remote Control of Drug Delivery. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2021; 27:7200311. [PMID: 33519171 PMCID: PMC7839980 DOI: 10.1109/jstqe.2020.3024014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The blood-brain barrier (BBB) remains a major obstacle for drug delivery to the central nervous system. In particular, the tight and adherens junctions that join the brain capillary endothelial cells limit the diffusion of various molecules from the bloodstream into the brain. Photodynamic priming (PDP) is a non-cytotoxic modality that involves light activation of photosensitizers to photochemically modulate nearby molecules without killing the cells. Here we investigate the effects of sub-lethal photochemistry on junction phenotype (i.e., continuous, punctate, or perpendicular), as well as the BBB permeability in a transwell model of human brain microvascular endothelial cells (HBMECs). We showed that PDP decreases the continuous junction architecture by ~20%, increases the perpendicular junction architecture by ~40%, and has minimal impact on cell morphology in HBMECs. Furthermore, transwell permeability assay revealed that PDP improves the HBMEC permeability to dextran or nanoliposomes by up to 30-fold for 6-9 days. These results suggest that PDP could safely reverse the mature brain endothelial junctions without killing the HBMECs. This study not only emphasizes the critical roles of PDP in the modulation junction phenotype, but also highlights the opportunity to further develop PDP-based combinations that opens the cerebrum endothelium for enhanced drug transporter across the BBB.
Collapse
Affiliation(s)
- Collin T Inglut
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Kelsey M Gray
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Shruti Vig
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jae W Jung
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jillian Stabile
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Yuji Zhang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
28
|
Marquez-Curtis LA, Bokenfohr R, McGann LE, Elliott JAW. Cryopreservation of human cerebral microvascular endothelial cells and astrocytes in suspension and monolayers. PLoS One 2021; 16:e0249814. [PMID: 33852594 PMCID: PMC8046249 DOI: 10.1371/journal.pone.0249814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/24/2021] [Indexed: 01/19/2023] Open
Abstract
The blood-brain barrier (BBB) keeps pathogens and toxins out of the brain but also impedes the entry of pharmaceuticals. Human cerebral microvascular endothelial cells (hCMECs) and astrocytes are the main functional cell components of the BBB. Although available commercially as cryopreserved cells in suspension, improvements in their cryopreservation and distribution as cryopreserved monolayers could enhance BBB in vitro studies. Here, we examined the response to slow cooling and storage in liquid nitrogen of immortalized hCMEC/D3 cells and human primary astrocytes in suspension and in monolayers. HCMEC/D3 cells in suspension cryopreserved in 5% dimethyl sulfoxide (DMSO) and 95% fetal bovine serum or in 5% DMSO and 6% hydroxyethyl starch (HES) showed post-thaw membrane integrities above 90%, similar to unfrozen control. Cryopreservation did not affect the time-dependent ability of hCMEC/D3 cells to form tubes on Matrigel. Primary astrocytes in suspension cryopreserved in the presence of 5% DMSO and 6% HES had improved viability over those cryopreserved in 10% DMSO. Monolayers of single cultures or co-cultures of hCMEC/D3 cells and astrocytes on fibronectin-coated Rinzl coverslips retained membrane integrities and metabolic function, after freezing in 5% DMSO, 6% HES, and 2% chondroitin sulfate, that were comparable to those of unfrozen controls even after overnight incubation. Rinzl is better than glass or Thermanox as an underlying solid substrate for cryopreserving hCMEC/D3 monolayers. Cryopreserved hCMEC/D3 monolayers expressed the junction proteins ZO-1 and claudin-5 similar to their unfrozen counterparts. Hence, we describe improved cryopreservation protocols for hCMEC/D3 cells and astrocytes in suspension, and a novel protocol for the cryopreservation of monolayers of hCMEC/D3 cells and astrocytes as single cultures or co-cultures that could expand their distribution for research on disease modeling, drug screening, and targeted therapy pertaining to the BBB.
Collapse
Affiliation(s)
- Leah A. Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Reid Bokenfohr
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Locksley E. McGann
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Janet A. W. Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Kumarasamy M, Sosnik A. Heterocellular spheroids of the neurovascular blood-brain barrier as a platform for personalized nanoneuromedicine. iScience 2021; 24:102183. [PMID: 33718835 PMCID: PMC7921813 DOI: 10.1016/j.isci.2021.102183] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoneuromedicine investigates nanotechnology to target the brain and treat neurological diseases. In this work, we biofabricated heterocellular spheroids comprising human brain microvascular endothelial cells, brain vascular pericytes and astrocytes combined with primary cortical neurons and microglia isolated from neonate rats. The structure and function are characterized by confocal laser scanning and light sheet fluorescence microscopy, electron microscopy, western blotting, and RNA sequencing. The spheroid bulk is formed by neural cells and microglia and the surface by endothelial cells and they upregulate key structural and functional proteins of the blood-brain barrier. These cellular constructs are utilized to preliminary screen the permeability of polymeric, metallic, and ceramic nanoparticles (NPs). Findings reveal that penetration and distribution patterns depend on the NP type and that microglia would play a key role in this pathway, highlighting the promise of this platform to investigate the interaction of different nanomaterials with the central nervous system in nanomedicine, nanosafety and nanotoxicology.
