1
|
Kong JN, Dipon Ghosh D, Savvidis A, Sando SR, Droste R, Robert Horvitz H. Transcriptional landscape of a hypoxia response identifies cell-specific pathways for adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601765. [PMID: 39005398 PMCID: PMC11245032 DOI: 10.1101/2024.07.02.601765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
How the HIF-1 (Hypoxia-Inducible) transcription factor drives and coordinates distinct responses to low oxygen across diverse cell types is poorly understood. We present a multi-tissue single-cell gene-expression atlas of the hypoxia response of the nematode Caenorhabditis elegans . This atlas highlights how cell-type-specific HIF-1 responses overlap and diverge among and within neuronal, intestinal, and muscle tissues. Using the atlas to guide functional analyses of candidate muscle-specific HIF-1 effectors, we discovered that HIF-1 activation drives downregulation of the tspo-1 ( TSPO, Translocator Protein) gene in vulval muscle cells to modulate a hypoxia-driven change in locomotion caused by contraction of body-wall muscle cells. We further showed that in human cardiomyocytes HIF-1 activation decreases levels of TSPO and thereby alters intracellular cholesterol transport and the mitochondrial network. We suggest that TSPO-1 is an evolutionarily conserved mediator of HIF-1-dependent modulation of muscle and conclude that our gene-expression atlas can help reveal how HIF-1 drives cell-specific adaptations to hypoxia.
Collapse
|
2
|
Drljača J, Popović A, Bulajić D, Stilinović N, Vidičević Novaković S, Sekulić S, Milenković I, Ninković S, Ljubković M, Čapo I. Diazepam diminishes temozolomide efficacy in the treatment of U87 glioblastoma cell line. CNS Neurosci Ther 2022; 28:1447-1457. [PMID: 35703405 PMCID: PMC9344091 DOI: 10.1111/cns.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
AIMS Many patients with glioblastoma (GBM) suffer from comorbid neurological/psychiatric disorders and, therefore, are treated with psychopharmacological agents. Diazepam (DIA) is widely adopted to treat status epilepticus, alleviate anxiety, and inhibit chemotherapy-associated delayed emesis in GBM patients. Even though temozolomide (TMZ) and DIA could be found as possible combination therapy in clinical practice, there are no reports of their combined effects in GBM. Hence, it may be of interest to investigate whether DIA enhances the antitumor efficacy of TMZ in GBM cells. METHODS U87 human GBM was used to examine the effects of combined TMZ and DIA on cell viability, and the oxygen consumption within the cells, in order to evaluate mitochondrial bioenergetic response upon the treatment. RESULTS The cooperative index showed the presence of antagonism between TMZ and DIA, which was confirmed on long-term observation. Moreover, the level of apoptosis after the TMZ treatment was significantly decreased when administered with DIA (p < 0.001). Concomitant use of TMZ and DIA increased the basal cell respiration rate, the oxidative phosphorylation rate, and maximal capacity of mitochondrial electron transport chain, as well as the activities of complexes I and II, vs. TMZ alone (p < 0.001). CONCLUSION Comparing our results with data reported that DIA elicits cell cycle arrest in the G0/G1 phase and favors senescence reveals that DIA diminishes TMZ efficacy in concomitant use in the treatment of GBM. However, due to its great potency to hinder GBM proliferation and metabolism, it could be considered using DIA as maintenance therapy after TMZ cycles.
Collapse
Affiliation(s)
- Jovana Drljača
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Aleksandra Popović
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Department of Physiology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Dragica Bulajić
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Sašenka Vidičević Novaković
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Sekulić
- Department of Neurology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Milenković
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Srđan Ninković
- Department of Surgery, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Marko Ljubković
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - Ivan Čapo
- Center for Medical and Pharmaceutical Investigations and Quality Control, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.,Department of Histology and Embryology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
3
|
Crombie GK, Palliser HK, Shaw JC, Hodgson DM, Walker DW, Hirst JJ. Neurosteroid-based intervention using Ganaxolone and Emapunil for improving stress-induced myelination deficits and neurobehavioural disorders. Psychoneuroendocrinology 2021; 133:105423. [PMID: 34601389 DOI: 10.1016/j.psyneuen.2021.105423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Prenatal stress is associated with long-term disturbances in white matter development and behaviour in children, such as attention deficit hyperactivity disorder (ADHD) and anxiety. Oligodendrocyte maturation and myelin formation is a tightly orchestrated process beginning during gestation, and therefore is very vulnerable to the effects of maternal prenatal stresses in mid-late pregnancy. The current study aimed to examine the effects of prenatal stress on components of the oligodendrocyte lineage to identify the key processes that are disrupted and to determine if postnatal therapies directed at ameliorating white matter deficits also improve behavioural outcomes. METHODS Pregnant guinea pig dams were exposed to control-handling or prenatal stress with strobe light exposure for 2hrs/day on gestational age (GA) 50, 55, 60 and 65, and allowed to spontaneously deliver ~GA70. Pups were administered oral ganaxolone (5 mg/kg/day in 45% cyclodextrin) or the TSPO agonist, emapunil (XBD173; 0.3 mg/kg/day in 1% tragacanth gum) or vehicle, on postnatal days (PND) 1-7. Behavioural outcomes were assessed using open field and elevated plus maze testing on PND7 and PND27. Hippocampal samples were collected at PND30 to assess markers of oligodendrocyte development through assessment of total oligodendrocytes (OLIG2) and mature cells (myelin basic protein; MBP), and total neurons (NeuN) by immunostaining. Real-time PCR was conducted on hippocampal regions to assess markers of the oligodendrocyte lineage, markers of neurogenesis and components of the neurosteroidogenesis pathway. Plasma samples were collected for steroid quantification of cortisol, allopregnanolone, progesterone and testosterone by ELISA. RESULTS Prenatal stress resulted in hyperactivity in male offspring, and anxiety-like behaviour in female offspring in the guinea pig at an age equivalent to late childhood. Postnatal ganaxolone and emapunil treatment after prenatal stress restored the behavioural phenotype to that of control in females only. The oligodendrocyte maturation lineage, translation of MBP mRNA-to-protein, and neurogenesis were disrupted in prenatally-stressed offspring, resulting in a decreased amount of mature myelin. Emapunil treatment restored mature myelin levels in both sexes, and reversed disruptions to the oligodendrocyte lineage in female offspring, an effect not seen with ganaxolone treatment. CONCLUSION The marked and persisting behavioural and white matter perturbations observed in a clinically relevant guinea pig model of prenatal stress highlights the need for postnatal interventions that increase myelin repair and improve long-term outcomes. The effectiveness of emapunil treatment in restoring female offspring behaviour, and promoting maturation of myelin indicates that early therapeutic interventions can reverse the damaging effects of major stressful events in pregnancy. Further studies optimising target mechanisms and dosing are warranted.
