1
|
Neal ES, Xu W, Borges K. Metabolic aspects of genetic ion channel epilepsies. J Neurochem 2024; 168:3911-3935. [PMID: 37594756 PMCID: PMC11591411 DOI: 10.1111/jnc.15938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Nowadays, particularly in countries with high incomes, individual mutations in people affected by genetic epilepsies are identified, and genetic therapies are being developed. In addition, drugs are being screened to directly target specific mutations, and personalised medicine is possible. However, people with epilepsy do not yet benefit from these advances, and many types of epilepsies are medication-resistant, including Dravet syndrome. Thus, in the meantime, alternative and effective treatment options are needed. There is increasing evidence that metabolic deficits contribute to epileptic seizures and that such metabolic impairments may be amenable to treatment, with metabolic treatment options like the ketogenic diet being employed with some success. However, the brain metabolic alterations that occur in ion channel epilepsies are not well-understood, nor how these may differ from epilepsies that are of acquired and unknown origins. Here, we provide an overview of studies investigating metabolic alterations in epilepsies caused by mutations in the SCN1A and KCNA1 genes, which are currently the most studied ion channel epilepsies in animal models. The metabolic changes found in these models are likely to contribute to seizures. A metabolic basis of these ion channel epilepsies is supported by human and/or animal studies that show beneficial effects of the ketogenic diet, which may be mediated by the provision of auxiliary brain fuel in the form of ketone bodies. Other potentially more preferred dietary therapies including medium-chain triglycerides and triheptanoin have also been tested in a limited number of studies, but their efficacies remain to be clearly established. The extent to which brain metabolism is affected in people with Dravet syndrome, KCNA1 epilepsy and the models thereof still requires clarification. This requires more experiments that yield functional insight into metabolism.
Collapse
Affiliation(s)
- Elliott S. Neal
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Weizhi Xu
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- School of Biomedical SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
2
|
Hernandez AR, Barrett ME, Lubke KN, Maurer AP, Burke SN. A long-term ketogenic diet in young and aged rats has dissociable effects on prelimbic cortex and CA3 ensemble activity. Front Aging Neurosci 2023; 15:1274624. [PMID: 38155737 PMCID: PMC10753023 DOI: 10.3389/fnagi.2023.1274624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Age-related cognitive decline has been linked to distinct patterns of cellular dysfunction in the prelimbic cortex (PL) and the CA3 subregion of the hippocampus. Because higher cognitive functions require both structures, selectively targeting a neurobiological change in one region, at the expense of the other, is not likely to restore normal behavior in older animals. One change with age that both the PL and CA3 share, however, is a reduced ability to utilize glucose, which can produce aberrant neural activity patterns. Methods The current study used a ketogenic diet (KD) intervention, which reduces the brain's reliance on glucose, and has been shown to improve cognition, as a metabolic treatment for restoring neural ensemble dynamics in aged rats. Expression of the immediate-early genes Arc and Homer1a were used to quantify the neural ensembles that were active in the home cage prior to behavior, during a working memory/biconditional association task, and a continuous spatial alternation task. Results Aged rats on the control diet had increased activity in CA3 and less ensemble overlap in PL between different task conditions than did the young animals. In the PL, the KD was associated with increased activation of neurons in the superficial cortical layers, establishing a clear link between dietary macronutrient content and frontal cortical activity. The KD did not lead to any significant changes in CA3 activity. Discussion These observations suggest that the availability of ketone bodies may permit the engagement of compensatory mechanisms in the frontal cortices that produce better cognitive outcomes.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Maya E. Barrett
- Department of Psychology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Katelyn N. Lubke
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Andrew P. Maurer
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| | - Sara N. Burke
- Department of Neuroscience, McKnight Brain Institute, and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Zilberter Y, Tabuena DR, Zilberter M. NOX-induced oxidative stress is a primary trigger of major neurodegenerative disorders. Prog Neurobiol 2023; 231:102539. [PMID: 37838279 PMCID: PMC11758986 DOI: 10.1016/j.pneurobio.2023.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Neurodegenerative diseases (NDDs) causing cognitive impairment and dementia are difficult to treat due to the lack of understanding of primary initiating factors. Meanwhile, major sporadic NDDs share many risk factors and exhibit similar pathologies in their early stages, indicating the existence of common initiation pathways. Glucose hypometabolism associated with oxidative stress is one such primary, early and shared pathology, and a likely major cause of detrimental disease-associated cascades; targeting this common pathology may therefore be an effective preventative strategy for most sporadic NDDs. However, its exact cause and trigger remain unclear. Recent research suggests that early oxidative stress caused by NADPH oxidase (NOX) activation is a shared initiating mechanism among major sporadic NDDs and could prove to be the long-sought ubiquitous NDD trigger. We focus on two major NDDs - Alzheimer's disease (AD) and Parkinson's disease (PD), as well as on acquired epilepsy which is an increasingly recognized comorbidity in NDDs. We also discuss available data suggesting the relevance of the proposed mechanisms to other NDDs. We delve into the commonalities among these NDDs in neuroinflammation and NOX involvement to identify potential therapeutic targets and gain a deeper understanding of the underlying causes of NDDs.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Dennis R Tabuena
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
| |
Collapse
|
4
|
Solis EM, Good LB, Vázquez RG, Patnaik S, Hernandez-Reynoso AG, Ma Q, Angulo G, Dobariya A, Cogan SF, Pancrazio JJ, Pascual JM, Jakkamsetti V. Isolation of the murine Glut1 deficient thalamocortical circuit: wavelet characterization and reverse glucose dependence of low and gamma frequency oscillations. Front Neurosci 2023; 17:1191492. [PMID: 37829723 PMCID: PMC10565352 DOI: 10.3389/fnins.2023.1191492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/25/2023] [Indexed: 10/14/2023] Open
Abstract
Glucose represents the principal brain energy source. Thus, not unexpectedly, genetic glucose transporter 1 (Glut1) deficiency (G1D) manifests with encephalopathy. G1D seizures, which constitute a prominent disease manifestation, often prove refractory to medications but may respond to therapeutic diets. These seizures are associated with aberrant thalamocortical oscillations as inferred from human electroencephalography and functional imaging. Mouse electrophysiological recordings indicate that inhibitory neuron failure in thalamus and cortex underlies these abnormalities. This provides the motivation to develop a neural circuit testbed to characterize the mechanisms of thalamocortical synchronization and the effects of known or novel interventions. To this end, we used mouse thalamocortical slices on multielectrode arrays and characterized spontaneous low frequency oscillations and less frequent 30-50 Hz or gamma oscillations under near-physiological bath glucose concentration. Using the cortical recordings from layer IV among other regions recorded, we quantified oscillation epochs via an automated wavelet-based algorithm. This method proved analytically superior to power spectral density, short-time Fourier transform or amplitude-threshold detection. As expected from human observations, increased bath glucose reduced the lower frequency oscillations while augmenting the gamma oscillations, likely reflecting strengthened inhibitory neuron activity, and thus decreasing the low:high frequency ratio (LHR). This approach provides an ex vivo method for the evaluation of mechanisms, fuels, and pharmacological agents in a crucial G1D epileptogenic circuit.