Collapse
Affiliation(s)
- Murali Kumarasamy
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Bldg. Office 607, Technion City, 3200003 Haifa, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Bldg. Office 607, Technion City, 3200003 Haifa, Israel
| |
Collapse
|
30
|
Marino A, Baronio M, Buratti U, Mele E, Ciofani G. Porous Optically Transparent Cellulose Acetate Scaffolds for Biomimetic Blood-Brain Barrier in vitro Models. Front Bioeng Biotechnol 2021; 9:630063. [PMID: 33681166 PMCID: PMC7928328 DOI: 10.3389/fbioe.2021.630063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
In vitro blood-brain barrier (BBB) models represent an efficient platform to conduct high-throughput quantitative investigations on BBB crossing ability of different drugs. Such models provide a closed system where different fundamental variables can be efficaciously tuned and monitored, and issues related to scarce accessibility of animal brains and ethics can be addressed. In this work, we propose the fabrication of cellulose acetate (CA) porous bio-scaffolds by exploiting both vapor-induced phase separation (VIPS) and electrospinning methods. Parameters of fabrication have been tuned in order to obtain porous and transparent scaffolds suitable for optical/confocal microscopy, where endothelial cell monolayers are allowed to growth thus obtaining biomimetic BBB in vitro models. Concerning VIPS-based approach, CA membranes fabricated using 25% H2O + 75% EtOH as non-solvent showed submicrometer-scale porosity and an optical transmittance comparable to that one of commercially available poly(ethylene terephthalate) membranes. CA membranes fabricated via VIPS have been exploited for obtaining multicellular BBB models through the double seeding of endothelial cells and astrocytes on the two surfaces of the membrane. Electrospun CA substrates, instead, were characterized by micrometer-sized pores, and were unsuitable for double seeding approach and long term studies. However, the potential exploitation of the electrospun CA substrates for modeling blood-brain-tumor barrier and studying cell invasiveness has been speculated. The features of the obtained models have been critically compared and discussed for future applications.
Collapse
Affiliation(s)
- Attilio Marino
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Micol Baronio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Buratti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Elisa Mele
- Materials Department, Loughborough University, Loughborough, United Kingdom
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Pontedera, Italy
| |
Collapse
|
31
|
Tu KH, Yu LS, Sie ZH, Hsu HY, Al-Jamal KT, Wang JTW, Chiang YY. Development of Real-Time Transendothelial Electrical Resistance Monitoring for an In Vitro Blood-Brain Barrier System. MICROMACHINES 2020; 12:mi12010037. [PMID: 33396953 PMCID: PMC7824195 DOI: 10.3390/mi12010037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022]
Abstract
Three-dimensional (3D) cell cultures and organs-on-a-chip have been developed to construct microenvironments that resemble the environment within the human body and to provide a platform that enables clear observation and accurate assessments of cell behavior. However, direct observation of transendothelial electrical resistance (TEER) has been challenging. To improve the efficiency in monitoring the cell development in organs-on-a-chip, in this study, we designed and integrated commercially available TEER measurement electrodes into an in vitro blood-brain barrier (BBB)-on-chip system to quantify TEER variation. Moreover, a flowing culture medium was added to the monolayered cells to simulate the promotion of continuous shear stress on cerebrovascular cells. Compared with static 3D cell culture, the proposed BBB-on-chip integrated with electrodes could measure TEER in a real-time manner over a long period. It also allowed cell growth angle measurement, providing instant reports of cell growth information online. Overall, the results demonstrated that the developed system can aid in the quantification of the continuous cell-pattern variations for future studies in drug testing.
Collapse
Affiliation(s)
- Kai-Hong Tu
- Department of Mechanical Engineering, National Chung Hsing University, Taichung 402701, Taiwan; (K.-H.T.); (Z.-H.S.); (H.-Y.H.)
| | - Ling-Shan Yu
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung 813016, Taiwan;
| | - Zong-Han Sie
- Department of Mechanical Engineering, National Chung Hsing University, Taichung 402701, Taiwan; (K.-H.T.); (Z.-H.S.); (H.-Y.H.)
| | - Han-Yi Hsu
- Department of Mechanical Engineering, National Chung Hsing University, Taichung 402701, Taiwan; (K.-H.T.); (Z.-H.S.); (H.-Y.H.)
| | - Khuloud T. Al-Jamal
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE5 9NU, UK; (K.T.A.-J.); (J.T.-W.W.)
| | - Julie Tzu-Wen Wang
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE5 9NU, UK; (K.T.A.-J.); (J.T.-W.W.)
| | - Ya-Yu Chiang
- Department of Mechanical Engineering, National Chung Hsing University, Taichung 402701, Taiwan; (K.-H.T.); (Z.-H.S.); (H.-Y.H.)