Collapse
Affiliation(s)
- Gabrielle K Crombie
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia.
| | - Hannah K Palliser
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | - Julia C Shaw
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| | | | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, VIC, Australia
| | - Jonathan J Hirst
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW, Australia
| |
Collapse
|
4
|
Ammer LM, Vollmann-Zwerenz A, Ruf V, Wetzel CH, Riemenschneider MJ, Albert NL, Beckhove P, Hau P. The Role of Translocator Protein TSPO in Hallmarks of Glioblastoma. Cancers (Basel) 2020; 12:cancers12102973. [PMID: 33066460 PMCID: PMC7602186 DOI: 10.3390/cancers12102973] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The translocator protein (TSPO) has been under extensive investigation as a specific marker in positron emission tomography (PET) to visualize brain lesions following injury or disease. In recent years, TSPO is increasingly appreciated as a potential novel therapeutic target in cancer. In Glioblastoma (GBM), the most malignant primary brain tumor, TSPO expression levels are strongly elevated and scientific evidence accumulates, hinting at a pivotal role of TSPO in tumorigenesis and glioma progression. The aim of this review is to summarize the current literature on TSPO with respect to its role both in diagnostics and especially with regard to the critical hallmarks of cancer postulated by Hanahan and Weinberg. Overall, our review contributes to a better understanding of the functional significance of TSPO in Glioblastoma and draws attention to TSPO as a potential modulator of treatment response and thus an important factor that may influence the clinical outcome of GBM. Abstract Glioblastoma (GBM) is the most fatal primary brain cancer in adults. Despite extensive treatment, tumors inevitably recur, leading to an average survival time shorter than 1.5 years. The 18 kDa translocator protein (TSPO) is abundantly expressed throughout the body including the central nervous system. The expression of TSPO increases in states of inflammation and brain injury due to microglia activation. Not least due to its location in the outer mitochondrial membrane, TSPO has been implicated with a broad spectrum of functions. These include the regulation of proliferation, apoptosis, migration, as well as mitochondrial functions such as mitochondrial respiration and oxidative stress regulation. TSPO is frequently overexpressed in GBM. Its expression level has been positively correlated to WHO grade, glioma cell proliferation, and poor prognosis of patients. Several lines of evidence indicate that TSPO plays a functional part in glioma hallmark features such as resistance to apoptosis, invasiveness, and proliferation. This review provides a critical overview of how TSPO could regulate several aspects of tumorigenesis in GBM, particularly in the context of the hallmarks of cancer proposed by Hanahan and Weinberg in 2011.
Collapse
Affiliation(s)
- Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig Maximilians University of Munich, 81377 Munich, Germany;
| | - Christian H. Wetzel
- Molecular Neurosciences, Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany;
| | | | - Nathalie L. Albert
- Department of Nuclear Medicine, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Philipp Beckhove
- Regensburg Center for Interventional Immunology (RCI) and Department Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.-M.A.); (A.V.-Z.)
- Correspondence:
| |
Collapse
|
5
|
Betlazar C, Middleton RJ, Banati R, Liu GJ. The Translocator Protein (TSPO) in Mitochondrial Bioenergetics and Immune Processes. Cells 2020; 9:cells9020512. [PMID: 32102369 PMCID: PMC7072813 DOI: 10.3390/cells9020512] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The translocator protein (TSPO) is an outer mitochondrial membrane protein that is widely used as a biomarker of neuroinflammation, being markedly upregulated in activated microglia in a range of brain pathologies. Despite its extensive use as a target in molecular imaging studies, the exact cellular functions of this protein remain in question. The long-held view that TSPO plays a fundamental role in the translocation of cholesterol through the mitochondrial membranes, and thus, steroidogenesis, has been disputed by several groups with the advent of TSPO knockout mouse models. Instead, much evidence is emerging that TSPO plays a fundamental role in cellular bioenergetics and associated mitochondrial functions, also part of a greater role in the innate immune processes of microglia. In this review, we examine the more direct experimental literature surrounding the immunomodulatory effects of TSPO. We also review studies which highlight a more central role for TSPO in mitochondrial processes, from energy metabolism, to the propagation of inflammatory responses through reactive oxygen species (ROS) modulation. In this way, we highlight a paradigm shift in approaches to TSPO functioning.
Collapse
Affiliation(s)
- Calina Betlazar
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| | - Ryan J. Middleton
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
| | - Richard Banati
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Guo-Jun Liu
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| |
Collapse
|
6
|
Romero DM, Berardino BG, Wolansky MJ, Kotler ML. From the Cover: Vulnerability of C6 Astrocytoma Cells After Single-Compound and Joint Exposure to Type I and Type II Pyrethroid Insecticides. Toxicol Sci 2016; 155:196-212. [PMID: 27815491 DOI: 10.1093/toxsci/kfw188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A primary mode-of-action of all pyrethroid insecticides (PYRs) is the disruption of the voltage-gated sodium channel electrophysiology in neurons of target pests and nontarget species. The neurological actions of PYRs on non-neuronal cells of the nervous system remain poorly investigated. In the present work, we used C6 astrocytoma cells to study PYR actions (0.1-50 μM) under the hypothesis that glial cells may be targeted by and vulnerable to PYRs. To this end, we characterized the effects of bifenthrin (BF), tefluthrin (TF), α-cypermethrin (α-CYP), and deltamethrin (DM) on the integrity of nuclear, mitochondrial, and lysosomal compartments. In general, 24- to 48-h exposures produced concentration-related impairment of cell viability. In single-compound, 24-h exposure experiments, effective concentration (EC)15s 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT assay) were computed as follows (in μM): BF, 16.1; TF, 37.3; α-CYP, 7.8; DM, 5.0. We found concentration-related damage in several C6-cell subcellular compartments (mitochondria, nuclei, and lysosomes) at ≥ 10-1 μM levels. Last, we examined a mixture of all PYRs (ie, Σ individual EC15) using MTT assays and subcellular analyses. Our findings indicate that C6 cells are responsive to nM levels of PYRs, suggesting that astroglial susceptibility may contribute to the low-dose neurological effects caused by these insecticides. This research further suggests that C6 cells may provide relevant information as a screening platform for pesticide mixtures targeting nervous system cells by expected and unexpected toxicogenic pathways potentially contributing to clinical neurotoxicity.
