1
|
Sun YY, Wu YJ. Tri-ortho-cresyl phosphate induces axonal degeneration in chicken DRG neurons by the NAD+ pathway. Toxicol Lett 2022; 363:77-84. [DOI: 10.1016/j.toxlet.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
|
2
|
Abou-Donia MB, Brahmajothi MV. Novel Approach for Detecting the Neurological or Behavioral Impact of Physiological Episodes (PEs) in Military Aircraft Crews. Mil Med 2020; 185:383-389. [DOI: 10.1093/milmed/usz295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Introduction
Military and civil aviation have documented physiological episodes among aircrews. Therefore, continued efforts are being made to improve the internal environment. Studies have shown that exposures to many organic compounds present in emissions are known to cause a variety of physiological symptoms. We hypothesize that these compounds may reversibly inhibit acetylcholinesterase, which may disrupt synaptic signaling. As a result, neural proteins leak through the damaged blood-brain barrier into the blood and in some, elicit an autoimmune response.
Materials and Methods
Neural-specific autoantibodies of immunoglobulin-G (IgG) class were estimated by the Western blotting technique in the sera of 26 aircrew members and compared with the sera of 19 normal healthy nonaircrew members, used as controls.
Results
We found significantly elevated levels of circulating IgG-class autoantibodies to neurofilament triplet proteins, tubulin, microtubule-associated tau proteins (Tau), microtubule-associated protein-2, myelin basic protein, and glial fibrillary acidic protein, but not S100 calcium-binding protein B compared to healthy controls.
Conclusion
Repetitive physiological episodes may initiate cellular injury, leading to neuronal degeneration in selected individuals. Diagnosis and intervention should occur at early postinjury periods. Use of blood-based biomarkers to assess subclinical brain injury would help in both diagnosis and treatment.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, PO Box 3813, LSRC, 308 Research Drive, Durham, NC 27710
| | - Mulugu V Brahmajothi
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, PO Box 3813, LSRC, 308 Research Drive, Durham, NC 27710
| |
Collapse
|
3
|
De novo Blood Biomarkers in Autism: Autoantibodies against Neuronal and Glial Proteins. Behav Sci (Basel) 2019; 9:bs9050047. [PMID: 31035713 PMCID: PMC6563083 DOI: 10.3390/bs9050047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASDs) are the most common neurodevelopmental disorders with unidentified etiology. The behavioral manifestations of ASD may be a consequence of genetic and/or environmental pathology in neurodevelopmental processes. In this limited study, we assayed autoantibodies to a panel of vital neuronal and glial proteins in the sera of 40 subjects (10 children with ASD and their mothers along with 10 healthy controls, age-matched children and their mothers). Serum samples were screened using Western Blot analysis to measure immunoglobulin (IgG) reactivity against a panel of 9 neuronal proteins commonly associated with neuronal degeneration: neurofilament triplet proteins (NFP), tubulin, microtubule-associated proteins (tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), myelin-associated glycoprotein (MAG), α-synuclein (SNCA) and astrocytes proteins such as glial fibrillary acidic protein (GFAP) and S100B protein. Our data show that the levels of circulating IgG class autoantibodies against the nine proteins were significantly elevated in ASD children. Mothers of ASD children exhibited increased levels of autoantibodies against all panel of tested proteins except for S100B and tubulin compared to age-matched healthy control children and their mothers. Control children and their mothers showed low and insignificant levels of autoantibodies to neuronal and glial proteins. These results strongly support the importance of anti-neuronal and glial protein autoantibodies biomarker in screening for ASD children and further confirm the importance of the involvement of the maternal immune system as an index that should be considered in fetal in utero environmental exposures. More studies are needed using larger cohort to verify these results and understand the importance of the presence of such autoantibodies in children with autism and their mothers, both as biomarkers and their role in the mechanism of action of autism and perhaps in its treatment.
Collapse
|
4
|
El Rahman HAA, Salama M, Gad El-Hak SA, El-Harouny MA, ElKafrawy P, Abou-Donia MB. A Panel of Autoantibodies Against Neural Proteins as Peripheral Biomarker for Pesticide-Induced Neurotoxicity. Neurotox Res 2017; 33:316-336. [PMID: 28875469 DOI: 10.1007/s12640-017-9793-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/21/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
Abstract
In the present study, we screened the sera of subjects chronically exposed to mixtures of pesticides (composed mainly of organophosphorus compounds (OPs) and others) and developed neurological symptoms for the presence of autoantibodies against cytoskeletal neural proteins. OPs have a well-characterized clinical profile resulting from acute cholinergic crisis. However, some of these compounds cause neuronal degeneration and demyelination known as organophosphorus compound-induced delayed neurotoxicity (OPIDN) and/or organophosphorus compound-induced chronic neurotoxicity (OPICN). Studies from our group have demonstrated the presence of autoantibodies to essential neuronal and glial proteins against cytoskeletal neural proteins in patients with chemical-induced brain injury. In this study, we screened the serum of 50 pesticide-exposed subjects and 25 non-exposed controls, using Western blot analysis against the following proteins: neurofilament triplet proteins (NFPs), tubulin, microtubule-associated tau proteins (Tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), myelin-associated glycoprotein (MAG), glial fibrillary acidic protein (GFAP), calcium-calmodulin kinase II (CaMKII), glial S100-B protein, and alpha-synuclein (SNCA). Serum reactivity was measured as arbitrary chemiluminescence units. As a group, exposed subjects had significantly higher levels of autoantibody reactivity in all cases examined. The folds of increase in of autoantibodies against neural proteins of the subjects compared to healthy humans in descending order were as follows: MBP, 7.67, MAG 5.89, CaMKII 5.50, GFAP 5.1, TAU 4.96, MAP2 4.83, SNCA 4.55, NFP 4.55, S-100B 2.43, and tubulin 1.78. This study has demonstrated the presence of serum autoantibodies to central nervous system-specific proteins in a group of farmers chronically exposed to pesticides who developed neurological signs and symptoms of neural injury. These autoantibodies can be used as future diagnostic/therapeutic target for OP-induced neurotoxicity.