- i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung 402701, Taiwan
- Correspondence: ; Tel.: +886-2284-0433
| |
Collapse
|
32
|
Uzu M, Takezawa T. Novel microvascular endothelial model utilizing a collagen vitrigel membrane and its advantages for predicting histamine-induced microvascular hyperpermeability. J Pharmacol Toxicol Methods 2020; 106:106916. [DOI: 10.1016/j.vascn.2020.106916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
|
33
|
Anisodamine Hydrobromide Protects Glycocalyx and Against the Lipopolysaccharide-Induced Increases in Microvascular Endothelial Layer Permeability and Nitric Oxide Production. Cardiovasc Eng Technol 2020; 12:91-100. [PMID: 32935201 DOI: 10.1007/s13239-020-00486-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/08/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Anisodamine hydrobromide (Ani HBr) has been used to improve the microcirculation during cardiovascular disorders and sepsis. Glycocalyx plays an important role in preserving the endothelial cell (EC) barrier permeability and nitric oxide (NO) production. We aimed to test the hypothesis that Ani HBr could protect the EC against permeability and NO production via preventing glycocalyx shedding. METHODS A human cerebral microvascular EC hCMEC/D3 injury model induced by lipopolysaccharide (LPS) was established. Ani HBr was administrated to ECs with the LPS challenge. Cell viability was performed by Cell Counting Kit-8 assay. Cell proliferation and apoptosis were detected by EdU and Hoechst 33342 staining. Apoptosis and cell cycle were also assessed by flow cytometry with annexin V staining and propidium iodide staining, respectively. Then, adherens junction integrity was evaluated basing on the immunofluorescence staining of vascular endothelial cadherin (VE-cadherin). The glycocalyx component heparan sulfate (HS) was stained in ECs. The cell permeability was evaluated by leakage of fluorescein isothiocyanate (FITC)-dextran. Cellular NO production was measured by the method of nitric acid reductase. RESULTS Ani HBr at 20 μg/mL significantly increased the viability of ECs with LPS challenge, but significantly inhibited the cell viability at 80 μg/mL, showing a bidirectional regulation of cell viability by Ani HBr. Ani HBr had not significantly change the LPS-induced EC proliferation. Ani HBr significantly reversed the induction of LPS on EC apoptosis. Ani HBr reinstated the LPS-induced glycocalyx and VE-cadherin shedding and adherens junction disruption. Ani HBr significantly alleviated LPS-induced EC layer permeability and NO production. CONCLUSION Ani HBr protects ECs against LPS-induced increase in cell barrier permeability and nitric oxide production via preserving the integrity of glycocalyx. Ani HBr is a promising drug to rescue or protect the glycocalyx.
Collapse
|
34
|
Gericke B, Römermann K, Noack A, Noack S, Kronenberg J, Blasig IE, Löscher W. A face-to-face comparison of claudin-5 transduced human brain endothelial (hCMEC/D3) cells with porcine brain endothelial cells as blood-brain barrier models for drug transport studies. Fluids Barriers CNS 2020; 17:53. [PMID: 32843059 PMCID: PMC7449095 DOI: 10.1186/s12987-020-00212-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Predictive in vitro models of the human blood-brain barrier (BBB) are essential in early drug discovery and development. Among available immortalized human brain capillary endothelial cell lines (BCECs), the hCMEC/D3 cell line has become the most widely used in vitro BBB model. However, monolayers of hCMEC/D3 cells form only moderately restrictive barriers, most likely because the major tight junction protein, claudin-5, is markedly downregulated. Thus, hCMEC/D3 monolayers cannot be used for vectorial drug transport experiments, which is a major disadvantage of this model. METHODS Here we transduced hCMEC/D3 cells with a claudin-5 plasmid and compared the characteristics of these cells with those of hCMEC/D3 wildtype cells and primary cultured porcine BCECs. RESULTS The claudin-5 transduced hCMEC/D3 exhibited expression levels (and junctional localization) of claudin-5 similar to those of primary cultured porcine BCECs. The transduced cells exhibited increased TEER values (211 Ω cm2) and reduced paracellular mannitol permeability (8.06%/h), indicating improved BBB properties; however, the barrier properties of porcine BCECs (TEER 1650 Ω cm2; mannitol permeability 3.95%/h) were not reached. Hence, vectorial transport of a selective P-glycoprotein substrate (N-desmethyl-loperamide) was not observed in claudin-5 transduced hCMEC/D3 (or wildtype) cells, whereas such drug transport occurred in porcine BCECs. CONCLUSIONS The claudin-5 transduced hCMEC/D3 cells provide a tool to studying the contribution of claudin-5 to barrier tightness and how this can be further enhanced by additional transfections or other manipulations of this widely used in vitro model of the BBB.