Collapse
Affiliation(s)
- Elysandra M. Solis
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Levi B. Good
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Rafael Granja Vázquez
- Department of Neuroscience and the Center for Advanced Pain Studies, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sourav Patnaik
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | | | - Qian Ma
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Gustavo Angulo
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Aksharkumar Dobariya
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stuart F. Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Juan M. Pascual
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Eugene McDermott Center for Human Growth & Development/Center for Human Genetics, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Vikram Jakkamsetti
- Rare Brain Disorders Program, The University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
Hemida M, Rosendahl S, Jokinen TS, Moore R, Vuori KA, Anturaniemi J, Hielm-Björkman A. Assessing the association between supplemented puppyhood dietary fat sources and owner-reported epilepsy in adulthood, among Finnish companion dogs. Front Vet Sci 2023; 10:1227437. [PMID: 37781290 PMCID: PMC10540444 DOI: 10.3389/fvets.2023.1227437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Epilepsy is a serious and common neurological condition in dogs, despite the wide number of antiepileptic drugs available, in approximately one third of the patients, epilepsy remains unsatisfactorily controlled. We aim to analyze whether feeding dietary fat sources during puppyhood was associated with canine epilepsy in adulthood. Methods A nested case-control study was compiled from the validated DogRisk food frequency questionnaire (DogRisk FFQ). DogRisk FFQ collected feeding, disease, and background data about the dog. The study sample consisted of 108 owner-reported epileptic cases and 397 non-epileptic controls. Each case was matched with up to four controls for the key confounding factors of sex, breed, and age. We analyzed associations between feeding as a puppy and owner-reported epilepsy as an adult dog using Cox regression. We tested 55 different food variables. Results We found that feeding fish fat from dietary sources at least once a week during puppyhood was inversely associated with epilepsy in later life in the unadjusted analysis [OR 0.46 (95% CI 0.25-0.83), p=0.01], while when adjusting for keeping conditions and dog characteristics the association was [OR 0.45 (95% CI 0.23-0.88), p=0.02]. When adjusted for keeping conditions, dog characteristics, and other feeding factors, the association was of similar magnitude but not significance [OR 0.56 (95% CI 0.27-1.15), p=0.12]. Discussion The study indicates possible protective associations of feeding the dog with dietary sources of fish fat against epilepsy, although the result could be confounded by other feeding factors. Findings are compatible with current knowledge regarding the role of omega-3 fatty acids and ketogenic diet, a low carbohydrate, high fat diet as supportive treatments of epilepsy. As our findings are based on observations, we suggest the possibility of causality but do not prove it. Dietary intervention studies should now be conducted to confirm our findings.
Collapse
Affiliation(s)
- Manal Hemida
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Sarah Rosendahl
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja S. Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina A. Vuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Anturaniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Bartolini E, Ferrari AR, Fiori S, Della Vecchia S. Glycaemic Imbalances in Seizures and Epilepsy of Paediatric Age: A Literature Review. J Clin Med 2023; 12:jcm12072580. [PMID: 37048663 PMCID: PMC10095009 DOI: 10.3390/jcm12072580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
Cerebral excitability and systemic metabolic balance are closely interconnected. Energy supply to neurons depends critically on glucose, whose fluctuations can promote immediate hyperexcitability resulting in acute symptomatic seizures. On the other hand, chronic disorders of sugar metabolism (e.g., diabetes mellitus) are often associated with long-term epilepsy. In this paper, we aim to review the existing knowledge on the association between acute and chronic glycaemic imbalances (hyper- and hypoglycaemia) with seizures and epilepsy, especially in the developing brain, focusing on clinical and instrumental features in order to optimize the care of children and adolescents and prevent the development of chronic neurological conditions in young patients.
Collapse
Affiliation(s)
- Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy (A.R.F.)
- Tuscany PhD Programme in Neurosciences, 50139 Florence, Italy
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy (A.R.F.)
| | - Simona Fiori
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy (A.R.F.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56128 Pisa, Italy
| | - Stefania Della Vecchia
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy (A.R.F.)
- Department of Molecular Medicine and Neurogenetics, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
- Correspondence: ; Tel.: +39-050-886-332
| |
Collapse
|
7
|
Hernandez AR, Barrett ME, Lubke KN, Maurer AP, Burke SN. A long-term ketogenic diet in young and aged rats has dissociable effects on prelimbic cortex and CA3 ensemble activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529095. [PMID: 36824737 PMCID: PMC9949134 DOI: 10.1101/2023.02.18.529095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Age-related cognitive decline has been linked to distinct patterns of cellular dysfunction in the prelimbic cortex (PL) and the CA3 subregion of the hippocampus. Because higher cognitive functions require both structures, selectively targeting a neurobiological change in one region, at the expense of the other, is not likely to restore normal behavior in older animals. One change with age that both the PL and CA3 share, however, is a reduced ability to utilize glucose, which can produce aberrant neural activity patterns. The current study used a ketogenic diet (KD) intervention, which reduces the brain’s reliance on glucose, and has been shown to improve cognition, as a metabolic treatment for restoring neural ensemble dynamics in aged rats. Expression of the immediate-early genes Arc and Homer 1a were used to quantify the neural ensembles that were active in the home cage prior to behavior, during a working memory/biconditional association task, and a continuous spatial alternation task. Aged rats on the control diet had increased activity in CA3 and less ensemble overlap in PL between different task conditions than did the young animals. In the PL, the KD was associated with increased activation of neurons in the superficial cortical layers. The KD did not lead to any significant changes in CA3 activity. These observations suggest that the KD does not restore neuron activation patterns in aged animals, but rather the availability of ketone bodies in the frontal cortices may permit the engagement of compensatory mechanisms that produce better cognitive outcomes. Significance Statement This study extends understanding of how a ketogenic diet (KD) intervention may improve cognitive function in older adults. Young and aged rats were given 3 months of a KD or a calorie-match control diet and then expression of the immediate-early genes Arc and Homer 1a were measured to examine neural ensemble dynamics during cognitive testing. The KD diet was associated with increased activation of neurons in the superficial layers of the PL, but there were no changes in CA3. These observations are significant because they suggest that compensatory mechanisms for improving cognition are engaged in the presence of elevated ketone bodies. This metabolic shift away from glycolysis can meet the energetic needs of the frontal cortices when glucose utilization is compromised.
Collapse
|
8
|
Affiliation(s)
- Gerald A. Dienel
- Department of Neurology University of Arkansas for Medical Sciences Little Rock Arkansas USA
- Department of Cell Biology and Physiology University of New Mexico School of Medicine Albuquerque New Mexico USA
| | - Lisa Gillinder
- Mater Hospital South Brisbane Queensland Australia
- Faculty of Medicine Mater Research Institute, University of Queensland St Lucia Queensland Australia
| | - Aileen McGonigal
- Mater Hospital South Brisbane Queensland Australia
- Faculty of Medicine Mater Research Institute, University of Queensland St Lucia Queensland Australia
| | - Karin Borges
- Faculty of Medicine School of Biomedical Sciences, University of Queensland St Lucia Queensland Australia
| |
Collapse
|
9
|
Dienel GA, Gillinder L, McGonigal A, Borges K. Potential new roles for glycogen in epilepsy. Epilepsia 2023; 64:29-53. [PMID: 36117414 PMCID: PMC10952408 DOI: 10.1111/epi.17412] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Seizures often originate in epileptogenic foci. Between seizures (interictally), these foci and some of the surrounding tissue often show low signals with 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) in many epileptic patients, even when there are no radiologically detectable structural abnormalities. Low FDG-PET signals are thought to reflect glucose hypometabolism. Here, we review knowledge about metabolism of glucose and glycogen and oxidative stress in people with epilepsy and in acute and chronic rodent seizure models. Interictal brain glucose levels are normal and do not cause apparent glucose hypometabolism, which remains unexplained. During seizures, high amounts of fuel are needed to satisfy increased energy demands. Astrocytes consume glycogen as an additional emergency fuel to supplement glucose during high metabolic demand, such as during brain stimulation, stress, and seizures. In rodents, brain glycogen levels drop during induced seizures and increase to higher levels thereafter. Interictally, in people with epilepsy and in chronic epilepsy models, normal glucose but high glycogen levels have been found in the presumed brain areas involved in seizure generation. We present our new hypothesis that as an adaptive response to repeated episodes of high metabolic demand, high interictal glycogen levels in epileptogenic brain areas are used to support energy metabolism and potentially interictal neuronal activity. Glycogenolysis, which can be triggered by stress or oxidative stress, leads to decreased utilization of plasma glucose in epileptogenic brain areas, resulting in low FDG signals that are related to functional changes underlying seizure onset and propagation. This is (partially) reversible after successful surgery. Last, we propose that potential interictal glycogen depletion in epileptogenic and surrounding areas may cause energy shortages in astrocytes, which may impair potassium buffering and contribute to seizure generation. Based on these hypotheses, auxiliary fuels or treatments that support glycogen metabolism may be useful to treat epilepsy.