Collapse
Affiliation(s)
- Delfina M Romero
- Laboratorio de Toxicología de Mezclas Químicas.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,IQUIBICEN-Argentina National Research Council (CONICET)
| | - Bruno G Berardino
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,Laboratorio de Neuroepigenética
| | - Marcelo J Wolansky
- Laboratorio de Toxicología de Mezclas Químicas; .,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,IQUIBICEN-Argentina National Research Council (CONICET)
| | - Mónica L Kotler
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.,IQUIBICEN-Argentina National Research Council (CONICET).,Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina
| |
Collapse
|
7
|
TSPO PIGA Ligands Promote Neurosteroidogenesis and Human Astrocyte Well-Being. Int J Mol Sci 2016; 17:ijms17071028. [PMID: 27367681 PMCID: PMC4964404 DOI: 10.3390/ijms17071028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 01/05/2023] Open
Abstract
The steroidogenic 18 kDa translocator protein (TSPO) is an emerging, attractive therapeutic tool for several pathological conditions of the nervous system. Here, 13 high affinity TSPO ligands belonging to our previously described N,N-dialkyl-2-phenylindol-3-ylglyoxylamide (PIGA) class were evaluated for their potential ability to affect the cellular Oxidative Metabolism Activity/Proliferation index, which is used as a measure of astrocyte well-being. The most active PIGA ligands were also assessed for steroidogenic activity in terms of pregnenolone production, and the values were related to the metabolic index in rat and human models. The results showed a positive correlation between the increase in the Oxidative Metabolism Activity/Proliferation index and the pharmacologically induced stimulation of steroidogenesis. The specific involvement of steroid molecules in mediating the metabolic effects of the PIGA ligands was demonstrated using aminoglutethimide, a specific inhibitor of the first step of steroid biosynthesis. The most promising steroidogenic PIGA ligands were the 2-naphthyl derivatives that showed a long residence time to the target, in agreement with our previous data. In conclusion, TSPO ligand-induced neurosteroidogenesis was involved in astrocyte well-being.
Collapse
|
8
|
Perazzo JC, Tallis S, Delfante A, Souto PA, Lemberg A, Eizayaga FX, Romay S. Hepatic encephalopathy: An approach to its multiple pathophysiological features. World J Hepatol 2012; 4:50-65. [PMID: 22489256 PMCID: PMC3321490 DOI: 10.4254/wjh.v4.i3.50] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/19/2011] [Accepted: 02/24/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complex syndrome, ranging from subtle behavioral abnormalities to deep coma and death. Hepatic encephalopathy emerges as the major complication of acute or chronic liver failure. Multiplicity of factors are involved in its pathophysiology, such as central and neuromuscular neurotransmission disorder, alterations in sleep patterns and cognition, changes in energy metabolism leading to cell injury, an oxidative/nitrosative state and a neuroinflammatory condition. Moreover, in acute HE, a condition of imminent threat of death is present due to a deleterious astrocyte swelling. In chronic HE, changes in calcium signaling, mitochondrial membrane potential and long term potential expression, N-methyl-D-aspartate-cGMP and peripheral benzodiazepine receptors alterations, and changes in the mRNA and protein expression and redistribution in the cerebral blood flow can be observed. The main molecule indicated as responsible for all these changes in HE is ammonia. There is no doubt that ammonia, a neurotoxic molecule, triggers or at least facilitates most of these changes. Ammonia plasma levels are increased two- to three-fold in patients with mild to moderate cirrhotic HE and up to ten-fold in patients with acute liver failure. Hepatic and inter-organ trafficking of ammonia and its metabolite, glutamine (GLN), lead to hyperammonemic conditions. Removal of hepatic ammonia is a differentiated work that includes the hepatocyte, through the urea cycle, converting ammonia into GLN via glutamine synthetase. Under pathological conditions, such as liver damage or liver blood by-pass, the ammonia plasma level starts to rise and the risk of HE developing is high. Knowledge of the pathophysiology of HE is rapidly expanding and identification of focally localized triggers has led the development of new possibilities for HE to be considered. This editorial will focus on issues where, to the best of our knowledge, more research is needed in order to clarify, at least partially, controversial topics.
Collapse
Affiliation(s)
- Juan Carlos Perazzo
- Juan Carlos Perazzo, Silvina Tallis, Amalia Delfante, Pablo Andrés Souto, Abraham Lemberg, Francisco Xavier Eizayaga, Salvador Romay, Laboratory of Portal Hypertension and Hepatic Encephalopathy, Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 950, CP 1113, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
9
|
Madsen SJ, Sun CH, Tromberg BJ, Wallace VP, Hirschberg H. Photodynamic Therapy of Human Glioma Spheroids Using 5-Aminolevulinic Acid ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720128ptohgs2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Leite MC, Brolese G, de Almeida LMV, Piñero CC, Gottfried C, Gonçalves CA. Ammonia-induced alteration in S100B secretion in astrocytes is not reverted by creatine addition. Brain Res Bull 2006; 70:179-85. [PMID: 16782507 DOI: 10.1016/j.brainresbull.2006.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 04/26/2006] [Accepted: 05/06/2006] [Indexed: 11/20/2022]
Abstract
Hyperammonemia is a major element in the pathogenesis of hepatic encephalopathy (HE) and ammonia neurotoxicity involves an effect on the glutamatergic neurotransmitter system. Astrocytes are intimately related to glutamatergic neurotransmission and, in fact, many specific glial alterations have been reported as a result of ammonia exposure. S100B protein, particularly extracellular S100B, is used as a parameter of glial activation or commitment in several situations of brain injury. However, there is little information about this protein in ammonia toxicity and none about its secretion in astrocytes under ammonia exposure. In this study, we investigated S100B secretion in rat cortical astrocytes acutely exposed to ammonia, as well astrocyte morphology, glial fibrillary acidic protein (GFAP) content and glutamine synthetase (GS) activity. Moreover, we studied a possible effect of creatine on these glial parameters, since this compound has a putative role against ammonia toxicity in cell cultures. We found an increase in S100B secretion by astrocytes exposed to ammonia for 24h, accompanied by a decrease in GFAP content and GS activity. Since elevated and persistent extracellular S100B plays a toxic effect on neural cells, altered extracellular content of S100B induced by ammonia could contribute to the brain impairment observed in HE. Creatine addition did not prevent this increment in S100B secretion, but was able to prevent the decrease in GFAP content and GS activity induced by ammonia exposure.