Collapse
Affiliation(s)
- Heba Allah Abd El Rahman
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Salama
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Seham A Gad El-Hak
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona A El-Harouny
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Mohamed B Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA.
| |
Collapse
|
5
|
Abou-Donia MB, Conboy LA, Kokkotou E, Jacobson E, Elmasry EM, Elkafrawy P, Neely M, Bass CR'D, Sullivan K. Screening for novel central nervous system biomarkers in veterans with Gulf War Illness. Neurotoxicol Teratol 2017; 61:36-46. [PMID: 28286177 DOI: 10.1016/j.ntt.2017.03.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/19/2022]
Abstract
Gulf War illness (GWI) is primarily diagnosed by symptom report; objective biomarkers are needed that distinguish those with GWI. Prior chemical exposures during deployment have been associated in epidemiologic studies with altered central nervous system functioning in veterans with GWI. Previous studies from our group have demonstrated the presence of autoantibodies to essential neuronal and glial proteins in patients with brain injury and autoantibodies have been identified as candidate objective markers that may distinguish GWI. Here, we screened the serum of 20 veterans with GWI and 10 non-veteran symptomatic (low back pain) controls for the presence of such autoantibodies using Western blot analysis against the following proteins: neurofilament triplet proteins (NFP), tubulin, microtubule associated tau proteins (Tau), microtubule associated protein-2 (MAP-2), myelin basic protein (MBP), myelin associated glycoprotein (MAG), glial fibrillary acidic protein (GFAP), calcium-calmodulin kinase II (CaMKII) and glial S-100B protein. Serum reactivity was measured as arbitrary chemiluminescence units. As a group, veterans with GWI had statistically significantly higher levels of autoantibody reactivity in all proteins examined except S-100B. Fold increase of the cases relative to controls in descending order were: CaMKII 9.27, GFAP 6.60, Tau 4.83, Tubulin 4.41, MAG 3.60, MBP 2.50, NFP 2.45, MAP-2 2.30, S-100B 1.03. These results confirm the continuing presence of neuronal injury/gliosis in these veterans and are in agreement with the recent reports indicating that 25years after the war, the health of veterans with GWI is not improving and may be getting worse. Such serum autoantibodies may prove useful as biomarkers of GWI, upon validation of the findings using larger cohorts.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States.
| | - Lisa A Conboy
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Efi Kokkotou
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Eric Jacobson
- Department of Global Health and Social Development, Harvard Medical School, United States; Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States
| | - Eman M Elmasry
- Department of Microbiology, Zagazig University, Zagazig, Egypt
| | - Passent Elkafrawy
- Department of Math and Computer Science, Menoufia University, Shebin ElKom, Egypt
| | - Megan Neely
- Department of Biostatistics & Bioinformatics, Duke University Medical Center, United States
| | | | | |
Collapse
|
6
|
Abou-Donia MB, Siracuse B, Gupta N, Sobel Sokol A. Sarin (GB, O-isopropyl methylphosphonofluoridate) neurotoxicity: critical review. Crit Rev Toxicol 2016; 46:845-875. [PMID: 27705071 PMCID: PMC5764759 DOI: 10.1080/10408444.2016.1220916] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sarin (GB, O-isopropyl methylphosphonofluoridate) is a potent organophosphorus (OP) nerve agent that inhibits acetylcholinesterase (AChE) irreversibly. The subsequent build-up of acetylcholine (ACh) in the central nervous system (CNS) provokes seizures and, at sufficient doses, centrally-mediated respiratory arrest. Accumulation of ACh at peripheral autonomic synapses leads to peripheral signs of intoxication and overstimulation of the muscarinic and nicotinic receptors, which is described as "cholinergic crisis" (i.e. diarrhea, sweating, salivation, miosis, bronchoconstriction). Exposure to high doses of sarin can result in tremors, seizures, and hypothermia. More seriously, build-up of ACh at neuromuscular junctions also can cause paralysis and ultimately peripherally-mediated respiratory arrest which can lead to death via respiratory failure. In addition to its primary action on the cholinergic system, sarin possesses other indirect effects. These involve the activation of several neurotransmitters including gamma-amino-butyric acid (GABA) and the alteration of other signaling systems such as ion channels, cell adhesion molecules, and inflammatory regulators. Sarin exposure is associated with symptoms of organophosphate-induced delayed neurotoxicity (OPIDN) and organophosphate-induced chronic neurotoxicity (OPICN). Moreover, sarin has been involved in toxic and immunotoxic effects as well as organophosphate-induced endocrine disruption (OPIED). The standard treatment for sarin-like nerve agent exposure is post-exposure injection of atropine, a muscarinic receptor antagonist, accompanied by an oxime, an AChE reactivator, and diazepam.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Briana Siracuse
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Natasha Gupta
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| | - Ashly Sobel Sokol
- a Department of Pharmacology and Cancer Biology , Duke University , Durham , NC , USA
| |
Collapse
|
7
|
Abou-Donia MB, Abou-Donia MM, ElMasry EM, Monro JA, Mulder MFA. Autoantibodies to nervous system-specific proteins are elevated in sera of flight crew members: biomarkers for nervous system injury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:363-380. [PMID: 23557235 DOI: 10.1080/15287394.2013.765369] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This descriptive study reports the results of assays performed to detect circulating autoantibodies in a panel of 7 proteins associated with the nervous system (NS) in sera of 12 healthy controls and a group of 34 flight crew members including both pilots and attendants who experienced adverse effects after exposure to air emissions sourced to the ventilation system in their aircrafts and subsequently sought medical attention. The proteins selected represent various types of proteins present in nerve cells that are affected by neuronal degeneration. In the sera samples from flight crew members and healthy controls, immunoglobin (IgG) was measured using Western blotting against neurofilament triplet proteins (NFP), tubulin, microtubule-associated tau proteins (tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and glial S100B protein. Significant elevation in levels of circulating IgG-class autoantibodies in flight crew members was found. A symptom-free pilot was sampled before symptoms and then again afterward. This pilot developed clinical problems after flying for 45 h in 10 d. Significant increases in autoantibodies were noted to most of the tested proteins in the serum of this pilot after exposure to air emissions. The levels of autoantibodies rose with worsening of his condition compared to the serum sample collected prior to exposure. After cessation of flying for a year, this pilot's clinical condition improved, and eventually he recovered and his serum autoantibodies against nervous system proteins decreased. The case study with this pilot demonstrates a temporal relationship between exposure to air emissions, clinical condition, and level of serum autoantibodies to nervous system-specific proteins. Overall, these results suggest the possible development of neuronal injury and gliosis in flight crew members anecdotally exposed to cabin air emissions containing organophosphates. Thus, increased circulating serum autoantibodies resulting from neuronal damage may be used as biomarkers for chemical-induced CNS injury.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
8
|
Neurodegenerations Induced by Organophosphorous Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:189-204. [DOI: 10.1007/978-1-4614-0653-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Damodaran TV, Gupta RP, Attia MK, B. Abou-Donia M. DFP initiated early alterations of PKA/p-CREB pathway and differential persistence of β-tubulin subtypes in the CNS of hens contributes to OPIDN. Toxicol Appl Pharmacol 2009; 240:132-42. [DOI: 10.1016/j.taap.2009.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
|
10
|
Perrot R, Eyer J. Neuronal intermediate filaments and neurodegenerative disorders. Brain Res Bull 2009; 80:282-95. [PMID: 19539727 DOI: 10.1016/j.brainresbull.2009.06.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 12/12/2022]
Abstract
Intermediate filaments represent the most abundant cytoskeletal element in mature neurons. Mutations and/or accumulations of neuronal intermediate filament proteins are frequently observed in several human neurodegenerative disorders. Although it is now admitted that disorganization of the neurofilament network may be directly involved in neurodegeneration, certain type of perikaryal intermediate filament aggregates confer protection in motor neuron disease. The use of various mouse models provided a better knowledge of the role played by the disorganization of intermediate filaments in the pathogenesis of neurodegenerative disorders, but the mechanisms leading to the formation of these aggregates remain elusive. Here, we will review some neurodegenerative diseases involving intermediate filaments abnormalities and possible mechanisms susceptible to provoke them.