Collapse
Affiliation(s)
- Gerald A. Dienel
- Department of NeurologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of Cell Biology and PhysiologyUniversity of New Mexico School of MedicineAlbuquerqueNew MexicoUSA
| | - Lisa Gillinder
- Mater HospitalSouth BrisbaneQueenslandAustralia
- Faculty of MedicineMater Research Institute, University of QueenslandSt LuciaQueenslandAustralia
| | - Aileen McGonigal
- Mater HospitalSouth BrisbaneQueenslandAustralia
- Faculty of MedicineMater Research Institute, University of QueenslandSt LuciaQueenslandAustralia
| | - Karin Borges
- Faculty of MedicineSchool of Biomedical Sciences, University of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
10
|
Daněk J, Danačíková Š, Kala D, Svoboda J, Kapoor S, Pošusta A, Folbergrová J, Tauchmannová K, Mráček T, Otáhal J. Sulforaphane Ameliorates Metabolic Changes Associated With Status Epilepticus in Immature Rats. Front Cell Neurosci 2022; 16:855161. [PMID: 35370554 PMCID: PMC8965559 DOI: 10.3389/fncel.2022.855161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Status epilepticus (SE) is a common paediatric emergency with the highest incidence in the neonatal period and is a well-known epileptogenic insult. As previously established in various experimental and human studies, SE induces long-term alterations to brain metabolism, alterations that directly contribute to the development of epilepsy. To influence these changes, organic isothiocyanate compound sulforaphane (SFN) has been used in the present study for its known effect of enhancing antioxidative, cytoprotective, and metabolic cellular properties via the Nrf2 pathway. We have explored the effect of SFN in a model of acquired epilepsy induced by Li-Cl pilocarpine in immature rats (12 days old). Energy metabolites PCr, ATP, glucose, glycogen, and lactate were determined by enzymatic fluorimetric methods during the acute phase of SE. Protein expression was evaluated by Western blot (WB) analysis. Neuronal death was scored on the FluoroJadeB stained brain sections harvested 24 h after SE. To assess the effect of SFN on glucose metabolism we have performed a series of 18F-DG μCT/PET recordings 1 h, 1 day, and 3 weeks after the induction of SE. Responses of cerebral blood flow (CBF) to electrical stimulation and their influence by SFN were evaluated by laser Doppler flowmetry (LDF). We have demonstrated that the Nrf2 pathway is upregulated in the CNS of immature rats after SFN treatment. In the animals that had undergone SE, SFN was responsible for lowering glucose uptake in most regions 1 h after the induction of SE. Moreover, SFN partially reversed hypometabolism observed after 24 h and achieved full reversal at approximately 3 weeks after SE. Since no difference in cell death was observed in SFN treated group, these changes cannot be attributed to differences in neurodegeneration. SFN per se did not affect the glucose uptake at any given time point suggesting that SFN improves endogenous CNS ability to adapt to the epileptogenic insult. Furthermore, we had discovered that SFN improves blood flow and accelerates CBF response to electrical stimulation. Our findings suggest that SFN improves metabolic changes induced by SE which have been identified during epileptogenesis in various animal models of acquired epilepsy.
Collapse
Affiliation(s)
- Jan Daněk
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Šárka Danačíková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - David Kala
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan Svoboda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Sonam Kapoor
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Antonín Pošusta
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | | | | | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Jakub Otáhal,
| |
Collapse
|
11
|
Hernandez CM, Hernandez AR, Hoffman JM, King PH, McMahon LL, Buford TW, Carter C, Bizon JL, Burke SN. A Neuroscience Primer for Integrating Geroscience With the Neurobiology of Aging. J Gerontol A Biol Sci Med Sci 2022; 77:e19-e33. [PMID: 34623396 PMCID: PMC8751809 DOI: 10.1093/gerona/glab301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroscience has a rich history of studies focusing on neurobiology of aging. However, much of the aging studies in neuroscience occur outside of the gerosciences. The goal of this primer is 2-fold: first, to briefly highlight some of the history of aging neurobiology and second, to introduce to geroscientists the broad spectrum of methodological approaches neuroscientists use to study the neurobiology of aging. This primer is accompanied by a corresponding geroscience primer, as well as a perspective on the current challenges and triumphs of the current divide across these 2 fields. This series of manuscripts is intended to foster enhanced collaborations between neuroscientists and geroscientists with the intent of strengthening the field of cognitive aging through inclusion of parameters from both areas of expertise.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abigail R Hernandez
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica M Hoffman
- Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter H King
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Lori L McMahon
- Department of Cellular, Development, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Thomas W Buford
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,UAB Integrative Center for Aging Research, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Christy Carter
- Evelyn F. McKnight Brain Institute, The University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Bizon
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Sara N Burke
- Department of Neuroscience, Center for Cognitive Aging and Memory, and the McKnight Brain Institute, The University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
12
|
Unifying mechanism behind the onset of acquired epilepsy. Trends Pharmacol Sci 2021; 43:87-96. [PMID: 34887128 DOI: 10.1016/j.tips.2021.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Acquired epilepsy (AE) can result from a number of brain insults and neurological diseases with wide etiological diversity sharing one common outcome of brain epileptiform activity. This implies that despite their disparity, all these initiating pathologies affect the same fundamental brain functions underlying network excitability. Identifying such mechanisms and their availability as therapeutic targets would help develop an effective strategy for epileptogenesis prevention. In this opinion article, we propose that the vicious cycle of NADPH oxidase (NOX)-mediated oxidative stress and glucose hypometabolism is the underlying cause of AE, as available data reveal a critical role for both pathologies in epileptogenesis and the process of seizure initiation. Altogether, here we present a novel view on the mechanisms behind the onset of AE and identify therapeutic targets for potential clinical applications.
Collapse
|
13
|
Malkov A, Popova I, Ivanov A, Jang SS, Yoon SY, Osypov A, Huang Y, Zilberter Y, Zilberter M. Aβ initiates brain hypometabolism, network dysfunction and behavioral abnormalities via NOX2-induced oxidative stress in mice. Commun Biol 2021; 4:1054. [PMID: 34504272 PMCID: PMC8429759 DOI: 10.1038/s42003-021-02551-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
A predominant trigger and driver of sporadic Alzheimer’s disease (AD) is the synergy of brain oxidative stress and glucose hypometabolism starting at early preclinical stages. Oxidative stress damages macromolecules, while glucose hypometabolism impairs cellular energy supply and antioxidant defense. However, the exact cause of AD-associated glucose hypometabolism and its network consequences have remained unknown. Here we report NADPH oxidase 2 (NOX2) activation as the main initiating mechanism behind Aβ1-42-related glucose hypometabolism and network dysfunction. We utilize a combination of electrophysiology with real-time recordings of metabolic transients both ex- and in-vivo to show that Aβ1-42 induces oxidative stress and acutely reduces cellular glucose consumption followed by long-lasting network hyperactivity and abnormalities in the animal behavioral profile. Critically, all of these pathological changes were prevented by the novel bioavailable NOX2 antagonist GSK2795039. Our data provide direct experimental evidence for causes and consequences of AD-related brain glucose hypometabolism, and suggest that targeting NOX2-mediated oxidative stress is a promising approach to both the prevention and treatment of AD. Anton Malkov, Irina Popova et al. demonstrate that beta-amyloid application induces oxidative stress and reduces glucose consumption in the mouse brain, leading to network hyperactivity and behavioral changes—pathologies similar to those observed early on in Alzheimer’s disease patients. Inhibition of NADPH oxidase 2 (NOX2) rescued these phenotypes, suggesting that NOX2 may represent an important therapeutic target for Alzheimer’s disease.
Collapse
Affiliation(s)
- Anton Malkov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Irina Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Anton Ivanov
- Aix Marseille Université, Inserm, Marseille, France
| | - Sung-Soo Jang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Alexander Osypov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.,Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
| |
Collapse
|
14
|
Salubrinal Enhances Cancer Cell Death during Glucose Deprivation through the Upregulation of xCT and Mitochondrial Oxidative Stress. Biomedicines 2021; 9:biomedicines9091101. [PMID: 34572286 PMCID: PMC8466651 DOI: 10.3390/biomedicines9091101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have the metabolic flexibility to adapt to heterogeneous tumor microenvironments. The integrated stress response (ISR) regulates the cellular adaptation response during nutrient stress. However, the issue of how the ISR regulates metabolic flexibility is still poorly understood. In this study, we activated the ISR using salubrinal in cancer cells and found that salubrinal repressed cell growth, colony formation, and migration but did not induce cell death in a glucose-containing condition. Under a glucose-deprivation condition, salubrinal induced cell death and increased the levels of mitochondrial reactive oxygen species (ROS). We found that these effects of salubrinal and glucose deprivation were associated with the upregulation of xCT (SLC7A11), which functions as an antiporter of cystine and glutamate and maintains the level of glutathione to maintain redox homeostasis. The upregulation of xCT did not protect cells from oxidative stress-mediated cell death but promoted it during glucose deprivation. In addition, the supplementation of ROS scavenger N-acetylcysteine and the maintenance of intracellular levels of amino acids via sulfasalazine (xCT inhibitor) or dimethyl-α-ketoglutarate decreased the levels of mitochondrial ROS and protected cells from death. Our results suggested that salubrinal enhances cancer cell death during glucose deprivation through the upregulation of xCT and mitochondrial oxidative stress.