Collapse
Affiliation(s)
- Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kerstin Römermann
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andreas Noack
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sandra Noack
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Jessica Kronenberg
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
35
|
Zakharova M, Palma do Carmo MA, van der Helm MW, Le-The H, de Graaf MNS, Orlova V, van den Berg A, van der Meer AD, Broersen K, Segerink LI. Multiplexed blood-brain barrier organ-on-chip. LAB ON A CHIP 2020; 20:3132-3143. [PMID: 32756644 DOI: 10.1039/d0lc00399a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organ-on-chip devices are intensively studied in academia and industry due to their high potential in pharmaceutical and biomedical applications. However, most of the existing organ-on-chip models focus on proof of concept of individual functional units without the possibility of testing multiple experimental stimuli in parallel. Here we developed a polydimethylsiloxane (PDMS) multiplexed chip with eight parallel channels branching from a common access port through which all eight channels can be addressed simultaneously without the need for extra pipetting steps thus increasing the reproducibility of the experimental results. At the same time, eight outlets provide individual entry to each channel with the opportunity to create eight different experimental conditions. A multiplexed chip can be assembled as a one-layer device for studying monocultures or as a two-layer device for studying barrier tissue functions. For a two-layer device, a ∼2 μm thick transparent PDMS membrane with 5 μm through-hole pores was fabricated in-house using a soft lithography technique, thereby allowing visual inspection of the cell-culture in real-time. The functionality of the chip was studied by recapitulating the blood-brain barrier. For this, human cerebral microvascular endothelial cells (hCMEC/D3) were cultured in mono- or coculture with human astrocytes. Immunostaining revealed a cellular monolayer with the expression of tight junction ZO-1 and adherence junction VE-cadherin proteins in endothelial cells as well as glial fibrillary acidic protein (GFAP) expression in astrocytes. Furthermore, multiplexed permeability studies of molecule passage through the cellular barrier exhibited expected high permeability coefficients for smaller molecules (4 kDa FITC-dextran) whereas larger molecules (20 kDa) crossed the barrier at a lower rate. With these results, we show that our device can be used as an organ-on-chip model for future multiplexed drug testing.
Collapse
Affiliation(s)
- M Zakharova
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - M A Palma do Carmo
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - M W van der Helm
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - H Le-The
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands. and Physics of Fluids, MESA+ Institute for Nanotechnology, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands
| | - M N S de Graaf
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - A van den Berg
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| | - A D van der Meer
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, The Netherlands
| | - K Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, University of Twente, The Netherlands
| | - L I Segerink
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, Technical Medical Centre, Max Planck Institute for Complex Fluid Dynamics, University of Twente, The Netherlands.
| |
Collapse
|
36
|
Islam Y, Khalid A, Pluchino S, Sivakumaran M, Teixidò M, Leach A, Fatokun AA, Downing J, Coxon C, Ehtezazi T. Development of Brain Targeting Peptide Based MMP-9 Inhibiting Nanoparticles for the Treatment of Brain Diseases with Elevated MMP-9 Activity. J Pharm Sci 2020; 109:3134-3144. [PMID: 32621836 DOI: 10.1016/j.xphs.2020.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Latent and active levels of cerebral matrix metalloproteinase 9 (MMP-9) are elevated in neurological diseases and brain injuries, contributing to neurological damage and poor clinical outcomes. This study aimed developing peptide-based nanoparticles with ability to cross the blood-brain-barrier (BBB) and inhibit MMP-9. Three amphiphilic peptides were synthesised containing brain-targeting ligands (HAIYPRH or CKAPETALC) conjugated with MMP-9 inhibiting peptide (CTTHWGFTLC) linked by glycine (spacer) at the N-terminus, and the peptide sequences were conjugated at the N- terminus to cholesterol. 19F NMR assay was developed to measure MMP-9 inhibition. Cell toxicity was evaluated by the LDH assay, and dialysis studies were conducted with/without fetal bovine serum. An in vitro model was employed to evaluate the ability of nanoparticles crossing the BBB. The amphiphilic peptide (Cholesterol-GGGCTTHWGFTLCHAIYPRH) formed nanoparticles (average size of 202.8 nm) with ability to cross the BBB model. MMP-9 inhibiting nanoparticles were non-toxic to cells, and reduced MMP-9 activity from kobs of 4.5 × 10-6s-1 to complete inhibition. Dialysis studies showed that nanoparticles did not disassemble by extreme dilution (40 folds), but gradually hydrolysed by serum enzymes. In conclusion, the MMP-9 inhibiting nanoparticles reduced the activity of MMP-9, with acceptable serum stability, minimal cell toxicity and ability to cross the in vitro BBB model.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Aneesa Khalid
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, Clifford Allbutt Building - Cambridge Biosciences Campus and NIHR Biomedical Research Centre, University of Cambridge, Hills Road, CB2 0HA Cambridge, UK