Collapse
Affiliation(s)
- Rodolphe Perrot
- Department of Anatomy and Physiology of Laval University, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec, Canada
| | | |
Collapse
|
11
|
Wang QS, Zhang CL, Hou LY, Zhao XL, Yang XW, Xie KQ. Involvement of cyclin-dependent kinase 5 in 2,5-hexanedione-induced neuropathy. Toxicology 2008; 248:1-7. [DOI: 10.1016/j.tox.2008.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 02/28/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
|
12
|
El-Fawal HAN, McCain WC. Antibodies to neural proteins in organophosphorus-induced delayed neuropathy (OPIDN) and its amelioration. Neurotoxicol Teratol 2008; 30:161-6. [PMID: 18353611 DOI: 10.1016/j.ntt.2008.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 01/27/2008] [Accepted: 01/29/2008] [Indexed: 10/22/2022]
Abstract
The development of OPIDN and the efficacy of experimental intervention using the calcium-channel blocker verapamil were used as a model to test the serial time-measurements of serum autoantibodies against neuronal cytoskeletal proteins [e.g., neurofilament triplet (NF)] and glial proteins [myelin-basic protein (MBP) and glial fibrillary-acidic protein (GFAP)] as biomarkers of neurotoxicity and its amelioration. Ten White Leghorn hens (>7 months, 1.2-1.8 kg) were administered phenyl-saligenin phosphate (PSP; 2.5 mg/kg; im), a dose reported to induce a 70% decrease in neurotoxic esterase (NTE) activity. Five of the hens were administered verapamil (7 mg/kg; im) for 4 days starting one day before PSP administration. Serum was isolated from blood collected by serial brachial venepuncture before PSP (day 0) administration and on days 3, 7 and 21 after PSP administration, each hen acting as its own control. Serum antibodies (IgG) to NF-L, NF-M, NF-H, MBP, and GFAP were assayed using an ELISA. There were no detectable levels of antibodies on days 0 and 3. IgG against all neural proteins were detected on days 7 and 21, with titer levels being significantly (p< or =0.05) higher in sera of hens receiving PSP only. Anti-NF-L titers were highest compared to those against NF-M, NF-H or MBP at 21 days. Titers of anti-NF-L and anti-MBP significantly (p< or =0.01) correlated with clinical scores at days 7 and 21. Detection of anti-NF and anti-MBP antibodies confirms the neuroaxonal degeneration accompanied by myelin loss reported in this model of OPIDN and the amelioration of neuropathy using verapamil. The detection of anti-GFAP antibodies suggests CNS involvement in OPIDN, since astrocytes are only found therein. This study demonstrates that detection of neuroantibodies can be used as biomarkers of neuropathy development and to monitor the amelioration resulting from therapeutic intervention. Together with biomarkers of exposure neuroantibodies can be used to monitor neuropathogenesis due to environmental or occupational exposures.
Collapse
Affiliation(s)
- Hassan A N El-Fawal
- Neurotoxicology Laboratory, Division of Health Professions and Natural Sciences, Mercy College, Dobbs Ferry, NY 10522, USA.
| | | |
Collapse
|
13
|
Choudhary S, Verma SK, Raheja G, Kaur P, Joshi K, Gill KD. The L-Type Calcium Channel Blocker Nimodipine Mitigates Cytoskeletal Proteins Phosphorylation in Dichlorvos-Induced Delayed Neurotoxicity in Rats. Basic Clin Pharmacol Toxicol 2006; 98:447-55. [PMID: 16635102 DOI: 10.1111/j.1742-7843.2006.pto_270.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present investigation was carried out to assess the protective efficacy of nimodipine against dichlorvos-induced organophosphate induced delayed neurotoxicity (OPIDN). Single subcutaneous dose of dichlorvos (200 mg/kg body weight) led to a consistent increase in the activity of both microtubule associated protein kinases viz. Ca2+/Calmodulin-dependent and cAMP dependent protein kinases, at all post exposure intervals (day 7, 15 and 21) as compared to that of controls. Autoradiography followed by microdensitometric studies demonstrated enhanced phosphorylation of 55 kDa and 280 kDa proteins in dichlorvos-exposed animals. These two proteins were confirmed to be tubulin and microtubule associated protein-2 (MAP-2) by western blotting. The hyperphosphorylation of these two proteins was shown to interfere with the assembly of neuronal microtubules as shown by electron microscopic studies that may eventually lead to possible disruption of neuronal cytoarchtecture resulting in axonal degeneration. Administration of nimodipine along with dichlorvos brought about a significant reduction in the activities of both the kinases as well as the extent of microtubule associated protein phosphorylation. This indicates that nimodipine, a centrally acting calcium channel blocker, may contribute to the amelioration of dichlorvos induced neurotoxicity by attenuation of calcium mediated disruption of cytoskeletal proteins and hence, calcium channel blockers like nimodipine have great future as new therapeutic agents for OPIDN.
Collapse
Affiliation(s)
- Sanjeev Choudhary
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | |
Collapse
|
14
|
Hargreaves AJ, Fowler MJ, Sachana M, Flaskos J, Bountouri M, Coutts IC, Glynn P, Harris W, Graham McLean W. Inhibition of neurite outgrowth in differentiating mouse N2a neuroblastoma cells by phenyl saligenin phosphate: Effects on MAP kinase (ERK 1/2) activation, neurofilament heavy chain phosphorylation and neuropathy target esterase activity. Biochem Pharmacol 2006; 71:1240-7. [PMID: 16499876 DOI: 10.1016/j.bcp.2006.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/05/2006] [Accepted: 01/06/2006] [Indexed: 11/30/2022]
Abstract
Sub-lethal concentrations of the organophosphate phenyl saligenin phosphate (PSP) inhibited the outgrowth of axon-like processes in differentiating mouse N2a neuroblastoma cells (IC(50) 2.5 microM). A transient rise in the phosphorylation state of neurofilament heavy chain (NFH) was detected on Western blots of cell extracts treated with 2.5 microM PSP for 4 h compared to untreated controls, as determined by a relative increase in reactivity with monoclonal antibody Ta51 (anti-phosphorylated NFH) compared to N52 (anti-total NFH). However, cross-reactivity of PSP-treated cell extracts was lower than that of untreated controls after 24 h exposure, as indicated by decreased reactivity with both antibodies. Indirect immunofluorescence analysis with these antibodies revealed the appearance of neurofilament aggregates in the cell bodies of treated cells and reduced axonal staining compared to controls. By contrast, there was no significant change in reactivity with anti-alpha-tubulin antibody B512 at either time point. The activation state of the MAP kinase ERK 1/2 increased significantly after PSP treatment compared to controls, particularly at 4 h, as indicated by increased reactivity with monoclonal antibody E-4 (anti-phosphorylated MAP kinase) but not with polyclonal antibody K-23 (anti-total MAP kinase). The observed early changes were concomitant with almost complete inhibition of the activity of neuropathy target esterase (NTE), one of the proposed early molecular targets in organophosphate-induced delayed neuropathy (OPIDN).