Collapse
|
15
|
Han FY, Conboy‐Schmidt L, Rybachuk G, Volk HA, Zanghi B, Pan Y, Borges K. Dietary medium chain triglycerides for management of epilepsy: New data from human, dog, and rodent studies. Epilepsia 2021; 62:1790-1806. [PMID: 34169513 PMCID: PMC8453917 DOI: 10.1111/epi.16972] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Many studies show that glucose metabolism in epileptic brain areas can be impaired. Energy is crucial to maintain normal brain function, including ion and neurotransmitter balances. Energy deficits can lead to disruption of ion gradients, which can trigger neuronal depolarization and generation of seizures. Thus, perturbed metabolic processing of glucose in epileptogenic brain areas indicates a specific nutritional need for people and animals with epilepsy, as they are likely to benefit from auxiliary brain fuels other than glucose. Ketogenic diets provide the ketone bodies acetoacetate and β-hydroxybutyrate, which can be used as auxiliary fuel by the brain. In approximately 50% children and adults with certain types of epilepsy, who can tolerate and maintain these dietary regimens, seizure frequency can be effectively reduced. More recent data demonstrate that addition of medium chain triglycerides (MCTs), which provide the medium chain fatty acids octanoic and decanoic acid, as well as ketone bodies as auxiliary brain energy, can be beneficial in rodent seizure models, and dogs and humans with epilepsy. Here, this evidence is reviewed, including tolerance in 65% of humans, efficacy studies in dogs, possible anticonvulsant mechanisms of actions of MCTs, and specifically decanoic acid as well as metabolic and antioxidant mechanisms. In conclusion, MCTs are a promising adjunct to standard pharmacological treatment for both humans and dogs with epilepsy, as they lack central nervous system side effects found with current antiepileptic drugs. There is now a need for larger clinical trials in children, adults, and dogs to find the ideal composition and doses of MCTs and the types of epilepsy that respond best.
Collapse
Affiliation(s)
- Felicity Y. Han
- Faculty of MedicineSchool of Biomedical SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
| | | | - Galena Rybachuk
- Technical CommunicationsNestlé Purina PetCare EMENABarcelonaSpain
| | - Holger A. Volk
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary MedicineHanoverGermany
| | - Brian Zanghi
- Research and DevelopmentNestlé Purina PetCareSt. LouisMissouriUSA
| | - Yuanlong Pan
- Research and DevelopmentNestlé Purina PetCareSt. LouisMissouriUSA
| | - Karin Borges
- Faculty of MedicineSchool of Biomedical SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
16
|
Peng W, Liu X, Tan C, Zhou W, Jiang J, Zhou X, Du J, Mo L, Chen L. Zinc-α2-glycoprotein relieved seizure-Induced neuronal glucose uptake impairment via insulin-like growth factor 1 receptor-regulated glucose transporter 3 expression. J Neurochem 2020; 157:695-709. [PMID: 33258143 DOI: 10.1111/jnc.15254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Glucose hypometabolism is observed in epilepsy and promotes epileptogenesis. Glucose hypometabolism in epilepsy may be attributed to decreased neuronal glucose uptake, but its molecular mechanism remains unclear. Zinc-α2-glycoprotein (ZAG) is related to glucose metabolism and is reported to suppress seizures. The anti-epileptic effect of ZAG may be attributed to its regulation of neuronal glucose metabolism. This study explored the effect of ZAG on neuronal glucose uptake and its molecular mechanism via insulin-like growth factor 1 receptor (IGF1R)-regulated glucose transporter 3 (GLUT-3) expression. The ZAG level was modulated by lentivirus in primary culture neurons. Neuronal seizure models were induced by Mg2+ -free artificial cerebrospinal fluid. We assessed neuronal glucose uptake by the 2-NBDG method and Glucose Uptake Colorimetric Assay Kit. IGF1R was activated by IGF1 and blocked by AXL1717. The expression and distribution of IGF1R and GLUT-3, together with IGF1R phosphorylation, were measured by western blot. The binding between ZAG and IGF1R was determined by coimmunoprecipitation. Neuronal glucose uptake and GLUT-3 expression were significantly decreased by seizure or ZAG knockdown, whereas ZAG over-expression or IGF1 treatment reversed this decrease. The effect of ZAG on neuronal glucose uptake and GLUT-3 expression was blocked by AXL1717. ZAG increased IGF1R distribution and phosphorylation possibly by binding. Additionally, IGF1R increased GLUT-3 activity by increasing GLUT-3 expression. In epilepsy/seizure, neuronal glucose uptake suppression may be attributed to a decrease in ZAG, which suppresses neuronal GLUT-3 expression by regulating the activity of IGF1R. ZAG, IGF1R, and GLUT-3 may be novel potential therapeutic targets of glucose hypometabolism in epilepsy and seizures.
Collapse
Affiliation(s)
- Wuxue Peng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncong Du
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Zilberter Y, Zilberter T. Glucose-Sparing Action of Ketones Boosts Functions Exclusive to Glucose in the Brain. eNeuro 2020; 7:ENEURO.0303-20.2020. [PMID: 33168619 PMCID: PMC7768283 DOI: 10.1523/eneuro.0303-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
The ketogenic diet (KD) has been successfully used for a century for treating refractory epilepsy and is currently seen as one of the few viable approaches to the treatment of a plethora of metabolic and neurodegenerative diseases. Empirical evidence notwithstanding, there is still no universal understanding of KD mechanism(s). An important fact is that the brain is capable of using ketone bodies for fuel. Another critical point is that glucose's functions span beyond its role as an energy substrate, and in most of these functions, glucose is irreplaceable. By acting as a supplementary fuel, ketone bodies may free up glucose for its other crucial and exclusive function. We propose that this glucose-sparing effect of ketone bodies may underlie the effectiveness of KD in epilepsy and major neurodegenerative diseases, which are all characterized by brain glucose hypometabolism.
Collapse
Affiliation(s)
- Yuri Zilberter
- Institut de Neurosciences des Systèmes, Aix-Marseille Universite, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1106, Marseille 13385, France
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290, Pushchino, Russia
| | | |
Collapse
|
18
|
Borges K, Kaul N, Germaine J, Carrasco-Pozo C, Kwan P, O'Brien TJ. Open-label long-term treatment of add-on triheptanoin in adults with drug-resistant epilepsy. Epilepsia Open 2020; 5:230-239. [PMID: 32524048 PMCID: PMC7278596 DOI: 10.1002/epi4.12391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/09/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022] Open
Abstract
Objective To investigate feasibility, safety, and tolerability of long‐term (48 weeks) add‐on treatment with triheptanoin (UX007), the triglyceride of heptanoate, in adults with drug‐resistant epilepsy. Methods This extension study was offered to adult participants with drug‐resistant epilepsy who completed a 12‐week randomized controlled trial of add‐on medium‐chain triglycerides (MCT) vs triheptanoin. Participants were asked to titrate triheptanoin to their maximum tolerated dose over 3 weeks, followed by 48‐week maintenance before tapering or treatment extension. The primary aims were to assess retention and safety of the triheptanoin treatment, and secondary aims to assess the tolerated doses and changes in seizure frequency. Results Eleven adults were enrolled and ten people were analyzed (because one patient was diagnosed as having nonepileptic seizures while on the study). Two adults finished the study and extended their treatment. Eight participants withdrew from the study, due to lack of efficacy (n = 3), unknown reasons (n = 2), belief of weight gain (n = 1), wanting to try a different treatment (n = 1), and a colonoscopy (n = 1). Diarrhea in two people and bloating in one person were deemed possibly related to treatment, but other adverse events were not. The duration of maintenance treatment dose was 27‐513 days (median 247 days, range 27‐513 days), and 0.49 ‐1.1 mL/kg triheptanoin was taken per day (0.77 ± 0.19 mL/kg, mean ± standard deviation, 40‐100 mL/d). Two participants experienced >90% and three people >50% reduction in seizure frequency, and all had focal seizures. The median seizure reduction was 48% (average 38%). Significance Our results indicate antiseizure effects of triheptanoin on focal seizures in 5 out of 10 adults. However, only two people finished and extended the 48‐week add‐on treatment phase, despite lack of safety or tolerability issues. More studies focused on improved treatment formulations, the potential of lower dosages, and efficacy are needed. Trial registration number: ACTRN12615000406505.