| | - Muttuswamy Sivakumaran
- Department of Haematology, Peterborough City Hospital, Edith Cavell Campus, Bretton Gate Peterborough, PE3 9GZ Peterborough, UK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, Barcelona 08028, Spain
| | - Andrew Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Amos A Fatokun
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - James Downing
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Christopher Coxon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
37
|
Mutso M, St John JA, Ling ZL, Burt FJ, Poo YS, Liu X, Žusinaite E, Grau GE, Hueston L, Merits A, King NJ, Ekberg JA, Mahalingam S. Basic insights into Zika virus infection of neuroglial and brain endothelial cells. J Gen Virol 2020; 101:622-634. [PMID: 32375993 PMCID: PMC7414445 DOI: 10.1099/jgv.0.001416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/24/2020] [Indexed: 12/31/2022] Open
Abstract
Zika virus (ZIKV) has recently emerged as an important human pathogen due to the strong evidence that it causes disease of the central nervous system, particularly microcephaly and Guillain-Barré syndrome. The pathogenesis of disease, including mechanisms of neuroinvasion, may include both invasion via the blood-brain barrier and via peripheral (including cranial) nerves. Cellular responses to infection are also poorly understood. This study characterizes the in vitro infection of laboratory-adapted ZIKV African MR766 and two Asian strains of (1) brain endothelial cells (hCMEC/D3 cell line) and (2) olfactory ensheathing cells (OECs) (the neuroglia populating cranial nerve I and the olfactory bulb; both human and mouse OEC lines) in comparison to kidney epithelial cells (Vero cells, in which ZIKV infection is well characterized). Readouts included infection kinetics, intracellular virus localization, viral persistence and cytokine responses. Although not as high as in Vero cells, viral titres exceeded 104 plaque-forming units (p.f.u.) ml-1 in the endothelial/neuroglial cell types, except hOECs. Despite these substantial titres, a relatively small proportion of neuroglial cells were primarily infected. Immunolabelling of infected cells revealed localization of the ZIKV envelope and NS3 proteins in the cytoplasm; NS3 staining overlapped with that of dsRNA replication intermediate and the endoplasmic reticulum (ER). Infected OECs and endothelial cells produced high levels of pro-inflammatory chemokines. Nevertheless, ZIKV was also able to establish persistent infection in hOEC and hCMEC/D3 cells. Taken together, these results provide basic insights into ZIKV infection of endothelial and neuroglial cells and will form the basis for further study of ZIKV disease mechanisms.
Collapse
Affiliation(s)
- Margit Mutso
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| | - James A. St John
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan 4111, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| | - Zheng Lung Ling
- Discipline of Pathology, Bosch Institute, Marie Bashir Institute for Infectious diseases and Biosecurity, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Felicity J. Burt
- National Health Laboratory Services, University of the Free State, Bloemfontein, South Africa
| | - Yee Suan Poo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| | - Xiang Liu
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| | - Eva Žusinaite
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Georges E. Grau
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, New South Wales 2050, Australia
| | - Linda Hueston
- Arbovirus Emerging Disease Unit, CIDMLS-ICPMR, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Nicholas J.C. King
- Discipline of Pathology, Bosch Institute, Marie Bashir Institute for Infectious diseases and Biosecurity, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Jenny A.K. Ekberg
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport 4222, Queensland, Australia
| |
Collapse
|
38
|
Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy. Sci Rep 2020; 10:2546. [PMID: 32054883 PMCID: PMC7018850 DOI: 10.1038/s41598-020-59259-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Antiepileptic drug therapy has significant inter-patient variability in response towards it. The current study aims to understand this variability at the molecular level using microarray-based analysis of peripheral blood gene expression profiles of patients receiving valproate (VA) monotherapy. Only 10 unique genes were found to be differentially expressed in VA responders (n = 15) and 6 genes in the non-responders (n = 8) (fold-change >2, p < 0.05). PTGS2 which encodes cyclooxygenase-2, COX-2, showed downregulation in the responders compared to the non-responders. PTGS2/COX-2 mRNA profiles in the two groups corresponded to their plasma profiles of the COX-2 product, prostaglandin E2 (PGE2). Since COX-2 is believed to regulate P-glycoprotein (P-gp), a multidrug efflux transporter over-expressed at the blood-brain barrier (BBB) in drug-resistant epilepsy, the pathway connecting COX-2 and P-gp was further explored in vitro. Investigation of the effect of VA upon the brain endothelial cells (hCMEC/D3) in hyperexcitatory conditions confirmed suppression of COX-2-dependent P-gp upregulation by VA. Our findings suggest that COX-2 downregulation by VA may suppress seizure-mediated P-gp upregulation at the BBB leading to enhanced drug delivery to the brain in the responders. Our work provides insight into the association of peripheral PTGS2/COX-2 expression with VA efficacy and the role of COX-2 as a potential therapeutic target for developing efficacious antiepileptic treatment.