Collapse
Affiliation(s)
- Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Levin E, Premkumar A, Veenman L, Kugler W, Leschiner S, Spanier I, Weisinger G, Lakomek M, Weizman A, Snyder SH, Pasternak GW, Gavish M. The peripheral-type benzodiazepine receptor and tumorigenicity: isoquinoline binding protein (IBP) antisense knockdown in the C6 glioma cell line. Biochemistry 2005; 44:9924-35. [PMID: 16026165 DOI: 10.1021/bi050150s] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peripheral-type benzodiazepine receptors (PBR) are constituted by three protein components, the isoquinoline binding protein (IBP), the voltage-dependent anion channel (VDAC), and the adenine nucleotide transporter (ANT). Recently, we found that high levels of PBR ligand binding in glioma cell lines correlate with in vitro tumorigenicity. To study whether enhanced PBR expression is causative or in response to cancer, we genetically modified C6 glioma cells. Antisense knockdown of the IBP resulted in more than 50% reductions in PBR ligand binding both in the mitochondrial and whole cell fractions, accompanied by similar reductions in IBP levels in these respective fractions. The IBP knockdown was accompanied by a 25% increase in cell number in confluent cultures. This correlated with an 8-fold increase in in vitro tumorigenicity, as assessed by anchorage independent growth. Cell cycle analysis indicated that knockdown of the IBP resulted in a 60% reduction in the number of cells in the pre-G1 apoptosis phase. This paralleled the reduction seen in apoptosis and cell death shown by DNA fragmentation and Trypan blue assays, respectively. Furthermore, knockdown of the IBP appeared to prevent induction of apoptosis by the antineoplastic agent, erucylphosphocholine. In addition, IBP knockdown prevented processing of the caspase 3 component of the apoptosis cascade by the erucylphosphocholine congener, erucylphospho-N,N,N-trimethylammonium. In conclusion, our results suggest that enhanced IBP expression, including enhanced PBR ligand binding, such as occurring in untreated C6 glioma cells, may provide a mechanism to increase apoptotic rates of cancer cells.
Collapse
Affiliation(s)
- Evgeny Levin
- Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Banati RB, Egensperger R, Maassen A, Hager G, Kreutzberg GW, Graeber MB. Mitochondria in activated microglia in vitro. ACTA ACUST UNITED AC 2005; 33:535-41. [PMID: 15906160 DOI: 10.1007/s11068-004-0515-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Revised: 11/18/2004] [Accepted: 12/08/2004] [Indexed: 11/26/2022]
Abstract
In the CNS, microglia become activated, i.e. change their functional state and phenotype, in response to a wide variety of pathological stimuli. Since this activation is triggered at a very low threshold and at the same time remains territorially restricted, the spatial distribution of activated microglia can be used as a sensitive, generic measure of the anatomical localisation of ongoing disease processes. One protein complex, undetectable in resting microglia but highly up-regulated upon activation in vivo and in vitro, is the 'peripheral benzodiazepine binding site', as measured by binding of the isoquinoline derivate PK11195. Particularly numerous in the outer membrane of mitochondria, this binding site has also been referred to as the 'mitochondrial benzodiazepine receptor'. The de novo expression of this receptor by activated microglia suggests that the process of activation may be associated with important qualitative changes in the state of mitochondria. Here, we provide confocal light- and electron microscopic evidence that the activation of microglia indeed entails conspicuous mitochondrial alterations. In cultured rat microglia stained with the fluorescent probe, JC-1, a sensitive indicator of mitochondrial membrane potential, we demonstrate that stimulation by bacterial lipopolysaccharide and interferon-gamma increases the number of microglial mitochondrial profiles and leads to marked changes in their morphology. Prominent elongated, "needle-like" mitochondria are a characteristic feature of activated microglia in vitro. Electron microscopically, an abundance of abnormal profiles, including circular cristae or ring- and U-shaped membranes, are found. Our observations support the notion that the previously reported increase in microglial binding of PK11195, that labelled with carbon-11 ([11C] (R)-PK11195) has clinical use for the visualisation of activated microglia in vivo by positron emission tomography, may at least in part relate to an increased number and altered functional state of microglial mitochondria.
Collapse
Affiliation(s)
- Richard B Banati
- School of Medical Radiation Sciences, and Ramaciotti Centre for Brain Imaging (Brain-Mind Research Institute), University of Sydney, East Street PO Box 170, Lidcombe NSW 1825, Australia
| | | | | | | | | | | |
Collapse
|
13
|
Knudsen TB, Green ML. Response characteristics of the mitochondrial DNA genome in developmental health and disease. ACTA ACUST UNITED AC 2005; 72:313-29. [PMID: 15662705 DOI: 10.1002/bdrc.20028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on mitochondrial biology in mammalian development; specifically, the dynamics of information transfer from nucleus to mitochondrion in the regulation of mitochondrial DNA genomic expression, and the reverse signaling of mitochondrion to nucleus as an adaptive response to the environment. Data from recent studies suggest that the capacity of embryonic cells to react to oxygenation involves a tradeoff between factors that influence prenatal growth/development and postnatal growth/function. For example, mitochondrial DNA replication and metabolic set points in nematodes may be determined by mitochondrial activity early in life. The mitochondrial drug PK11195, a ligand of the peripheral benzodiazepine receptor, has antiteratogenic and antidisease action in several developmental contexts in mice. Protein malnutrition during early life in rats can program mitochondrial DNA levels in adult tissues and, in humans, epidemiological data suggest an association between impaired fetal growth and insulin resistance. Taken together, these findings raise the provocative hypothesis that environmental programming of mitochondrial status during early life may be linked with diseases that manifest during adulthood. Genetic defects that affect mitochondrial function may involve the mitochondrial DNA genome directly (maternal inheritance) or indirectly (Mendelian inheritance) through nuclear-coded mitochondrial proteins. In a growing number of cases, the depletion of, or deletion in, mitochondrial DNA is seen to be secondary to mutation of key nuclear-coded mitochondrial proteins that affect mitochondrial DNA replication, expression, or stability. These defects of intergenomic regulation may disrupt the normal cross-talk or structural compartmentation of signals that ultimately regulate mitochondrial DNA integrity and copy number, leading to depletion of mitochondrial DNA.