Collapse
Affiliation(s)
- Karin Borges
- School of Biomedical Sciences Faculty of Medicine The University of Queensland St. Lucia QLD Australia
| | - Neha Kaul
- Department of Allied Health (Clinical Nutrition) Royal Melbourne Hospital University of Melbourne Parkville Vic Australia.,Departments of Medicine and Neurology Royal Melbourne Hospital University of Melbourne Parkville Vic Australia.,Departments of Neuroscience and Neurology The Central Clinical School Monash University and The Alfred Hospital Melbourne Vic Australia
| | - Jack Germaine
- Departments of Neuroscience and Neurology The Central Clinical School Monash University and The Alfred Hospital Melbourne Vic Australia
| | - Catalina Carrasco-Pozo
- Discovery Biology Griffith Institute for Drug Discovery Griffith University Nathan QLD Australia
| | - Patrick Kwan
- Departments of Medicine and Neurology Royal Melbourne Hospital University of Melbourne Parkville Vic Australia.,Departments of Neuroscience and Neurology The Central Clinical School Monash University and The Alfred Hospital Melbourne Vic Australia
| | - Terence J O'Brien
- Departments of Medicine and Neurology Royal Melbourne Hospital University of Melbourne Parkville Vic Australia.,Departments of Neuroscience and Neurology The Central Clinical School Monash University and The Alfred Hospital Melbourne Vic Australia
| |
Collapse
|
19
|
Bouwens van der Vlis TAM, Schijns OEMG, Schaper FLWVJ, Hoogland G, Kubben P, Wagner L, Rouhl R, Temel Y, Ackermans L. Deep brain stimulation of the anterior nucleus of the thalamus for drug-resistant epilepsy. Neurosurg Rev 2019; 42:287-296. [PMID: 29306976 PMCID: PMC6502776 DOI: 10.1007/s10143-017-0941-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/13/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
Despite the use of first-choice anti-epileptic drugs and satisfactory seizure outcome rates after resective epilepsy surgery, a considerable percentage of patients do not become seizure free. ANT-DBS may provide for an alternative treatment option in these patients. This literature review discusses the rationale, mechanism of action, clinical efficacy, safety, and tolerability of ANT-DBS in drug-resistant epilepsy patients. A review using systematic methods of the available literature was performed using relevant databases including Medline, Embase, and the Cochrane Library pertaining to the different aspects ANT-DBS. ANT-DBS for drug-resistant epilepsy is a safe, effective and well-tolerated therapy, where a special emphasis must be given to monitoring and neuropsychological assessment of both depression and memory function. Three patterns of seizure control by ANT-DBS are recognized, of which a delayed stimulation effect may account for an improved long-term response rate. ANT-DBS remotely modulates neuronal network excitability through overriding pathological electrical activity, decrease neuronal cell loss, through immune response inhibition or modulation of neuronal energy metabolism. ANT-DBS is an efficacious treatment modality, even when curative procedures or lesser invasive neuromodulative techniques failed. When compared to VNS, ANT-DBS shows slightly superior treatment response, which urges for direct comparative trials. Based on the available evidence ANT-DBS and VNS therapies are currently both superior compared to non-invasive neuromodulation techniques such as t-VNS and rTMS. Additional in-vivo research is necessary in order to gain more insight into the mechanism of action of ANT-DBS in localization-related epilepsy which will allow for treatment optimization. Randomized clinical studies in search of the optimal target in well-defined epilepsy patient populations, will ultimately allow for optimal patient stratification when applying DBS for drug-resistant patients with epilepsy.
Collapse
Affiliation(s)
- Tim A M Bouwens van der Vlis
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands.
| | - Olaf E M G Schijns
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands
- European Graduate School of Neuroscience (Euron), Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Frédéric L W V J Schaper
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Academic Center for Epileptology (ACE), Kempenhaeghe, MUMC, Maastricht, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands
- European Graduate School of Neuroscience (Euron), Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Pieter Kubben
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands
| | - Louis Wagner
- Department of Neurology, Academic Center for Epileptology (ACE), Kempenhaeghe, MUMC, Maastricht, The Netherlands
| | - Rob Rouhl
- European Graduate School of Neuroscience (Euron), Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Academic Center for Epileptology (ACE), Kempenhaeghe, MUMC, Maastricht, The Netherlands
- Academic Center for Epileptology MUMC+ and Kempenhaeghe, Heeze, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands
- European Graduate School of Neuroscience (Euron), Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Academic Center for Epileptology (ACE), Maastricht University Medical Center, Maastricht (MUMC), PO Box 5800, 6202, AZ, Maastricht, The Netherlands
| |
Collapse
|
20
|
Koenig JB, Cantu D, Low C, Sommer M, Noubary F, Croker D, Whalen M, Kong D, Dulla CG. Glycolytic inhibitor 2-deoxyglucose prevents cortical hyperexcitability after traumatic brain injury. JCI Insight 2019; 5:126506. [PMID: 31038473 DOI: 10.1172/jci.insight.126506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) causes cortical dysfunction and can lead to post-traumatic epilepsy. Multiple studies demonstrate that GABAergic inhibitory network function is compromised following TBI, which may contribute to hyperexcitability and motor, behavioral, and cognitive deficits. Preserving the function of GABAergic interneurons, therefore, is a rational therapeutic strategy to preserve cortical function after TBI and prevent long-term clinical complications. Here, we explored an approach based on the ketogenic diet, a neuroprotective and anticonvulsant dietary therapy which results in reduced glycolysis and increased ketosis. Utilizing a pharmacologic inhibitor of glycolysis (2-deoxyglucose, or 2-DG), we found that acute in vitro application of 2-DG decreased the excitability of excitatory neurons, but not inhibitory interneurons, in cortical slices from naïve mice. Employing the controlled cortical impact (CCI) model of TBI in mice, we found that in vitro 2-DG treatment rapidly attenuated epileptiform activity seen in acute cortical slices 3 to 5 weeks after TBI. One week of in vivo 2-DG treatment immediately after TBI prevented the development of epileptiform activity, restored excitatory and inhibitory synaptic activity, and attenuated the loss of parvalbumin-expressing inhibitory interneurons. In summary, 2-DG may have therapeutic potential to restore network function following TBI.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.,Neuroscience Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - David Cantu
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Cho Low
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.,Cellular, Molecular, and Developmental Biology Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Danielle Croker
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michael Whalen
- Neuroscience Center, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Rho JM, Shao LR, Stafstrom CE. 2-Deoxyglucose and Beta-Hydroxybutyrate: Metabolic Agents for Seizure Control. Front Cell Neurosci 2019; 13:172. [PMID: 31114484 PMCID: PMC6503754 DOI: 10.3389/fncel.2019.00172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/11/2019] [Indexed: 01/12/2023] Open
Abstract
Current anti-seizure drugs (ASDs) are believed to reduce neuronal excitability through modulation of ion channels and transporters that regulate excitability at the synaptic level. While most patients with epilepsy respond to ASDs, many remain refractory to medical treatment but respond favorably to a high-fat, low-carbohydrate metabolism-based therapy known as the ketogenic diet (KD). The clinical effectiveness of the KD has increasingly underscored the thesis that metabolic factors also play a crucial role in the dampening neuronal hyperexcitability that is a hallmark feature of epilepsy. This notion is further amplified by the clinical utility of other related metabolism-based diets such as the modified Atkins diet and the low-glycemic index treatment (LGIT). Traditional high-fat diets are characterized by enhanced fatty acid oxidation (which produces ketone bodies such as beta-hydroxybutyrate) and a reduction in glycolytic flux, whereas the LGIT is predicated mainly on the latter observation of reduced blood glucose levels. As dietary implementation is not without challenges regarding clinical administration and patient compliance, there is an inherent desire and need to determine whether specific metabolic substrates and/or enzymes might afford similar clinical benefits, hence validating the concept of a “diet in a pill.” Here, we discuss the evidence for one glycolytic inhibitor, 2-deoxyglucose (2DG) and one metabolic substrate, β-hydroxybutyrate (BHB) exerting direct effects on neuronal excitability, highlight their mechanistic differences, and provide the strengthening scientific rationale for their individual or possibly combined use in the clinical arena of seizure management.