Collapse
|
39
|
A Reconfigurable In Vitro Model for Studying the Blood-Brain Barrier. Ann Biomed Eng 2019; 48:780-793. [PMID: 31741228 DOI: 10.1007/s10439-019-02405-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
Much of what is currently known about the role of the blood-brain barrier (BBB) in regulating the passage of chemicals from the blood stream to the central nervous system (CNS) comes from animal in vivo models (requiring extrapolation to human relevance) and 2D static in vitro systems, which fail to capture the rich cell-cell and cell-matrix interactions of the dynamic 3D in vivo tissue microenvironment. In this work we have developed a BBB platform that allows for a high degree of customization in cellular composition, cellular orientation, and physiologically-relevant fluid dynamics. The system characterized and presented in this study reproduces key characteristics of a BBB model (e.g. tight junctions, efflux pumps) allowing for the formation of a selective and functional barrier. We demonstrate that our in vitro BBB is responsive to both biochemical and mechanical cues. This model further allows for culture of a CNS-like space around the BBB. The design of this platform is a valuable tool for studying BBB function as well as for screening of novel therapeutics.
Collapse
|
40
|
Hinkel S, Mattern K, Dietzel A, Reichl S, Müller-Goymann CC. Parametric investigation of static and dynamic cell culture conditions and their impact on hCMEC/D3 barrier properties. Int J Pharm 2019; 566:434-444. [PMID: 31163193 DOI: 10.1016/j.ijpharm.2019.05.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 01/27/2023]
Abstract
In brain research, the hCMEC/D3 cell line is widely used for the establishment of a human in vitro blood-brain barrier (BBB) model. However, its barrier integrity seems to be insufficient for drug permeability studies, represented by rather low transendothelial electrical resistance (TEER) and high permeability of small molecules. Therefore, this study covers a parametric investigation of static and dynamic cell culture conditions to improve barrier functionality of hCMEC/D3. The effect of basal media was investigated by analyzing changes in proliferation rate, barrier integrity and gene expression of cellular junction proteins. The cells were able to grow in different cell culture media, including serum-free media. However, none of these media enhanced strongly the growth rate or barrier integrity compared to the microvascular endothelial cell growth medium-2 (EGM™-2 MV). Furthermore, hCMEC/D3 cells did not respond positively regarding TEER to any tested parameter neither supplements, coating materials nor co-cultures with the human immortalized astrocyte cell line SVGmm. Furthermore, the impact of dynamic conditions was examined by using the Dynamic Micro Tissue Engineering System (DynaMiTES). Cultivation conditions were successfully adapted to the DynaMiTES design and no negative effect was detected by analyzing cell viability and cell count, albeit TEER remained also unchanged. Consequently, the hCMEC/D3 model has considerable limitations and further improvements or alternative cell lines are required.
Collapse
Affiliation(s)
- S Hinkel
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - K Mattern
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - A Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - S Reichl
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany
| | - C C Müller-Goymann
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Mendelssohnstraße 1, 38106 Braunschweig, Germany; Technische Universität Braunschweig, Center of Pharmaceutical Engineering (PVZ), Franz-Liszt-Straße 35a, 38106 Braunschweig, Germany.
| |
Collapse
|
41
|
Oliver CR, Altemus MA, Westerhof TM, Cheriyan H, Cheng X, Dziubinski M, Wu Z, Yates J, Morikawa A, Heth J, Castro MG, Leung BM, Takayama S, Merajver SD. A platform for artificial intelligence based identification of the extravasation potential of cancer cells into the brain metastatic niche. LAB ON A CHIP 2019; 19:1162-1173. [PMID: 30810557 PMCID: PMC6510031 DOI: 10.1039/c8lc01387j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Brain metastases are the most lethal complication of advanced cancer; therefore, it is critical to identify when a tumor has the potential to metastasize to the brain. There are currently no interventions that shed light on the potential of primary tumors to metastasize to the brain. We constructed and tested a platform to quantitatively profile the dynamic phenotypes of cancer cells from aggressive triple negative breast cancer cell lines and patient derived xenografts (PDXs), generated from a primary tumor and brain metastases from tumors of diverse organs of origin. Combining an advanced live cell imaging algorithm and artificial intelligence, we profile cancer cell extravasation within a microfluidic blood-brain niche (μBBN) chip, to detect the minute differences between cells with brain metastatic potential and those without with a PPV of 0.91 in the context of this study. The results show remarkably sharp and reproducible distinction between cells that do and those which do not metastasize inside of the device.