Collapse
Affiliation(s)
- Thomas B Knudsen
- Department of Molecular, Cellular and Craniofacial Biology, School of Dentistry, Birth Defects Center, University of Louisville, Louisville, Kentucky 40202, USA.
| | | |
Collapse
|
14
|
Veenman L, Levin E, Weisinger G, Leschiner S, Spanier I, Snyder SH, Weizman A, Gavish M. Peripheral-type benzodiazepine receptor density and in vitro tumorigenicity of glioma cell lines. Biochem Pharmacol 2004; 68:689-98. [PMID: 15276076 DOI: 10.1016/j.bcp.2004.05.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2004] [Accepted: 05/04/2004] [Indexed: 11/20/2022]
Abstract
The peripheral-type benzodiazepine receptor is found primarily on the outer mitochondrial membrane and consists of three subunits: the 18kDa isoquinoline binding protein, the 32kDa voltage-dependent anion channel, and the 30kDa adenine nucleotide transporter. The current study evaluates the potential importance of peripheral-type benzodiazepine receptor expression in glioma cell tumorigenicity. While previous studies have suggested that peripheral-type benzodiazepine receptor-binding may be relatively increased in tumor tissue and cells, so far, little is known about the relationships between peripheral-type benzodiazepine receptor density and factors underlying tumorigenicity. In the present study, we found in glioma cell lines (C6, U87MG, and T98G), that peripheral-type benzodiazepine receptor ligand-binding density is relatively high for C6 and low for T98G, while U87MG displays intermediate levels. Cell growth of these cell lines in soft agar indicated that high levels of peripheral-type benzodiazepine receptor-binding were associated with increased colony size, indicative of their ability to establish anchorage independent cell proliferation. Potential causes for differences in tumorigenicity between these cell lines were suggested by various cell death and proliferation assays. Cell death, including apoptosis, appeared to be low in C6, and high in T98G, while U87MG displayed intermediate levels in this respect. Cell proliferation appeared to be high in C6, low in T98G, and intermediate in U87MG. In conclusion, our study suggests that relatively high peripheral-type benzodiazepine receptor-binding density is associated with enhanced tumorigenicity and cell proliferation rate. In particular, apoptosis appears to be an important tumorigenic determinant in these glioma cell lines. Moreover, application of PBR-specific ligands indicated that PBR indeed are functionally involved in apoptosis in glioma cells.
Collapse
Affiliation(s)
- Leo Veenman
- Department of Pharmacology, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, P.O.B. 9649, Bat-Galim, Haifa 31096, Israel
| | | | | | | | | | | | | | | |
Collapse
|
15
|
O'Hara MF, Nibbio BJ, Craig RC, Nemeth KR, Charlap JH, Knudsen TB. Mitochondrial benzodiazepine receptors regulate oxygen homeostasis in the early mouse embryo. Reprod Toxicol 2003; 17:365-75. [PMID: 12849846 DOI: 10.1016/s0890-6238(03)00035-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The peripheral benzodiazepine receptor (Bzrp) has been implicated in the control of several processes, including mitochondrial biogenesis and embryo development. The present study examined the impact that specific Bzrp ligands have on oxygen homeostasis in the early mouse embryo. Day 9 embryos at the 16-18 somite pair stage were exposed to standard (21% oxygen) and suboptimal (5% oxygen) oxygen tensions in whole embryo culture. Analysis of gene expression used relative PCR to monitor changes in nuclear respiratory factor-1 (Nrf1), mitochondrial 16S ribosomal RNA (16S rRNA), and genes for several glycolytic enzymes. Ocular development was highly sensitive to periods of hypoxia through a mechanism blocked with the potent Bzrp ligand PK11195. Hypoxia led to a decline of Nrf1 and 16S rRNA levels also through a mechanism blocked with PK11195. Similar activity was observed for FGIN-1-27 whereas Ro5-4864 had contradictory effects. Morpholino-based gene knockdown of Nrf1 (anti-NRF1) produced a sequence-specific decrease in 16S rRNA insensitive to PK11195. These functional relationships suggest that Bzrp-dependent signals regulate the Nrf1 --> Tfam1 --> mtDNA --> 16S rRNA pathway in response to oxygen levels. The activity of PK11195 most likely has a pharmacodynamic basis with regards to specific embryonic precursor target cell populations, transducing a mitochondrial signal to an Nrf1 response analogous to retrograde regulation in yeast for mitochondria-to-nucleus signaling.
Collapse
Affiliation(s)
- Michael F O'Hara
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
16
|
Charlap JH, Donahue RJ, Knudsen TB. Exposure-disease continuum for 2-chloro-2'-deoxyadenosine, a prototype ocular teratogen. 3. Intervention with PK11195. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2003; 67:108-15. [PMID: 12769506 DOI: 10.1002/bdra.10026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Treatment of pregnant mice with 2-chloro-2'-deoxyadenosine (2CdA) on Day 8 of gestation induces microphthalmia through a mechanism linked to the p53 tumor suppressor pathway. The present study defines the response of Day 8 mouse embryos through time with respect to pharmacologic intervention with PK11195, a ligand of the mitochondrial peripheral benzodiazepine receptor (Bzrp). METHODS Pregnant CD-1 mice dosed with 2CdA with or without PK11195 on gestation Day 8 provided fetuses for teratologic evaluation on Day 14 and Day 17; HPLC measured pyridine nucleotides (NADH/NAD+) at 1.5 hr, RT-PCR measured mitochondrial 16S rRNA abundance at 3.0 hr, and p53 protein induction was assessed with immunostaining at 4.5 hr postexposure. RESULTS The mean incidences of malformed fetuses were significantly higher in the 7.5 mg/kg 2CdA treatment group (50.2% malformed) vs. the 2CdA + 4.0 mg/kg PK11195 co-treatment group (4.4% malformed). Malformed fetuses displayed a range of ocular defects that included microphthalmia and keratolenticular dysgenesis (Peters anomaly). No malformations were observed in the control or PK11195 alone groups. PK11195 also protected litters from increased resorption rates and fetal weight reduction. It did not rescue early effects on NADH balance (1.5 hr) or 16S rRNA expression (3.0 hr); however, the p53 response (4.5 hr) was downgraded in 2CdA + PK11195 embryos vs. 2CdA alone. By delaying the administration of PK11195 in 1.5 hr intervals it was determined that the window for protection closed between 4.5 to 6.0 hr after 2CdA. CONCLUSIONS The capacity of PK11195 to suppress the pathogenesis of microphthalmia implies a critical role for mitochondrial peripheral benzodiazepine receptors in the p53-dependent mode of action of 2CdA on ocular development.