Collapse
Affiliation(s)
- Jong M Rho
- Section of Pediatric Neurology, Department of Pediatrics, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Li-Rong Shao
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
22
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
23
|
Tumienė B, Peterlin B, Maver A, Utkus A. Contemporary scope of inborn errors of metabolism involving epilepsy or seizures. Metab Brain Dis 2018; 33:1781-1786. [PMID: 30006695 DOI: 10.1007/s11011-018-0288-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 01/15/2023]
Abstract
Many inborn errors of metabolism may present with epilepsy or seizures, however, current scope of these diseases is unknown. Due to available precision medicine approaches in many inborn errors of metabolism and sophisticated traditional diagnostics, this group of disorders is of special relevance to clinicians. Besides, as current treatment is challenging and unsuccessful in more than 30% of all epilepsy patients, these diseases may provide valuable models for ictogenesis and epileptogenesis studies and potentially pave the ways to identification of novel treatments. The aim of this study was to elucidate genetic architecture of inborn errors of metabolism involving epilepsy or seizures and to evaluate their diagnostic approaches. After extensive search, 880 human genes were identified with a considerable part, 373 genes (42%), associated with inborn errors of metabolism. The most numerous group comprised disorders of energy metabolism (115, 31% of all inborn errors of metabolism). A substantial number of these diseases (26%, 97/373) have established specific treatments, therefore timely diagnosis comes as an obligation. Highly heterogenous, overlapping and non-specific phenotypes in most of inborn errors of metabolism presenting with epilepsy or seizures usually preclude phenotype-driven diagnostics. Besides, as traditional diagnostics involves a range of specialized metabolic tests with low diagnostic yields and is generally inefficient and lengthy, next-generation sequencing-based methods were proposed as a cost-efficient one-step way to shorten "diagnostic odyssey". Extensive list of 373 epilepsy- or seizures-associated inborn errors of metabolism genes may be of value in development of gene panels and as a tool for variants' filtration.
Collapse
Affiliation(s)
- Birutė Tumienė
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu 2, LT-08661, Vilnius, Lithuania.
- Vilnius University Hospital Santaros Klinikos, Santariskiu 2, LT-08661, Vilnius, Lithuania.
| | - Borut Peterlin
- Clinical Institute for Medical Genetics, Division of Gynecology, University of Ljubljana Medical Centre, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute for Medical Genetics, Division of Gynecology, University of Ljubljana Medical Centre, Ljubljana, Slovenia
| | - Algirdas Utkus
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu 2, LT-08661, Vilnius, Lithuania
| |
Collapse
|
24
|
Koenig JB, Dulla CG. Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Front Cell Neurosci 2018; 12:350. [PMID: 30459556 PMCID: PMC6232824 DOI: 10.3389/fncel.2018.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
25
|
Imaging biomarkers of epileptogenecity after traumatic brain injury - Preclinical frontiers. Neurobiol Dis 2018; 123:75-85. [PMID: 30321600 DOI: 10.1016/j.nbd.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/04/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Posttraumatic epilepsy (PTE) is a major neurodegenerative disease accounting for 20% of symptomatic epilepsy cases. A long latent phase offers a potential window for prophylactic treatment strategies to prevent epilepsy onset, provided that the patients at risk can be identified. Some promising imaging biomarker candidates for posttraumatic epileptogenesis have been identified, but more are required to provide the specificity and sensitivity for accurate prediction. Experimental models and preclinical longitudinal, multimodal imaging studies allow follow-up of complex cascade of events initiated by traumatic brain injury, as well as monitoring of treatment effects. Preclinical imaging data from the posttraumatic brain are rich in information, yet examination of their specific relevance to epilepsy is lacking. Accumulating evidence from ongoing preclinical studies in TBI support insight into processes involved in epileptogenesis, e.g. inflammation and changes in functional and structural brain-wide connectivity. These efforts are likely to produce both new biomarkers and treatment targets for PTE.
Collapse
|
26
|
Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs in preclinical and early clinical development. Epilepsia 2018; 59:1811-1841. [DOI: 10.1111/epi.14557] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Meir Bialer
- Faculty of Medicine; School of Pharmacy and David R. Bloom Center for Pharmacy; Institute for Drug Research; Hebrew University of Jerusalem; Jerusalem Israel
| | - Svein I. Johannessen
- National Center for Epilepsy; Sandvika Norway
- Department of Pharmacology; Oslo University Hospital; Oslo Norway
| | - Matthias J. Koepp
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - René H. Levy
- Departments of Pharmaceutics and Neurological Surgery; University of Washington; Seattle Washington
| | - Emilio Perucca
- Department of Internal Medicine and Therapeutics; University of Pavia; Pavia Italy
- IRCCS Mondino Foundation; Pavia Italy
| | - Torbjörn Tomson
- Department of Clinical Neuroscience; Karolinska Institute; Stockholm Sweden
| | - H. Steve White
- Department of Pharmacy; School of Pharmacy; University of Washington; Seattle Washington
| |
Collapse
|
27
|
Kovács R, Gerevich Z, Friedman A, Otáhal J, Prager O, Gabriel S, Berndt N. Bioenergetic Mechanisms of Seizure Control. Front Cell Neurosci 2018; 12:335. [PMID: 30349461 PMCID: PMC6187982 DOI: 10.3389/fncel.2018.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is characterized by the regular occurrence of seizures, which follow a stereotypical sequence of alterations in the electroencephalogram. Seizures are typically a self limiting phenomenon, concluding finally in the cessation of hypersynchronous activity and followed by a state of decreased neuronal excitability which might underlie the cognitive and psychological symptoms the patients experience in the wake of seizures. Many efforts have been devoted to understand how seizures spontaneously stop in hope to exploit this knowledge in anticonvulsant or neuroprotective therapies. Besides the alterations in ion-channels, transmitters and neuromodulators, the successive build up of disturbances in energy metabolism have been suggested as a mechanism for seizure termination. Energy metabolism and substrate supply of the brain are tightly regulated by different mechanisms called neurometabolic and neurovascular coupling. Here we summarize the current knowledge whether these mechanisms are sufficient to cover the energy demand of hypersynchronous activity and whether a mismatch between energy need and supply could contribute to seizure control.
Collapse
Affiliation(s)
- Richard Kovács
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Zoltan Gerevich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Alon Friedman
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel.,Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Ofer Prager
- Departments of Physiology and Cell Biology, Cognitive and Brain Sciences, The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Siegrun Gabriel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Neurophysiologie, Berlin, Germany
| | - Nikolaus Berndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Biochemie, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| |
Collapse
|
28
|
Clark IA, Vissel B. Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, α-synuclein, amyloid-β and insulin resistance in neurodegenerative diseases. Br J Pharmacol 2018; 175:3859-3875. [PMID: 30097997 PMCID: PMC6151331 DOI: 10.1111/bph.14471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 12/24/2022] Open
Abstract
While cytokines such as TNF have long been recognized as essential to normal cerebral physiology, the implications of their chronic excessive production within the brain are now also increasingly appreciated. Syndromes as diverse as malaria and lead poisoning, as well as non‐infectious neurodegenerative diseases, illustrate this. These cytokines also orchestrate changes in tau, α‐synuclein, amyloid‐β levels and degree of insulin resistance in most neurodegenerative states. New data on the effects of salbutamol, an indirect anti‐TNF agent, on α‐synuclein and Parkinson's disease, APOE4 and tau add considerably to the rationale of the anti‐TNF approach to understanding, and treating, these diseases. Therapeutic advances being tested, and arguably useful for a number of the neurodegenerative diseases, include a reduction of excess cerebral TNF, whether directly, with a specific anti‐TNF biological agent such as etanercept via Batson's plexus, or indirectly via surgically implanting stem cells. Inhaled salbutamol also warrants investigating further across the neurodegenerative disease spectrum. It is now timely to integrate this range of new information across the neurodegenerative disease spectrum, rather than keep seeing it through the lens of individual disease states.