Collapse
Affiliation(s)
- Alan J Hargreaves
- School of Biomedical and Natural Sciences, Nottingham Trent University, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhao XL, Zhang TL, Zhang CL, Han XY, Yu SF, Li SX, Cui N, Xie KQ. Expression changes of neurofilament subunits in the central nervous system of hens treated with tri-ortho-cresyl phosphate (TOCP). Toxicology 2006; 223:127-35. [PMID: 16697097 DOI: 10.1016/j.tox.2006.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/15/2006] [Accepted: 03/15/2006] [Indexed: 11/27/2022]
Abstract
Tri-ortho-cresyl phosphate (TOCP) could induce degeneration of long, large diameter axons within the central and peripheral nervous system of susceptible species including human being and hens, which is referred to as organophosphorus-ester induced delayed neuropathy (OPIDN). The mechanisms involved are not understood. Neuropathologic observations suggested that neurofilament subunits (NFs) could be a main target of TOCP in the peripheral nervous system. Our previous study also showed that NFs in protein levels significantly decreased in sciatic nerves of hens treated with TOCP. In this study, to determine whether the decrement of NFs proteins in sciatic nerves was due to reductions in NF gene expression or protein degradation, hens were treated with a single dose of 750 mg/kg body weight TOCP by gavage, and sacrificed on 21 day post-exposure. Cerebral cortexes and spinal cords were sampled. Transcriptional changes of NFs including high molecular weight neurofilament (NF-H), middle molecular weight neurofilament (NF-M), low molecular weight neurofilament (NF-L), and glyceraldehydes-3-phoaphate dehydrogenase (GAPDH) as inner inference in cerebral cortexes and spinal cords were analyzed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Results showed that all of three NFs mRNA in cerebral cortexes down-regulated significantly. However, in spinal cords, there was only NF-M decreased, both of NF-H and NF-L kept unaffected. The protein levels of NFs in pellet and supernatant fractions of cerebral cortexes and spinal cords were also determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. We noticed that all NFs protein declined in pellet of cerebral cortexes, but NF-M reduction was not significant compared with that of control hens. NF-H and NF-M proteins in supernatant of cerebral cortexes exhibited significant increase, while NF-L level showed remarkable decline. In spinal cords, apart from NF-L in pellet were significantly increased, both of NF-H and NF-M in pellet and supernatant, as well as NF-L in supernatant fractions were manifested dramatic reduction compared with the pattern of control. The quantitative analyses revealed that the change magnitude in protein levels was much greater than that in mRNA levels in hens' central nervous system after TOCP administration. These findings suggest that the NFs disturbance in protein levels is closely associated with the decreases in sciatic nerves observed in our previous work after TOCP exposure, rather than that in mRNA levels, and the NFs alterations in protein levels may be one of the responsible factors for the OPIDN.
Collapse
Affiliation(s)
- Xiu-Lan Zhao
- Institute of Toxicology, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yu S, Zhao X, Zhang T, Yu L, Li S, Cui N, Han X, Zhu Z, Xie K. Acrylamide-Induced Changes in the Neurofilament Protein of Rat Cerebrum Fractions. Neurochem Res 2005; 30:1079-85. [PMID: 16292499 DOI: 10.1007/s11064-005-7413-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
Acrylamide (ACR) is known to produce central-peripheral distal axonopathy, which is characterized by distal swellings and secondary degeneration both in experimental animals and human. Ultrastructurally, excessive accumulation of neurofilaments (NFs) in the distal swollen axon is a major pathological hallmark. However, the mechanisms of ACR axonopathy remain unknown. Twenty seven male Wistar rats were randomly divided into three groups. Lower and higher ACR groups were received 20 and 40 mg/kg ACR by i.p. injection respectively. The control group received physiological saline. All rats were sacrificed after 8 weeks of treatment and their cerebrums were dissected, homogenized and used for the determination of the NF proteins. In general, the levels of light NF (NF-L) and medium NF (NF-M) subunits increased consistently in the supernatant, whereas they decreased consistently in the pellet from rats treated with ACR. Compared to that of the control group, the levels of NF-L increased respectively by 104% and 45% (P<0.01) in the supernatant and decreased by 16% and 11% (P<0.01) in the pellet of rat cerebrums in lower and higher groups. The enhancement of NF-M was 76% and 147% (P<0.05, P<0.01) in supernatant, and the reduction was 26% and 36% (P<0.01) in pellet in lower and higher group respectively. The heavy NF (NF-H) level changed slightly. The present results suggested that the change of NF-L and NF-M levels in cerebrum might be relevant to the mechanisms of the neurofilamentous axonopathies induced by ACR.
Collapse
Affiliation(s)
- Sufang Yu
- Institute of Toxicology, Shandong University, 250012, Jinan, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Moretto MB, Funchal C, Zeni G, Rocha JBT, Pessoa-Pureur R. Organoselenium compounds prevent hyperphosphorylation of cytoskeletal proteins induced by the neurotoxic agent diphenyl ditelluride in cerebral cortex of young rats. Toxicology 2005; 210:213-22. [PMID: 15840435 DOI: 10.1016/j.tox.2005.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 01/24/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
In this work we investigated the protective ability of the selenium compounds ebselen and diphenyl diselenide against the effect of diphenyl ditelluride on the in vitro incorporation of 32P into intermediate filament (IF) proteins from slices of cerebral cortex of 17-day-old rats. We observed that ditelluride in the concentrations of 1, 15 and 50 microM induced hyperphosphorylation of the high-salt Triton insoluble neurofilament subunits (NF-M and NF-L), glial fibrillary acidic protein (GFAP) and vimentin, without altering the immunocontent of these proteins. Concerning the selenium compounds, diselenide (1,15 and 50 microM) did not induce alteration of the in vitro phosphorylation of the IF proteins. Otherwise, ebselen induced an altered in vitro phosphorylation of the cytoskeletal proteins in a dose-dependent manner. At intermediate concentrations (15 and 30 microM) it increased the in vitro phosphorylation even though, at low (5 microM) or high (50 and 100 microM) concentrations this compound was ineffective in altering the activity of the cytoskeletal-associated phosphorylating system. In addition, 15 microM diselenide and 5 microM ebselen, presented a protective effect against the action of ditelluride, on the phosphorylation of the proteins studied. Considering that hyperphosphorylation of cytoskeletal proteins is associated with neuronal dysfunction and neurodegeneration, it is probable that the effects of ditelluride could be related to the remarkable neurotoxicity of this organic form of tellurium. Furthermore the neuroprotective action of selenium compounds against tellurium effects could be a promising route to be exploited for a possible treatment of organic tellurium poisoning.