Collapse
Affiliation(s)
- Jeffrey H Charlap
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
17
|
Upregulation of peripheral-type (mitochondrial) benzodiazepine receptors in hyperammonemic syndromes: consequences for neuronal excitability. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1569-2558(03)31044-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Desjardins P, Butterworth RF. The "peripheral-type" benzodiazepine (omega 3) receptor in hyperammonemic disorders. Neurochem Int 2002; 41:109-14. [PMID: 12020611 DOI: 10.1016/s0197-0186(02)00031-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Increased levels of brain ammonia occur in both congenital and acquired hyperammonemic syndromes including hepatic encephalopathy, fulminant hepatic failure, Reye's syndrome and congenital urea cycle disorders. In addition to its effect on neurotransmission and energy metabolism, ammonia modulates the expression of various genes including the astrocytic "peripheral-type" benzodiazepine (or omega 3) receptor (PTBR). Increased expression of the isoquinoline carboxamide binding protein (IBP), one of the components of the PTBR complex, is observed in brain and peripheral tissues following chronic liver failure as well as in cultured astrocytes exposed to ammonia. Increased densities of binding sites for the PTBR ligand [3H]-PK11195 are also observed in these conditions as well as in brains of animals with acute liver failure, congenital urea cycle disorders and in patients who died in hepatic coma. The precise role of PTBR in brain function has not yet fully elucidated, but among other functions, PTBR mediates the transport of cholesterol across the mitochondrial membrane and thus plays a key role in the biosynthesis of neurosteroids some of which modulate major neurotransmitter systems such as the gamma-aminobutyric acid (GABA(A)) and glutamate (N-methyl-D-aspartate (NMDA)) receptors. Activation of PTBR in chronic and acute hyperammonemia results in increased synthesis of neurosteroids which could lead to an imbalance between excitatory and inhibitory neurotransmission in the CNS. Preliminary reports suggest that positron emission tomography (PET) studies using [11C]-PK11195 may be useful for the assessment of the neurological consequences of chronic liver failure.
Collapse
Affiliation(s)
- Paul Desjardins
- Neuroscience Research Unit, Hôpital Saint-Luc du Chum, University of Montreal, 1058 St-Denis Street, Que., H2X 3J4, Montreal, Canada
| | | |
Collapse
|
19
|
Abstract
Hyperammonemia resulting from inherited urea cycle enzyme deficiencies or liver failure results in severe central nervous system dysfunction including brain edema, convulsions and coma. Neuropathologic evaluation in these disorders reveals characteristic alterations of astrocyte morphology ranging from cell swelling (acute hyperammonemia) to Alzheimer Type II astrocytosis (chronic hyperammonemia). Having no effective urea cycle, brain relies on glutamine synthesis for the removal of excess ammonia and the enzyme responsible, glutamine synthetase, has a predominantly astrocytic localization. Accumulation of ammonia in brain results in a redistribution of cerebral blood flow and metabolism from cortical to sub-cortical structures. In addition to changes in astrocyte morphology, increased brain ammonia concentrations result in alterations in expression of key astrocyte proteins including glial fibrillary acidic protein, glutamate and glycine transporters and "peripheral-type" (mitochondrial) benzodiazepine receptors. Such changes result in alterations of astrocytic volume and increased extracellular concentrations of excitatory and inhibitory substances. In addition, the ammonium ion has direct effects on excitatory-inhibitory transmission via distinct mechanisms involving cellular chloride extrusion and postsynaptic receptor function. Acute ammonia exposure leads to activation of NMDA receptors and their signal transduction pathways. Chronic hyperammonemia also results in increased concentrations of neuroactive L-tryptophan metabolites including serotonin and quinolinic acid. Therapy in hyperammonemic syndromes continues to rely on ammonia-lowering strategies via peripheral mechanisms (reduction of ammonia production in the gastrointestinal tract, increased ammonia removal by muscle).
Collapse
Affiliation(s)
- Vicente Felipo
- Department of Neurobiology, Laboratory of Neurobiology, Instituto de Investigaciones Citologicas, Amadeo de Saboya 4, Fundacion Valenciana de Investigaciones Biomedicas, 46010 Valencia, Spain
| | | |
Collapse
|
20
|
O'Hara MF, Charlap JH, Craig RC, Knudsen TB. Mitochondrial transduction of ocular teratogenesis during methylmercury exposure. TERATOLOGY 2002; 65:131-44. [PMID: 11877777 DOI: 10.1002/tera.10028] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The purpose of the present study was to investigate the correlation between MeHg developmental toxicity and mitochondrial 16S ribosomal RNA (16S rRNA) expression in the embryonic forebrain and pharmacological intervention with PK11195, a ligand for the mitochondrial peripheral-type benzodiazepine receptor (Bzrp). METHODS Pregnant CD-1 mice were dosed with methylmercury (II) chloride (MeHg) with or without 4 mg/kg PK11195 on Day 9 of gestation. Fetuses were examined on Day 9 (RT-PCR), Day 15 (histology), and Day 17 (teratology). RESULTS MeHg (10 mg/kg) induced microcephaly, microphthalmia and cleft palate. The mean incidences of malformed fetuses were 47.7% with MeHg (P < 0.001) and 19.2% with PK11195 co-treatment (P < 0.01 for rescue). Cleft palates were 12.8% and 1.5%, respectively. An estimate of neurocranial circumference revealed a small (5%) but highly significant (P < 0.001) reduction that was rescued in a subset of co-treated fetuses (P < 0.05). RT-PCR analysis of the Day 9 forebrain revealed inhibition of 16S rRNA expression 3.0 hr after 5 mg/kg MeHg exposure (P < 0.001). This effect was rescued with PK11195 (P < 0.001). Preliminary findings revealed a similar response-rescue in cultured embryos exposed to 1 microM Hg(II) when exogenous 5-aminolevulinic acid (ALA) was added. Protoporphyrin-IX (PP9), the penultimate precursor to heme and an endogenous ligand of the Bzrp, increased in a manner that was ALA-dependent and PK11195-sensitive. CONCLUSION At least some teratological effects of Hg appear linked with late steps in the heme biosynthesis pathway through the Bzrp. PK11195, a ligand for these mitochondrial receptors, significantly lessens the risk of microphthalmia, microcephaly, and cleft palate in Hg-poisoned embryos.
Collapse
Affiliation(s)
- Michael F O'Hara
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
21
|
Fennell DA, Corbo M, Pallaska A, Cotter FE. Bcl-2 resistant mitochondrial toxicity mediated by the isoquinoline carboxamide PK11195 involves de novo generation of reactive oxygen species. Br J Cancer 2001; 84:1397-404. [PMID: 11355954 PMCID: PMC2363650 DOI: 10.1054/bjoc.2001.1788] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Resistance to apoptosis is a major obstacle preventing effective therapy for malignancy. Mitochondria localized anti-death proteins of the Bcl-2 family play a central role in inhibiting apoptosis and therefore present valid targets for novel therapy. The peripheral benzodiazepine receptor (PBR) shares a close physical association with the permeability transition pore complex (PTPC), a pivotal regulator of cell death located at mitochondrial contact sites. In this study we investigated the cytotoxicity of the PBR ligand, PK11195, in the micromolar concentration range. PK11195 induced antioxidant inhibitable collapse of the inner mitochondrial membrane potential (DeltaPsi(m)) and mitochondrial swelling in HL60 human leukaemia cells, but not in SUDHL4 lymphoma cells (which exhibited a higher level of reduced glutathione and relative tolerance to chemotherapy or pro-oxidant induced DeltaPsi(m)dissipation). PK11195 induced the production of hydrogen peroxide that was not inhibited by Bcl-2 transfection, nor depletion of mitochondrial DNA. ROS production was however blocked by protonophore, implicating a requirement for DeltaPsi(m). Our findings suggest that PK11195-induced cytotoxicity relies upon Bcl-2 resistant generation of oxidative stress; a process only observed at concentrations several orders of magnitude higher that required to saturate its receptor.