Collapse
Affiliation(s)
- C Ryan Oliver
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Dubey SK, Ram MS, Krishna KV, Saha RN, Singhvi G, Agrawal M, Ajazuddin, Saraf S, Saraf S, Alexander A. Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer's Disease. Cell Mol Neurobiol 2019; 39:181-209. [PMID: 30671696 DOI: 10.1007/s10571-019-00653-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/12/2019] [Indexed: 12/17/2022]
Abstract
Globally, the central nervous system (CNS) disorders appear as the most critical pathological threat with no proper cure. Alzheimer's disease (AD) is one such condition frequently observed with the aged population and sometimes in youth too. Most of the research utilizes different animal models for in vivo study of AD pathophysiology and to investigate the potency of the newly developed therapy. These in vivo models undoubtably provide a powerful investigation tool to study human brain. Although, it sometime fails to mimic the exact environment and responses as the human brain owing to the distinctive genetic and anatomical features of human and rodent brain. In such condition, the in vitro cell model derived from patient specific cell or human cell lines can recapitulate the human brain environment. In addition, the frequent use of animals in research increases the cost of study and creates various ethical issues. Instead, the use of in vitro cellular models along with animal models can enhance the translational values of in vivo models and represent a better and effective mean to investigate the potency of therapeutics. This strategy also limits the excessive use of laboratory animal during the drug development process. Generally, the in vitro cell lines are cultured from AD rat brain endothelial cells, the rodent models, human astrocytes, human brain capillary endothelial cells, patient derived iPSCs (induced pluripotent stem cells) and also from the non-neuronal cells. During the literature review process, we observed that there are very few reviews available which describe the significance and characteristics of in vitro cell lines, for AD investigation. Thus, in the present review article, we have compiled the various in vitro cell lines used in AD investigation including HBMEC, BCECs, SHSY-5Y, hCMEC/D3, PC-2 cell line, bEND3 cells, HEK293, hNPCs, RBE4 cells, SK-N-MC, BMVECs, CALU-3, 7W CHO, iPSCs and cerebral organoids cell lines and different types of culture media such as SCM, EMEM, DMEM/F12, RPMI, EBM and 3D-cell culture.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India.
| | - Munnangi Siva Ram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Kowthavarapu Venkata Krishna
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Ranendra Narayan Saha
- Department of Biotechnology, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Dubai Campus, Dubai, United Arab Emirates
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Mukta Agrawal
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Swarnlata Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
| | - Shailendra Saraf
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010, Chhattisgarh, India
- Hemchand Yadav University, Durg, Chhattisgarh, 491 001, India
| | - Amit Alexander
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India.
| |
Collapse
|
43
|
De Jong E, Williams DS, Abdelmohsen LK, Van Hest JC, Zuhorn IS. A filter-free blood-brain barrier model to quantitatively study transendothelial delivery of nanoparticles by fluorescence spectroscopy. J Control Release 2018; 289:14-22. [DOI: 10.1016/j.jconrel.2018.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
|
44
|
Puech C, Hodin S, Forest V, He Z, Mismetti P, Delavenne X, Perek N. Assessment of HBEC-5i endothelial cell line cultivated in astrocyte conditioned medium as a human blood-brain barrier model for ABC drug transport studies. Int J Pharm 2018; 551:281-289. [PMID: 30240829 DOI: 10.1016/j.ijpharm.2018.09.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022]
Abstract
Endothelial cells are main components of the Blood-Brain Barrier (BBB) and form a tight monolayer that regulates the passage of molecules, with the ATP-Binding Cassette (ABC) transporters efflux pumps. We have developed a human in vitro model of HBEC-5i endothelial cells cultivated alone or with human astrocytes conditioned medium on insert. HBEC-5i cells showed a tight monolayer within 14 days, expressing ZO-1 and claudin 5, a low apparent permeability to small molecules, with a TEER stability during five days. The P-gp, BCRP, MRPs transporters were well expressed and functional. Accumulation and efflux ratio measurement with different ABC transporters substrates (Rhodamine 123, BCECF AM, Hoechst 33342) and inhibitors (verapamil, Ko143, probenecid and cyclosporin A) were conducted. At barrier level, the functionality of ABC transporters was three-fold enhanced in astrocyte conditioned medium. We validated our model by the transport of pharmacological substrates: caffeine, rivaroxaban, and methotrexate. The rivaroxaban and methotrexate were released with an efflux ratio >3 and were decreased by more than half with inhibitors. HBEC-5i model could be used as relevant tool in preclinical studies for assessing the permeability of therapeutic molecules to cross human BBB.