Collapse
Affiliation(s)
- M B Moretto
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|
18
|
Moretto MB, Funchal C, Zeni G, Pessoa-Pureur R, Rocha JBT. Selenium Compounds Prevent the Effects of Methylmercury on the in Vitro Phosphorylation of Cytoskeletal Proteins in Cerebral Cortex of Young Rats. Toxicol Sci 2005; 85:639-46. [PMID: 15716487 DOI: 10.1093/toxsci/kfi114] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study we investigated the protective ability of the selenium compounds ebselen and diphenyldiselenide against the effect of methylmercury on the in vitro incorporation of 32P into intermediate filament (IF) proteins from the cerebral cortex of 17-day-old rats. We observed that methylmercury in the concentrations of 1 and 5 microM was able to inhibit the phosphorylating system associated with IF proteins without altering the immunocontent of these proteins. Concerning the selenium compounds, diselenide (1, 15, and 50 microM) did not induce alteration of the in vitro phosphorylation of IF proteins. Conversely, 15 microM diselenide was effective in preventing the toxic effects induced by methylmercury. Otherwise, ebselen induced an altered in vitro phosphorylation of the cytoskeletal proteins in a dose-dependent manner. Ebselen at intermediate concentrations (15 and 30 microM) increased the in vitro phosphorylation. However, at low (5 microM) or high (50 and 100 microM) concentrations it was ineffective in altering the cytoskeletal-associated phosphorylating system. Furthermore, 5 microM ebselen presented a protective effect against the action of methylmercury on the phosphorylating system. In conclusion, our results indicate that the selenium compounds ebselen and diselenide present protective actions toward the alterations of the phosphorylating system associated with the IF proteins induced by methylmercury in slices of the cerebral cortex of rats.
Collapse
Affiliation(s)
- M B Moretto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | |
Collapse
|
19
|
Abstract
Organophosphorus compounds are potent neurotoxic chemicals that are widely used in medicine, industry, and agriculture. The neurotoxicity of these chemicals has been documented in accidental human poisoning, epidemiological studies, and animal models. Organophosphorus compounds have 3 distinct neurotoxic actions. The primary action is the irreversible inhibition of acetylcholinesterase, resulting in the accumulation of acetylcholine and subsequent overstimulation of the nicotinic and muscarinic acetylcholine receptors, resulting in cholinergic effects. Another action of some of these compounds, arising from single or repeated exposure, is a delayed onset of ataxia, accompanied by a Wallerian-type degeneration of the axon and myelin in the most distal portion of the longest tracts in both the central and peripheral nervous systems, and is known as organophosphorus ester-induced delayed neurotoxicity (OPIDN). In addition, since the introduction and extensive use of synthetic organophosphorus compounds in agriculture and industry half a century ago, many studies have reported long-term, persistent, chronic neurotoxicity symptoms in individuals as a result of acute exposure to high doses that cause acute cholinergic toxicity, or from long-term, low-level, subclinical doses of these chemicals. The author attempts to define the neuronal disorder that results from organophosphorus ester-induced chronic neurotoxicity (OPICN), which leads to long-term neurological and neurobehavioral deficits. Although the mechanisms of this neurodegenerative disorder have yet to be established, the sparse available data suggest that large toxic doses of organophosphorus compounds cause acute necrotic neuronal cell death in the brain, whereas sublethal or subclinical doses produce apoptotic neuronal cell death and involve oxidative stress.
Collapse
Affiliation(s)
- Mohamed B Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
20
|
|
21
|
Funchal C, de Lima Pelaez P, Loureiro SO, Vivian L, Dall Bello Pessutto F, de Almeida LMV, Tchernin Wofchuk S, Wajner M, Pessoa Pureur R. alpha-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:267-76. [PMID: 12480141 DOI: 10.1016/s0165-3806(02)00578-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study we investigated the effects of alpha-ketoisocaproic acid (KIC), the main keto acid accumulating in the inherited neurometabolic disorder maple syrup urine disease (MSUD), on the in vitro incorporation of 32P into intermediate filament (IF) proteins from cerebral cortex of rats during development. KIC decreased the in vitro incorporation of 32P into the IF proteins studied up to day 12, had no effect on day 15, and increased this phosphorylation in cortical slices of 17- and 21-day-old rats. A similar effect on IF phosphorylation was achieved along development by incubating cortical slices with glutamate. Furthermore, the altered phosphorylation caused by the presence of KIC in the incubation medium was mediated by the ionotropic receptors NMDA, AMPA and kainate up to day 12 and by NMDA and AMPA in tissue slices from 17- and 21-day-old rats. The results suggest that alterations of IF phosphorylation may be associated with the neuropathology of MSUD.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cerebral Cortex/drug effects
- Cerebral Cortex/growth & development
- Cerebral Cortex/metabolism
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Glial Fibrillary Acidic Protein/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Intermediate Filament Proteins/drug effects
- Intermediate Filament Proteins/metabolism
- Intermediate Filaments/drug effects
- Intermediate Filaments/metabolism
- Keto Acids/metabolism
- Keto Acids/pharmacology
- Maple Syrup Urine Disease/metabolism
- Maple Syrup Urine Disease/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Organ Culture Techniques
- Phosphorylation/drug effects
- Rats
- Rats, Wistar
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/metabolism
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/metabolism
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Vimentin/drug effects
- Vimentin/metabolism
Collapse
Affiliation(s)
- Cláudia Funchal
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vivian L, Pessutto FDB, de Almeida LMV, Loureiro SDO, Pelaez PDL, Funchal C, Wajner M, Pessoa-Pureur R. Effect of propionic and methylmalonic acids on the high molecular weight neurofilament subunit (NF-H) in rat cerebral cortex. Neurochem Res 2002; 27:1691-7. [PMID: 12515324 DOI: 10.1023/a:1021699314007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Propionic and methylmalonic acidemias are inherited neurometabolic disorders biochemically characterized by tissue accumulation of propionic (PA) and methylmalonic (MMA) acids, respectively. Neurofilaments (NF) are important cytoskeletal proteins and phosphorylation/dephosphorylation of NF is important to stabilize the cytoskeleton. We investigated the effects of PA and MMA on the high molecular weight neurofilament subunit associated with the cytoskeletal fraction of rat cerebral cortex along development. Cortical slices from 9- to 60-day-old rats were incubated with 2.5 mM PA or MMA. The cytoskeletal fraction was extracted and the immunoreactivity for phosphorylated or total NF-H was analyzed by immunoblotting using specific antibodies. Results showed that treatment of tissue slices with the acids induced an increased Triton-insoluble phosphorylated NF-H immunoreactivity in up to 17-day-old rats. Furthermore, treatments significantly increased the total amount of NF-H in 12-day-old rats. These findings indicate that PA and MMA alter the dynamic regulation of NF-H assembly in the cytoskeletal fraction.
Collapse
Affiliation(s)
- L Vivian
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Choudhary S, Joshi K, Gill KD. Possible role of enhanced microtubule phosphorylation in dichlorvos induced delayed neurotoxicity in rat. Brain Res 2001; 897:60-70. [PMID: 11282359 DOI: 10.1016/s0006-8993(00)03222-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effect of a single subcutaneous dose of 200 mg/kg body weight dichlorvos on neuronal microtubule phosphorylation has been studied in rat following the development of organophosphate induced delayed neurotoxicity (OPIDN). Microtubule associated Ca2+/calmodulin dependent as well as cAMP dependent protein kinases were assayed. Dichlorvos administration led to a consistent increase in the activity of both the kinases at all post exposure intervals (7th, 15th and 21st day) as compared to that of controls. After in vitro phosphorylation using [gamma-32P]ATP, various proteins were resolved on one-dimensional 8% SDS-PAGE, stained with Coomassie Blue and autoradiographed. The amount of 32P incorporated was quantified by microdensitometry. Dichlorvos enhanced the phosphorylation of 55- and 280-kDa proteins. These two proteins were identified as tubulin and microtubule associated protein-2 (MAP-2) by immunoblotting. This study showed that dichlorvos induced hyperphosphorylation of tubulin and MAP-2 which in turn destabilizes microtubule assembly, and may ultimately result in axonal degeneration leading to dichlorvos induced delayed neurotoxicity.