Collapse
Affiliation(s)
- D A Fennell
- Department of Experimental Haematology, St Bartholomew's & The Royal London School of Medicine, Turner Street, London, E1 2AD, UK
| | | | | | | |
Collapse
|
22
|
Beurdeley-Thomas A, Miccoli L, Oudard S, Dutrillaux B, Poupon MF. The peripheral benzodiazepine receptors: a review. J Neurooncol 2001; 46:45-56. [PMID: 10896204 DOI: 10.1023/a:1006456715525] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peripheral benzodiazepine receptors (PBRs) have been identified in various peripheral tissues as well as in glial cells in the brain. This review describes the tissue and subcellular distribution of the PBR in mammalian tissues and analyzes its many putative endogenous ligands. It deals with the pharmacological, structural and molecular characterization of the PBR, the proteins associated with the receptor (VDAC, ANC, PRAX-1) and their roles in cell growth and differentiation, cancer, steroid biosynthesis, and other physiological roles.
Collapse
Affiliation(s)
- A Beurdeley-Thomas
- Laboratoire de Cytogénétique Moléculaire et Oncologie, CNRS UMR 147, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
23
|
Gosslau A, Dittrich W, Willig A, Jaros PP. Cytological effects of platelet-derived growth factor on mitochondrial ultrastructure in fibroblasts. Comp Biochem Physiol A Mol Integr Physiol 2001; 128:241-9. [PMID: 11223385 DOI: 10.1016/s1095-6433(00)00303-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The goal of this study was to evaluate morphofunctional changes in mitochondrial ultrastructure after platelet-derived growth factor application in fibroblasts as an indicator of mitochondrial activation in processes like wound healing. NRK-49F fibroblasts were synchronized, incubated with PDGF (platelet-derived growth factor) and studied by electron microscopy. Volume density (Vv), numerical density (Nv) and surface density (Sv) were measured by stereological analysis. Application of PDGF on NRK-49F caused an increase in mitochondrial volume density by 57% and surface area of cristae per mitochondrion by 65%. The numerical density of the mitochondria was decreased in the PDGF-treated cells by 23%, but at the same time their mean volume was increased. Furthermore, the mitochondria had a complex and highly variable shape both in control and PDGF-treated cells, possibly indicating the existence of a mitochondrial reticulum. The results demonstrated that biochemically active membrane systems in fibroblast mitochondria are enlarged as a direct effect of small doses of platelet-derived growth factor and support the concept that this factor and related peptides serve as mitogens for connective tissue forming cells. Thus, in mitogenic processes like wound healing, the high energy demand of fibroblasts is provided by the increase of the inner surface of mitochondria.
Collapse
Affiliation(s)
- A Gosslau
- Abteilung Zoophysiologie, Universität Oldenburg, Fachbereich 7, Postfach 2503, D-29111, Oldenburg, Germany
| | | | | | | |
Collapse
|
24
|
Sänger N, Strohmeier R, Kaufmann M, Kuhl H. Cell cycle-related expression and ligand binding of peripheral benzodiazepine receptor in human breast cancer cell lines. Eur J Cancer 2000; 36:2157-63. [PMID: 11044655 DOI: 10.1016/s0959-8049(00)00298-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this study was to measure the expression of peripheral benzodiazepine receptors (PBR) as well as mitochondria content in different phases of the cell cycle of BT-20 and MCF-7 breast cancer cell lines, using two-parameter flow cytometric analyses. The PBR expression as well as mitochondria mass, were found to increase as cells pass through different stages of the cell cycle, whereas the amount of PBR in quiescent cells was very low. Binding capacity for the PBR ligand [3H]-Ro5-4864 was strongly related to the phase of the cell cycle with a positive correlation (r=0.98) with a high percentage of cells in S phase. Incubation of BT-20 cells in serum-deprived medium with nanomolar concentrations of Ro5-4864 caused an increase in S phase cells. This effect was not observed in MCF-7 cells. Using micromolar concentrations of Ro5-4864, both BT-20 and MCF-7 cells were reversibly arrested in the G(0/1) phase.
Collapse
Affiliation(s)
- N Sänger
- Department of Gynecology and Obstetrics, Johann Wolfgang Goethe University, Theodor-Stern Kai 7, 60590, Frankfurt, Germany
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- D A Fennell
- Department of Experimental Haematology, St Bartholomew's and The Royal London School of Medicine, UK
| | | |
Collapse
|
26
|
Fennell DA, Cotter FE. Controlling the mitochondrial gatekeeper for effective chemotherapy. Br J Haematol 2000. [DOI: 10.1111/j.1365-2141.2000.02271.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Madsen SJ, Sun CH, Tromberg BJ, Wallace VP, Hirschberg H. Photodynamic therapy of human glioma spheroids using 5-aminolevulinic acid. Photochem Photobiol 2000; 72:128-34. [PMID: 10911737 DOI: 10.1562/0031-8655(2000)072<0128:ptohgs>2.0.co;2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The response of human glioma spheroids to 5-aminolevulinic acid (ALA)-mediated photodynamic therapy (PDT) is investigated. A two-photon fluorescence microscopy technique is used to show that human glioma cells readily convert ALA to protoporphyrin IX throughout the entire spheroid volume. The central finding of this study is that the response of human glioma spheroids to ALA-mediated PDT depends not only on the total fluence, but also on the rate at which the fluence is delivered. At low fluences (< or = 50 J cm-2), lower fluence rates are more effective. At a fluence of 50 J cm-2, near-total spheroid kill is observed at fluence rates of as low as 10 mW cm-2. The fluence rate effect is not as pronounced at higher fluences (> 50 J cm-2), where a favorable response is observed throughout the range of fluence rates investigated. The clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- S J Madsen
- Department of Health Physics, University of Nevada, Las Vegas 89154-3037, USA.