Collapse
Affiliation(s)
- Clémentine Puech
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France.
| | - Sophie Hodin
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France
| | - Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| | - Zhiguo He
- Université de Lyon, Saint-Etienne, F-42023, France; EA 2521 Biologie, Ingénierie et Imagerie de la Greffe de Cornée (BIIGC), Saint-Etienne, France
| | - Patrick Mismetti
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France; Unité de Recherche Clinique Innovation et Pharmacologie, CHU de Saint-Etienne, F-42055 Saint Etienne, France
| | - Xavier Delavenne
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France; Laboratoire de Pharmacologie Toxicologie, CHU Saint-Etienne, F-42055 Saint-Etienne, France
| | - Nathalie Perek
- INSERM, U1059 Sainbiose, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne, F-42023, France
| |
Collapse
|
45
|
In Vitro Models for Studying Transport Across Epithelial Tissue Barriers. Ann Biomed Eng 2018; 47:1-21. [DOI: 10.1007/s10439-018-02124-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
|
46
|
Gu Y, Cai R, Zhang C, Xue Y, Pan Y, Wang J, Zhang Z. miR-132-3p boosts caveolae-mediated transcellular transport in glioma endothelial cells by targeting PTEN/PI3K/PKB/Src/Cav-1 signaling pathway. FASEB J 2018; 33:441-454. [PMID: 30024792 DOI: 10.1096/fj.201800095rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Blood-brain tumor barrier (BTB) impedes the transportation of antitumor therapeutic drugs into brain tumors. Its mechanism is still unknown, but learning how to improve the BTB permeability is critical for drug intervention. Recently, microRNAs (miRNAs) have appeared as regulation factors of numerous biologic processes and therapeutic targets of diverse diseases. In this study, we have identified that miR-132-3p is an essential miRNA by increasing the transcellular transport through the BTB. We found that miR-132-3p expression was significantly up-regulated in glioma endothelial cells (GECs). Furthermore we showed that miR132-3p+ greatly induced the endocytosis of cholera toxin subunit B and FITC-bovine serum albumin and up-regulated the expression of p-PKB, p-Src and Tyr14 phosphorylation of caveolin-1 (p-Cav-1), while phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression was markedly down-regulated in GECs. Our results identify PTEN as a direct and functional downstream target of miR-132-3p, which is involved in the regulation of p-PKB, p-Src, and p-Cav-1. The inhibitors for PI3K and Src significantly reversed the increase of p-Cav-1 induced by miR-132-3p. Moreover, overexpression of PTEN greatly reduced the endocytosis of cholera toxin subunit B and the up-regulation of p-Cav-1 induced by agomiR132-3p, suggesting that miR132-3p+ increases the endothelial permeability by inhibition of PTEN expression. In addition, miR132-3p+ significantly increased the delivery of doxorubicin across the BTB in vitro and contributed to the accumulation of doxorubicin within the brain tumor tissue. Our results show that miR-132-3p contributes to the increased permeability of BTB by targeting PTEN/PI3K/PKB/Src/Cav-1, thereby revealing a novel drug target for the treatment of brain gliomas.-Gu, Y., Cai, R., Zhang, C., Xue, Y., Pan, Y., Wang, J., Zhang, Z. miR-132-3p boosts caveolae-mediated transcellular transport in glioma endothelial cells by targeting PTEN/PI3K/PKB/Src/Cav-1 signaling pathway.
Collapse
Affiliation(s)
- Yanting Gu
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, China; and
| | - Ruiping Cai
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, China; and
| | - Cai Zhang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, China; and
| | - Yixue Xue
- Department of Neurobiology, College Basic of Medicine, China Medical University, Shenyang, China
| | - Yali Pan
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, China; and
| | - Jiahong Wang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, China; and
| | - Zhou Zhang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, China; and
| |
Collapse
|
47
|
The expected characteristics of an in vitro human Blood Brain Barrier model derived from cell lines, for studying how ABC transporters influence drug permeability. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Abstract
The blood-brain barrier (BBB) is located at the brain microvessel level and isolates the brain from the whole body, thus restricting molecule and cell exchanges between cerebral and peripheral compartments. In order to better decipher and understand the BBB physiology and development, and to investigate transport mechanism and toxicity of neuropharmaceuticals, several in vitro BBB models have been developed using animal or human cells, primary or immortalized cells. The aim of this review is to explain to the reader the major criteria required for a pertinent in vitro BBB model and to briefly expose the different models currently available with their characteristics with a special focus on the static models.
Collapse
Affiliation(s)
- Fabien Gosselet
- Université Artois, EA 2465, laboratoire de la Barrière Hémato-Encéphalique (LBHE), rue Jean Souvraz, SP18, F-62300 Lens, France
| |
Collapse
|
49
|
Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen. mBio 2017; 8:mBio.02183-16. [PMID: 28143979 PMCID: PMC5285505 DOI: 10.1128/mbio.02183-16] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a “Trojan horse” mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain.
Collapse
|