Collapse
Affiliation(s)
- S Choudhary
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, - 160012, Chandigarh, India
| | | | | |
Collapse
|
24
|
Gupta RP, Abou-Donia MB. Enhanced activity and level of protein kinase A in the spinal cord supernatant of diisopropyl phosphorofluoridate (DFP)-treated hens. Distribution of protein kinases and phosphatases in spinal cord subcellular fractions. Mol Cell Biochem 2001; 220:15-23. [PMID: 11451376 DOI: 10.1023/a:1011010824252] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diisopropyl phosphorofluoridate (DFP) is a type I organophosphorus compound and produces delayed neurotoxicity (OPIDN) in adult hens. A single dose of DFP (1.7 mg/kg, s.c.) produces mild ataxia in hens in 7-14 days, which develops into severe ataxia or paralysis as the disease progresses. We have previously shown altered expression of several proteins (e.g. Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) alpha-subunit, tau, tubulin, neurofilament protein (NF), vimentin, GFAP) and an immediate early gene (e.g. c-fos) in DFP-treated hens. Here we show an increase in protein kinase A (PKA) protein level and activity in the spinal cord at 1-day and 5-days time periods after DFP administration. We also determined the protein levels of protein kinase C (PKC), CaM kinase II and several phosphatases (i.e. phosphatase 1 (PP1), phosphatase 2A (PP2A), phosphatase 2B (PP2B) in the spinal cord of DFP-treated hens after 1, 5, 10, and 20 days). There was increase in CaM kinase II alpha subunit level after 10 and 20 days of treatment, and decrease in PKC level at 1-day and 20-days time periods in spinal cord mitochondria. In contrast, the cerebrum, which is resistant to DFP-induced axonal degeneration, did not show change in PKA and CaM Kinase II levels at any time period DFP post-administration. No alteration was found in the protein levels of PP1, PP2A, and PP2B at any time period. An early induction in PKA, which is an important protein kinase in signal transduction, followed by that of CaM kinase might be contributing towards the development of OPIDN in DFP-treated hens.
Collapse
Affiliation(s)
- R P Gupta
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27708, USA
| | | |
Collapse
|
25
|
Xie K, Gupta RP, Abou-Donia MB. Alteration in cytoskeletal protein levels in sciatic nerve on post-treatment of diisopropyl phosphorofluoridate (DFP)-treated hen with phenylmethylsulfonyl fluoride. Neurochem Res 2001; 26:235-43. [PMID: 11495547 DOI: 10.1023/a:1010916617208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diisopropyl phosphorofluoridate (DFP) is an organophosphorus ester, and a single dose (1.7 mg/kg, sc.) of this compound produces mild ataxia in hens in 7-14 days and a severe ataxia or paralysis (OPIDN) in three weeks. OPIDN is associated with axonal swelling and their degeneration. We have previously observed alteration in neurofilament (NF) protein levels in the spinal cord of DFP-treated hens. The main objective of this investigation was to study NF protein levels in the sciatic nerves (SN) of hens, in which OPIDN has been potentiated by phenylmethylsulfonyl fluoride (PMSF) post-treatment. PMSF is known to protect DFP-treated (1.7 mg/kg) hens from developing OPIDN if injected before, and potentiate OPIDN if injected after the administration of DFP (0.5 mg/kg). The potentiation of OPIDN was accompanied by earlier elevation of NF proteins in the SN particulate fraction. In contrast, SN supernatant fraction showed a transient fall in NF protein levels in potentiation OPIDN. Out of the two other cytoskeletal proteins (i.e., tubulin, tau) studied in this investigation, tubulin also showed earlier elevation in its level in the particulate fraction in potentiated OPIDN. The earlier elevation of NF protein levels in SN particulate fraction in potentiated OPIDN suggested the possible involvement of NFs in delayed neurotoxicity.
Collapse
Affiliation(s)
- K Xie
- Neurotoxicology Laboratory, School of Life Science, University of Science and Technology of China, Hefei, Anhui, PR China
| | | | | |
Collapse
|
26
|
Fowler MJ, Flaskos J, McLean WG, Hargreaves AJ. Effects of neuropathic and non-neuropathic isomers of tricresyl phosphate and their microsomal activation on the production of axon-like processes by differentiating mouse N2a neuroblastoma cells. J Neurochem 2001; 76:671-8. [PMID: 11158237 DOI: 10.1046/j.1471-4159.2001.00020.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this work was to investigate the sublethal neuropathic effects of tricresyl phosphate (TCP: mixed isomers), triorthocresyl phosphate (TO:CP) and triparacresyl phosphate (TP:CP) on differentiating mouse N2a neuroblastoma cells. This was achieved by a combination of measurements of cell viability, axon outgrowth and the levels of cytoskeletal proteins detectable on western blots of extracts from cells induced to differentiate in the presence and absence of the compounds. In a time-course experiment TCP inhibited the outgrowth of axon-like processes following exposure times of 24 h or longer. Dose-response experiments indicated that TCP and TO:CP exhibited similar sustained levels of toxicity following both 24 and 48 h exposure, with no significant difference between their respective IC(50) values. By contrast, TP:CP demonstrated a transient effect on the outgrowth of axon-like processes, which was detectable after 24 but not 48 h of exposure. Isomer-specific patterns of toxicity were also evident at earlier time-points, with only the ortho isomer showing significant levels of inhibition of axon outgrowth following 4-8 h exposure. Probing of western blots with antibodies against cytoskeletal proteins indicated that the inhibition of axon outgrowth by these compounds was associated with a sustained reduction in the levels of phosphorylated neurofilament heavy chain. The inhibitory effect on axon outgrowth of TO:CP but not TP:CP was enhanced in the presence of a microsomal activation system. Since TO:CP is the most neuropathic of the isomers of TCP in vivo, differentiating N2a cells provide a useful cellular system for mechanistic studies of the neurodegenerative effects of this organophosphate.