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Miccoli L, Oudard S, Beurdeley-Thomas A, Dutrillaux B, Poupon MF. Effect of 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide (PK11195), a specific ligand of the peripheral benzodiazepine receptor, on the lipid fluidity of mitochondria in human glioma cells. Biochem Pharmacol 1999; 58:715-21. [PMID: 10413311 DOI: 10.1016/s0006-2952(99)00151-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When human glioma cells were incubated for 24 hr in serum-free medium with nanomolar concentrations of 1-(2-chlorophenyl)-N-methyl-N(1-methylpropyl)-3-isoquinoline carboxamide (PK11195), a specific ligand of the peripheral benzodiazepine receptor (PBR), a significant increase in the membrane fluidity of mitochondria isolated from these cells was registered. These effects were not observed with a shorter incubation time (2 hr) of the cells with PK11195 nor in the presence of serum. Other significant associated changes were observed: a significant increase of 16+/-4% of [3H]thymidine incorporation into DNA was detected in cells in the presence of PK11195 in serum-free medium, and an increase of 33+/-5% as compared to controls in nonyl acridine orange uptake, as indicator of mitochondrial mass, was also registered in cells treated with 10 nM PK11195. [3H]PK11195 binding was decreased in cells incubated with PK11195; a 45% decrease compared to controls was obtained. In view of the effect of PBR ligands on DNA synthesis, changes in mitochondrial lipid metabolism through interaction with PBRs might lead to biogenesis of mitochondria to support the increased metabolic requirements for cell division, which is even higher in malignant cells.
Collapse
Affiliation(s)
- L Miccoli
- Laboratoire de Cytogénétique Moléculaire et Oncologie, CNRS UMR 147, Institut Curie, Paris, France
| | | | | | | | | |
Collapse
|
30
|
Krueger KE. Molecular and functional properties of mitochondrial benzodiazepine receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:453-70. [PMID: 8547305 DOI: 10.1016/0304-4157(95)00016-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- K E Krueger
- Department of Cell Biology, Georgetown University School of Medicine, Washington, D.C. 20007, USA
| |
Collapse
|
31
|
Miyazawa N, Diksic M, Yamamoto Y. Chronological study of peripheral benzodiazepine binding sites in the rat brain stab wounds using [3H] PK-11195 as a marker for gliosis. Acta Neurochir (Wien) 1995; 137:207-16. [PMID: 8789663 DOI: 10.1007/bf02187195] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronological studies of the development of the peripheral benzodiazepine receptor sites were undertaken with the goal of evaluating the sensitivity of this marker for the study of the gliosis development in the injured brain. No significant increase in [3H] PK-11195 binding occurred in the rat brain stab wound one day following the puncture. A significant increase in the receptor density (Bmax) from the second day onward was observed. The Bmax reached its highest levels in the grey matter on the sixth day after a 23-gauge needle wound (8.75 +/- 0.09; pmol mg-tissue-1) and on the seventh day after an 18-gauge needle wound (8.98 +/- 0.31 pmol mg-tissue-1). In the white matter, the Bmax was greatest seven days after the wound (3.42 +/- 0.07; pmol mg-tissue-1; 23-gauge needle and 3.56 +/- 0.1 pmol mg-tissue-1 in the 18-gauge needle injury). Between 30 and 60 days after the wound, the Bmax was significantly lower than the Bmax observed between 6 and 14 days. The Bmax in the wound produced with needles was seven to eight times greater than the Bmax in the grey matter of the ipsilateral and contralateral cortices. Histological examination showed that there were no astrocytes or macrophages in the stab wound one day after the lesion. However, the glial fibrillary acidic protein positive cells and macrophages appeared on D3 after an injury. Gliosis, as measured by the PK-11195 binding, was also observed in the remote contralateral cortex. Data shows that PK-11195 binding is a very sensitive method of evaluating brain injury and could be of great value in studying progressive injuries in the living human brain in conjunction with positron emission tomography.
Collapse
Affiliation(s)
- N Miyazawa
- Cone Laboratory for Neurosurgical Research, Montreal Neurological Institute, Quebec, Canada
| | | | | |
Collapse
|
32
|
Abstract
Using PK 11195, a high affinity ligand for peripheral benzodiazepine receptors (PBZr), binding sites in isolated mitochondrial (m-fraction) and microsomal fractions (p-fraction) from R-3327 Dunning AT-1 tumors, ventral and dorsolateral prostate were studied. Binding of PK 11195 in both m- and p-fractions from AT-1 tumors, but only in m-fraction from ventral and dorsolateral prostate, was specific, saturable, and of high affinity. The PBZr density in m-fraction from AT-1 tumor was 6-fold and 20-fold higher than that in ventral and dorsolateral prostate, respectively. The receptor density in p-fraction from AT-1 tumors was approximately 25% of that found in the m-fraction. Clear differences were observed in the competition by both diazepam and flunitrazepam for binding sites in m- and p-fractions from tumors. These data indicate that the receptors were not only localized to the mitochondria, but were also present in considerable amounts in the microsomal fractions. The unusually high amounts of receptors in the fast growing anaplastic prostatic tumor suggest their involvement in the regulation of cell proliferation and possibly in tumorigenesis.
Collapse
Affiliation(s)
- S Batra
- Kabi Pharmacia Oncology, University of Lund, Sweden
| | | |
Collapse
|
33
|
Young JK. Immunoreactivity for diazepam binding inhibitor in Gomori-positive astrocytes. REGULATORY PEPTIDES 1994; 50:159-65. [PMID: 7514799 DOI: 10.1016/0167-0115(94)90031-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A polypeptide termed diazepam binding inhibitor (DBI), capable of binding to receptor sites on glial mitochondria, is known to be present in glial cells and is particularly abundant in areas near circumventricular organs of the brain such as the arcuate nucleus of the hypothalamus. DBI appears to stimulate steroid synthesis and/or transport in glial mitochondria. The arcuate nucleus also contains large numbers of specialized glia, termed Gomori-positive astrocytes, that are estrogen-sensitive and which possess highly stained, heme-containing cytoplasmic granules. This study was performed to determine if these Gomori-positive astrocytes are immunoreactive for DBI. A rabbit antibody to DBI, but not pre-immune serum, stained Gomori-positive glia and suggests that these glia are partly responsible for the high levels of DBI in circumventricular organs. DBI in these glia may be related to functional responses of the hypothalamus to steroid hormones.
Collapse
Affiliation(s)
- J K Young
- Department of Anatomy College of Medicine, Howard University, Washington, DC 20059
| |
Collapse
|