Collapse
Affiliation(s)
- I A Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, NSW, Australia.,St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
| |
Collapse
|
29
|
McDonald T, Puchowicz M, Borges K. Impairments in Oxidative Glucose Metabolism in Epilepsy and Metabolic Treatments Thereof. Front Cell Neurosci 2018; 12:274. [PMID: 30233320 PMCID: PMC6127311 DOI: 10.3389/fncel.2018.00274] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022] Open
Abstract
There is mounting evidence that oxidative glucose metabolism is impaired in epilepsy and recent work has further characterized the metabolic mechanisms involved. In healthy people eating a traditional diet, including carbohydrates, fats and protein, the major energy substrate in brain is glucose. Cytosolic glucose metabolism generates small amounts of energy, but oxidative glucose metabolism in the mitochondria generates most ATP, in addition to biosynthetic precursors in cells. Energy is crucial for the brain to signal "normally," while loss of energy can contribute to seizure generation by destabilizing membrane potentials and signaling in the chronic epileptic brain. Here we summarize the known biochemical mechanisms that contribute to the disturbance in oxidative glucose metabolism in epilepsy, including decreases in glucose transport, reduced activity of particular steps in the oxidative metabolism of glucose such as pyruvate dehydrogenase activity, and increased anaplerotic need. This knowledge justifies the use of alternative brain fuels as sources of energy, such as ketones, TCA cycle intermediates and precursors as well as even medium chain fatty acids and triheptanoin.
Collapse
Affiliation(s)
- Tanya McDonald
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Michelle Puchowicz
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Karin Borges
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Zilberter T, Zilberter Y. Ketogenic Ratio Determines Metabolic Effects of Macronutrients and Prevents Interpretive Bias. Front Nutr 2018; 5:75. [PMID: 30214902 PMCID: PMC6125377 DOI: 10.3389/fnut.2018.00075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
|
31
|
Shao LR, Rho JM, Stafstrom CE. Glycolytic inhibition: A novel approach toward controlling neuronal excitability and seizures. Epilepsia Open 2018; 3:191-197. [PMID: 30564778 PMCID: PMC6293058 DOI: 10.1002/epi4.12251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Conventional antiseizure medications reduce neuronal excitability through effects on ion channels or synaptic function. In recent years, it has become clear that metabolic factors also play a crucial role in the modulation of neuronal excitability. Indeed, metabolic regulation of neuronal excitability is pivotal in seizure pathogenesis and control. The clinical effectiveness of a variety of metabolism‐based diets, especially for children with medication‐refractory epilepsy, underscores the applicability of metabolic approaches to the control of seizures and epilepsy. Such diets include the ketogenic diet, the modified Atkins diet, and the low‐glycemic index treatment (among others). A promising avenue to alter cellular metabolism, and hence excitability, is by partial inhibition of glycolysis, which has been shown to reduce seizure susceptibility in a variety of animal models as well as in cellular systems in vitro. One such glycolytic inhibitor, 2‐deoxy‐d‐glucose (2DG), increases seizure threshold in vivo and reduces interictal and ictal epileptiform discharges in hippocampal slices. Here, we review the role of glucose metabolism and glycolysis on neuronal excitability, with specific reference to 2DG, and discuss the potential use of 2DG and similar agents in the clinical arena for seizure management.
Collapse
Affiliation(s)
- Li-Rong Shao
- Division of Pediatric Neurology Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland U.S.A
| | - Jong M Rho
- Departments of Pediatrics, Clinical Neurosciences, Physiology and Pharmacology Alberta Children's Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Carl E Stafstrom
- Division of Pediatric Neurology Department of Neurology Johns Hopkins University School of Medicine Baltimore Maryland U.S.A
| |
Collapse
|
32
|
Malkov A, Ivanov AI, Buldakova S, Waseem T, Popova I, Zilberter M, Zilberter Y. Seizure-induced reduction in glucose utilization promotes brain hypometabolism during epileptogenesis. Neurobiol Dis 2018; 116:28-38. [DOI: 10.1016/j.nbd.2018.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
|
33
|
Gentry MS, Guinovart JJ, Minassian BA, Roach PJ, Serratosa JM. Lafora disease offers a unique window into neuronal glycogen metabolism. J Biol Chem 2018; 293:7117-7125. [PMID: 29483193 DOI: 10.1074/jbc.r117.803064] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase.
Collapse
Affiliation(s)
- Matthew S Gentry
- Lafora Epilepsy Cure Initiative, Lexington, Kentucky 40503; Department of Biochemistry and Molecular Biology, Lexington, Kentucky 40503; University of Kentucky Epilepsy Research Center (EpiC), University of Kentucky, Lexington, Kentucky 40503.
| | - Joan J Guinovart
- Lafora Epilepsy Cure Initiative, Lexington, Kentucky 40503; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Berge A Minassian
- Lafora Epilepsy Cure Initiative, Lexington, Kentucky 40503; Department of Pediatrics and Dallas Children's Medical Center, University of Texas Southwestern, Dallas, Texas 75390-9063; Department of Pediatrics, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Peter J Roach
- Lafora Epilepsy Cure Initiative, Lexington, Kentucky 40503; Department of Biochemistry and Molecular Biology, Center for Diabetes and Metabolic Diseases and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jose M Serratosa
- Lafora Epilepsy Cure Initiative, Lexington, Kentucky 40503; Laboratory of Neurology, IIS-Jimenez Diaz Foundation, UAM, 28045 Madrid, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
34
|
Bazzigaluppi P, Ebrahim Amini A, Weisspapir I, Stefanovic B, Carlen PL. Hungry Neurons: Metabolic Insights on Seizure Dynamics. Int J Mol Sci 2017; 18:ijms18112269. [PMID: 29143800 PMCID: PMC5713239 DOI: 10.3390/ijms18112269] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Epilepsy afflicts up to 1.6% of the population and the mechanisms underlying the appearance of seizures are still not understood. In past years, many efforts have been spent trying to understand the mechanisms underlying the excessive and synchronous firing of neurons. Traditionally, attention was pointed towards synaptic (dys)function and extracellular ionic species (dys)regulation. Recently, novel clinical and preclinical studies explored the role of brain metabolism (i.e., glucose utilization) of seizures pathophysiology revealing (in most cases) reduced metabolism in the inter-ictal period and increased metabolism in the seconds preceding and during the appearance of seizures. In the present review, we summarize the clinical and preclinical observations showing metabolic dysregulation during epileptogenesis, seizure initiation, and termination, and in the inter-ictal period. Recent preclinical studies have shown that 2-Deoxyglucose (2-DG, a glycolysis blocker) is a novel therapeutic approach to reduce seizures. Furthermore, we present initial evidence for the effectiveness of 2-DG in arresting 4-Aminopyridine induced neocortical seizures in vivo in the mouse.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Sunnybrook Research Institute, Medical Biophysics, Toronto, ON M4N 3M5, Canada.
| | - Azin Ebrahim Amini
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Iliya Weisspapir
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
| | - Bojana Stefanovic
- Sunnybrook Research Institute, Medical Biophysics, Toronto, ON M4N 3M5, Canada.