Collapse
Affiliation(s)
- M J Fowler
- Department of Life Sciences, The Nottingham Trent University, Clifton Lane, Nottingham, UK
| | | | | | | |
Collapse
|
27
|
Gupta RP, Abdel-Rahman A, Jensen KF, Abou-Donia MB. Altered expression of neurofilament subunits in diisopropyl phosphorofluoridate-treated hen spinal cord and their presence in axonal aggregations. Brain Res 2000; 878:32-47. [PMID: 10996134 DOI: 10.1016/s0006-8993(00)02642-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diisopropyl phosphorofluoridate (DFP) is an organophosphorus ester, which produces organophosphorus ester-induced delayed neuropathy (OPIDN) in hen and other sensitive species. A single dose of DFP (1.7 mg/kg, sc.) produces mild ataxia in 7-14 days in hens, which develops into severe ataxia or paralysis with the progression of disease. OPIDN is associated with axonal swellings and degeneration of axons. This study was carried out to investigate the expression of neurofilament (NF) subunits in the spinal cord of DFP-treated hens. Hens were treated with a single dose of DFP and sacrificed 1, 5, 10, and 20 days post-treatment. Western blot analysis showed increased expression of middle molecular weight neurofilament protein (NF-M), and decreased expression of high molecular weight (NF-H) and low molecular weight (NF-L) neurofilament proteins in the 2 M urea extracts of spinal cord particulate fraction. These changes were observed within 24 h of DFP administration and persisted for 10-20 days. Thus, there was increase in the stoichiometry of NF-M:NF-L in the spinal cord of DFP-treated hens. Immunoprecipitation, cross-linking, and two-dimensional polyacrylamide gel electrophoresis showed the presence of heterodimers, but not heterotetramers, in the hen spinal cord extract. Immunohistochemical staining revealed the presence of all three NF subunits in the cytoskeletal inclusions in DFP-treated hen spinal cord cross-sections. The results suggested that each NF subunit might be accumulated by a different mechanism in the axonal aggregations of DFP-treated hen.
Collapse
Affiliation(s)
- R P Gupta
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, P.O. Box 3813, Durham, NC, USA
| | | | | | | |
Collapse
|
28
|
Gupta RP, Damodaran TV, Abou-Donia MB. C-fos mRNA induction in the central and peripheral nervous systems of diisopropyl phosphorofluoridate (DFP)-treated hens. Neurochem Res 2000; 25:327-34. [PMID: 10761975 DOI: 10.1023/a:1007580702080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A single dose of diisopropyl phosphorofluoridate (DFP), an organophosphorus ester, produces delayed neurotoxicity (OPIDN) in hen. DFP produces mild ataxia in hens in 7-14 days, which develops into severe ataxia or paralysis as the disease progresses. Since, OPIDN is associated with alteration in the expression of several proteins (e.g., Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) alpha-subunit, tau, tubulin, neurofilament (NF) protein, vimentin, GFAP) as well as their mRNAs (e.g., NF, CaM kinase II alpha-subunit), we determined the effect of a single dose of DFP on the expression of one of the best known immediate-early gene (IEG), c-fos. C-fos expression was measured by Northern hybridization in cerebrum, cerebellum, brainstem, midbrain, spinal cord, and the sciatic nerves of hens at 0.5 hr, 1 hr, 2 hr, 1 day, 5 days, 10 days, and 20 days after a single 1.7 mg/kg, sc. injection of DFP. All the tissues (cerebrum, 52%; cerebellum, 55%; brainstem, 49%; midbrain, 23%; spinal cord, 80%; sciatic nerve, 157%) showed significant increase in c-fos expression in 30 min and this elevated level persisted at least up to 2 hr. Expressions of beta-actin mRNA and 18S RNA were used as internal controls. The significant increase in c-fos expression in DFP-treated hens suggests that c-fos may be one of the IEGs involved in the development of OPIDN.
Collapse
Affiliation(s)
- R P Gupta
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
29
|
de Mattos-Dutra A, Meirelles R, Bevilaqua da Rocha B, Kommers T, Wofchuk ST, Wajner M, Pessoa-Pureur R. Methylmalonic and propionic acids increase the in vitro incorporation of 32P into cytoskeletal proteins from cerebral cortex of young rats through NMDA glutamate receptors. Brain Res 2000; 856:111-8. [PMID: 10677617 DOI: 10.1016/s0006-8993(99)02380-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study we investigated the effects of methylmalonic acid (MMA) and propionic acid (PA) on the phosphorylation of cytoskeletal proteins of cerebral cortex of rats. Slices of tissue were incubated with 32P-orthophosphate in the presence or absence of glutamate, MMA, PA and ionotropic or metabotropic glutamate receptor agonists. The cytoskeletal fraction was isolated and the radioactivity incorporated into the cytoskeletal proteins was measured. Results demonstrated that the acids, glutamate and NMDA increased the phosphorylation of the proteins studied. However, this effect was not observed for non-NMDA ionotropic agonists or metabotropic agonists. Experiments using glutamate receptor antagonists confirmed that MMA and PA at the same concentrations as found in tissues from propionic or methylmalonic acidemic children increase the phosphorylation of cytoskeletal proteins, possibly via NMDA glutamate receptors. Therefore, it is feasible that these findings may be related to the neurological dysfunction characteristic of these disorders.
Collapse
Affiliation(s)
- A de Mattos-Dutra
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
30
|
Lin WW, Friedman MA, Wang XF, Abou-Donia MB. Acrylamide-regulated neurofilament expression in rat pheochromocytoma cells. Brain Res 2000; 852:297-304. [PMID: 10678756 DOI: 10.1016/s0006-8993(99)02104-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using the rat pheochromocytoma cell line (PC12), we present molecular evidence that the neurotoxicant acrylamide directly induces neurofilament gene expression, and the signaling pathways are initially distinctive from, but eventually merged into, that for nerve growth factor (NGF)-induced neurofilament expression. In PC12 cells, acrylamide increased neurofilament protein levels and synthesis. Acrylamide had no effect on the stability of neurofilament mRNAs suggesting that it directly increased neurofilament mRNA synthesis. K252a, a selective inhibitor for NGF receptor gp140trk, had no effect on acrylamide induction, but completely inhibited NGF-induced neurofilament protein synthesis. Therefore, the initial step for acrylamide signaling was distinctive from NGF. Dexamethasone reversed the effects of both NGF and acrylamide on neurofilament protein levels and synthesis indicated that there is a dexamethasone-sensitive signaling step upon which NGF and acrylamide merge, suggesting involvement of transcription-activating proteins like AP-1. These results, taken together with previous studies of transgenic mice that overexpress neurofilament genes, may partially explain the mechanisms of neurofilament accumulation in distal parts of large axons, a pathognomonic feature of acrylamide neurotoxicity in animals.