| | - Peter L Carlen
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Department of Medicine & Physiology, and Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
35
|
Hertz L, Chen Y. Integration between Glycolysis and Glutamate-Glutamine Cycle Flux May Explain Preferential Glycolytic Increase during Brain Activation, Requiring Glutamate. Front Integr Neurosci 2017. [PMID: 28890689 DOI: 10.3389/fnint.2017.00018+10.3389/fnint.2017.00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 1988 observation by Fox et al. (1988) that brief intense brain activation increases glycolysis (pyruvate formation from glucose) much more than oxidative metabolism has been abundantly confirmed. Specifically glycolytic increase was unexpected because the amount of ATP it generates is much smaller than that formed by subsequent oxidative metabolism of pyruvate. The present article shows that preferential glycolysis can be explained by metabolic processes associated with activation of the glutamate-glutamine cycle. The flux in this cycle, which is essential for production of transmitter glutamate and GABA, equals 75% of brain glucose utilization and each turn is associated with utilization of ~1 glucose molecule. About one half of the association between cycle flux and glucose metabolism occurs during neuronal conversion of glutamine to glutamate in a process similar to the malate-aspartate shuttle (MAS) except that glutamate is supplied from glutamine, not formed from α-ketoglutarate (αKG) as during operation of conventional MAS. Regular MAS function is triggered by one oxidative process in the cytosol during glycolysis causing NAD+ reduction to NADH. Since NADH cannot cross the mitochondrial membrane (MEM) for oxidation NAD+ is re-generated by conversion of cytosolic oxaloacetate (OAA) to malate, which enters the mitochondria for oxidation and in a cyclic process regenerates cytosolic OAA. Therefore MAS as well as the "pseudo-MAS" necessary for neuronal glutamate formation can only operate together with cytosolic reduction of NAD+ to NADH. The major process causing NAD+ reduction is glycolysis which therefore also must occur during neuronal conversion of glutamine to glutamate and may energize vesicular glutamate uptake which preferentially uses glycolytically derived energy. Another major contributor to the association between glutamate-glutamine cycle and glucose utilization is the need for astrocytic pyruvate to generate glutamate. Although some oxidative metabolism occurs during glutamate formation it is only one half of that during normal tricarboxylic acid (TCA) cycle function. Glutamate's receptor stimulation leads to potassium ion (K+) release and astrocytic uptake, preferentially fueled by glycolysis and followed by release and neuronal re-accumulation. The activation-induced preferential glycolysis diminishes with continued activation and is followed by an increased ratio between oxidative metabolism and glycolysis, reflecting oxidation of generated glutamate and accumulated lactate.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical UniversityShenyang, China
| | - Ye Chen
- Henry M. Jackson FoundationBethesda, MD, United States
| |
Collapse
|
36
|
Hertz L, Chen Y. Integration between Glycolysis and Glutamate-Glutamine Cycle Flux May Explain Preferential Glycolytic Increase during Brain Activation, Requiring Glutamate. Front Integr Neurosci 2017; 11:18. [PMID: 28890689 PMCID: PMC5574930 DOI: 10.3389/fnint.2017.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/11/2017] [Indexed: 11/13/2022] Open
Abstract
The 1988 observation by Fox et al. (1988) that brief intense brain activation increases glycolysis (pyruvate formation from glucose) much more than oxidative metabolism has been abundantly confirmed. Specifically glycolytic increase was unexpected because the amount of ATP it generates is much smaller than that formed by subsequent oxidative metabolism of pyruvate. The present article shows that preferential glycolysis can be explained by metabolic processes associated with activation of the glutamate-glutamine cycle. The flux in this cycle, which is essential for production of transmitter glutamate and GABA, equals 75% of brain glucose utilization and each turn is associated with utilization of ~1 glucose molecule. About one half of the association between cycle flux and glucose metabolism occurs during neuronal conversion of glutamine to glutamate in a process similar to the malate-aspartate shuttle (MAS) except that glutamate is supplied from glutamine, not formed from α-ketoglutarate (αKG) as during operation of conventional MAS. Regular MAS function is triggered by one oxidative process in the cytosol during glycolysis causing NAD+ reduction to NADH. Since NADH cannot cross the mitochondrial membrane (MEM) for oxidation NAD+ is re-generated by conversion of cytosolic oxaloacetate (OAA) to malate, which enters the mitochondria for oxidation and in a cyclic process regenerates cytosolic OAA. Therefore MAS as well as the "pseudo-MAS" necessary for neuronal glutamate formation can only operate together with cytosolic reduction of NAD+ to NADH. The major process causing NAD+ reduction is glycolysis which therefore also must occur during neuronal conversion of glutamine to glutamate and may energize vesicular glutamate uptake which preferentially uses glycolytically derived energy. Another major contributor to the association between glutamate-glutamine cycle and glucose utilization is the need for astrocytic pyruvate to generate glutamate. Although some oxidative metabolism occurs during glutamate formation it is only one half of that during normal tricarboxylic acid (TCA) cycle function. Glutamate's receptor stimulation leads to potassium ion (K+) release and astrocytic uptake, preferentially fueled by glycolysis and followed by release and neuronal re-accumulation. The activation-induced preferential glycolysis diminishes with continued activation and is followed by an increased ratio between oxidative metabolism and glycolysis, reflecting oxidation of generated glutamate and accumulated lactate.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical UniversityShenyang, China
| | - Ye Chen
- Henry M. Jackson FoundationBethesda, MD, United States
| |
Collapse
|
37
|
Hertz L, Chen Y. Integration between Glycolysis and Glutamate-Glutamine Cycle Flux May Explain Preferential Glycolytic Increase during Brain Activation, Requiring Glutamate. Front Integr Neurosci 2017. [PMID: 28890689 DOI: 10.3389/fnint.2017.00018 10.3389/fnint.2017.00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 1988 observation by Fox et al. (1988) that brief intense brain activation increases glycolysis (pyruvate formation from glucose) much more than oxidative metabolism has been abundantly confirmed. Specifically glycolytic increase was unexpected because the amount of ATP it generates is much smaller than that formed by subsequent oxidative metabolism of pyruvate. The present article shows that preferential glycolysis can be explained by metabolic processes associated with activation of the glutamate-glutamine cycle. The flux in this cycle, which is essential for production of transmitter glutamate and GABA, equals 75% of brain glucose utilization and each turn is associated with utilization of ~1 glucose molecule. About one half of the association between cycle flux and glucose metabolism occurs during neuronal conversion of glutamine to glutamate in a process similar to the malate-aspartate shuttle (MAS) except that glutamate is supplied from glutamine, not formed from α-ketoglutarate (αKG) as during operation of conventional MAS. Regular MAS function is triggered by one oxidative process in the cytosol during glycolysis causing NAD+ reduction to NADH. Since NADH cannot cross the mitochondrial membrane (MEM) for oxidation NAD+ is re-generated by conversion of cytosolic oxaloacetate (OAA) to malate, which enters the mitochondria for oxidation and in a cyclic process regenerates cytosolic OAA. Therefore MAS as well as the "pseudo-MAS" necessary for neuronal glutamate formation can only operate together with cytosolic reduction of NAD+ to NADH. The major process causing NAD+ reduction is glycolysis which therefore also must occur during neuronal conversion of glutamine to glutamate and may energize vesicular glutamate uptake which preferentially uses glycolytically derived energy. Another major contributor to the association between glutamate-glutamine cycle and glucose utilization is the need for astrocytic pyruvate to generate glutamate. Although some oxidative metabolism occurs during glutamate formation it is only one half of that during normal tricarboxylic acid (TCA) cycle function. Glutamate's receptor stimulation leads to potassium ion (K+) release and astrocytic uptake, preferentially fueled by glycolysis and followed by release and neuronal re-accumulation. The activation-induced preferential glycolysis diminishes with continued activation and is followed by an increased ratio between oxidative metabolism and glycolysis, reflecting oxidation of generated glutamate and accumulated lactate.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical UniversityShenyang, China
| | - Ye Chen
- Henry M. Jackson FoundationBethesda, MD, United States
| |
Collapse
|
38
|
Contribution of Intrinsic Lactate to Maintenance of Seizure Activity in Neocortical Slices from Patients with Temporal Lobe Epilepsy and in Rat Entorhinal Cortex. Int J Mol Sci 2017; 18:ijms18091835. [PMID: 28832554 PMCID: PMC5618484 DOI: 10.3390/ijms18091835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed the contribution of lactate to the maintenance of transmembrane potassium gradients, synaptic signaling and pathological network activity in chronic epileptic human tissue. Stimulus induced and spontaneous field potentials and extracellular potassium concentration changes (∆[K⁺]O) were recorded in parallel with tissue pO₂ and pH in slices from TLE patients while blocking MCTs by α-cyano-4-hydroxycinnamic acid (4-CIN) or d-lactate. Intrinsic lactate contributed to the oxidative energy metabolism in chronic epileptic tissue as revealed by the changes in pO₂ following blockade of lactate uptake. However, unlike the results in rat hippocampus, ∆[K⁺]O recovery kinetics and field potential amplitude did not depend on the presence of lactate. Remarkably, inhibition of lactate uptake exerted pH-independent anti-seizure effects both in healthy rat and chronic epileptic tissue and this effect was partly mediated via adenosine 1 receptor activation following decreased oxidative metabolism.
Collapse
|
39
|
Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J Neurosci Res 2017; 95:2217-2235. [PMID: 28463438 DOI: 10.1002/jnr.24064] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
Abstract
Hypometabolism, characterized by decreased brain glucose consumption, is a common feature of many neurodegenerative diseases. Initial hypometabolic brain state, created by characteristic risk factors, may predispose the brain to acquired epilepsy and sporadic Alzheimer's and Parkinson's diseases, which are the focus of this review. Analysis of available data suggests that deficient glucose metabolism is likely a primary initiating factor for these diseases, and that resulting neuronal dysfunction further promotes the metabolic imbalance, establishing an effective positive feedback loop and a downward spiral of disease progression. Therefore, metabolic correction leading to the normalization of abnormalities in glucose metabolism may be an efficient tool to treat the neurological disorders by counteracting their primary pathological mechanisms. Published and preliminary experimental results on this approach for treating Alzheimer's disease and epilepsy models support the efficacy of metabolic correction, confirming the highly promising nature of the strategy. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California, 94158, USA
| |
Collapse
|