Collapse
Affiliation(s)
- W W Lin
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
31
|
Gupta RP, Lin WW, Abou-Donia MB. Enhanced mRNA expression of neurofilament subunits in the brain and spinal cord of diisopropyl phosphorofluoridate-treated hens. Biochem Pharmacol 1999; 57:1245-51. [PMID: 10230768 DOI: 10.1016/s0006-2952(99)00038-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diisopropyl phosphorofluoridate (DFP) is an organophosphorus ester, and a single injection of this compound (1.7 mg/kg, s.c.) produces delayed neurotoxicity (OPIDN) in hens in 7-14 days. Clinically, the disease is marked by hindlimb ataxia followed by paralysis after some time. A characteristic feature of this neuropathy is axonal swelling in the initial stages and comparative dissolution of the accumulated material and degeneration of distal axons with disease progression. Axonal swelling consists of aggregated neurofilaments, microtubules, and proliferated smooth endoplasmic reticulum. We studied expression of neurofilament (NF) mRNAs in brain regions and spinal cord to elucidate their role in OPIDN. There was a 50-200% increase in NF transcripts in 24 hr after DFP administration. The NF-L mRNA level started falling after 1-5 days and came down to control level in susceptible brain regions (i.e. cerebellum and brainstem) and spinal cord, but not in cerebral cortex, which does not show degeneration of axons in OPIDN. Cerebral cortex exhibited elevated levels of both NF-L and NF-M transcripts in DFP-treated hens throughout the period of observation. The induction of NF messages is consistent with the previously reported effect on extension of neurites of human neuroblastoma cells in culture. The transient increase in NF messages in susceptible tissues either may be responsible for the delayed degeneration of axons in OPIDN or is the result of interruption of regulatory signal due to progressive degeneration of axons.
Collapse
Affiliation(s)
- R P Gupta
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27708, USA
| | | | | |
Collapse
|
32
|
Gupta RP, Abou-Donia MB. Tau phosphorylation by diisopropyl phosphorofluoridate (DFP)-treated hen brain supernatant inhibits its binding with microtubules: role of Ca2+/Calmodulin-dependent protein kinase II in tau phosphorylation. Arch Biochem Biophys 1999; 365:268-78. [PMID: 10328822 DOI: 10.1006/abbi.1999.1165] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in hen, human, and other sensitive species. This is characterized by mild ataxia, which progresses to severe ataxia or paralysis in a few days. Ultrastructurally, OPIDN is associated with the degeneration of axons in central and peripheral nervous systems. Bacterially expressed longest human tau protein (htau40) phosphorylated by DFP-treated hen brain supernatant showed a decrease in microtubule binding in a shorter time than that phosphorylated by control hen brain supernatant. The decrease in htau40-microtubule binding observed on htau40 phosphorylation by the recombinant Ca2+/calmodulin (CaM)-dependent protein kinase II (CaM kinase II) alpha-subunit showed that CaM kinase II present in brain supernatant could participate in tau phosphorylation even in the absence of Ca2+/CaM and decrease tau-microtubule binding. In addition, use of htau40 mutants, htau40m1 (Ala416) and htau40m6 (Asp416), suggested that replacement of Ser416 by neutral or acidic amino acid produced some change in htau40 conformation that caused diminished binding with microtubules phosphorylated by brain supernatant in the presence of ethylene glycol bis(beta-aminoethyl ether) N, N'tetraacetic acid (EGTA). The change in conformation produced by Ser416 phosphorylation, however, was different from that produced by mutants since only nonmutated htau40 showed a significant decrease in binding with microtubules on phosphorylation by recombinant CaM kinase II in the presence of Ca2+/CaM compared to that obtained by phosphorylation in the presence of EGTA. This study showed that enhanced Ca2+/CaM-dependent protein kinase activity in DFP-treated hen brain supernatant may cause decreased tau-microtubule binding and destabilization of microtubules and may be involved in axonal degeneration in OPIDN.
Collapse
Affiliation(s)
- R P Gupta
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27708, USA
| | | |
Collapse
|
33
|
Gupta RP, Abou-Donia MB. Tau proteins-enhanced Ca2+/calmodulin (CaM)-dependent phosphorylation by the brain supernatant of diisopropyl phosphorofluoridate (DFP)-treated hen: tau mutants indicate phosphorylation of more amino acids in tau by CaM kinase II. Brain Res 1998; 813:32-43. [PMID: 9824662 DOI: 10.1016/s0006-8993(98)00988-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in hen, human, and other sensitive species. A single dose of DFP (1.7 mg/kg, s.c.) produces mild ataxia in 7-14 days in hens, followed by progression to severe ataxia or paralysis. We studied the effect of DFP administration on Ca2+/calmodulin-dependent phosphorylation of tau proteins by the brain supernatants of control and DFP-treated hens. Brain supernatants from DFP-treated hens showed enhanced in vitro phosphorylation of htau40 and its various mutants, but no change in the two-dimensional phosphopeptide pattern, when compared to control hen brain supernatants. Analysis of tau mutants phosphorylated by brain supernatant and recombinant CaM kinase II alpha-subunit showed that (1) brain supernatant CaM kinase II is mainly responsible for the phosphorylation of Ser416, (2) Ser356, but probably not Ser262, is phosphorylated by CaM kinase II, (3) no amino acid between Lys395-Ala437 except Ser416 is phosphorylated by CaM kinase II, (4) a number of amino acids in the tau molecule, which are phosphorylated by the brain supernatant in the absence of Ca2+/calmodulin are also mildly phosphorylated by CaM kinase II. The enhanced Ca2+/calmodulin-dependent phosphorylation of tau proteins by brain supernatant of DFP-treated hens that includes phosphorylation of a number of amino acids is likely to alter the functional properties of tau proteins in OPIDN. The hyperphosphorylated tau may destabilize microtubules, alter axonal transport, and result in degeneration of axons in OPIDN.
Collapse
Affiliation(s)
- R P Gupta
- Department of Pharmacology and Cancer-Biology, Duke University Medical Center, P.O. Box 3813, Durham, NC 27708, USA
| | | |
Collapse
|
34
|
de Mattos-Dutra A, de Freitas MS, Lisboa CS, Pessoa-Pureur R, Wajner M. Effects of acute and chronic administration of methylmalonic and propionic acids on the in vitro incorporation of 32P into cytoskeletal proteins from cerebral cortex of young rats. Neurochem Int 1998; 33:75-82. [PMID: 9694045 DOI: 10.1016/s0197-0186(05)80011-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We studied the effects of acute and chronic administration of methylmalonic (MMA) and propionic (PA) acids on the in vitro incorporation of 32P into neurofilament subunits (NF-M and NF-L), alpha and beta tubulins, from cerebral cortex of rats. In the chronic treatment, drugs were administered subcutaneously from day 6-17 post-partum (MMA 0.76-0.89 micromol/g body weight and PA 0.93 micromol/g body weight). In the acute treatment MMA and PA were injected (MMA 3.78 micromol/g body weight and PA 3.90 micromol/g body weight). Control animals received saline in the same volumes. The Triton-insoluble cytoskeletal fraction of control in treated animals was isolated and incubated with 32P-ATP. Our results demonstrate that both drugs were able to inhibit 32P in vitro incorporation into neurofilaments and tubulins. The acute administration of MMA decreased the in vitro 32P incorporation into NF-L and alpha-tubulin subunit, whereas PA administration decreased the 32P in vitro incorporation into NF-M, NF-L, and tubulins. On the other hand, chronic MMA administration induced a decreased 32P in vitro incorporation into NF-M, while chronic treatment with propionate decreased the in vitro phosphorylation of NF-M and alpha-tubulin. This study provides consistent evidence that a decreased phosphorylation of cytoskeletal proteins is induced by MMA and PA metabolites which accumulate in methylmalonic and propionic acidemias respectively. Therefore, it is possible that an altered brain cytoskeletal metabolism could be related with the structural alterations of CNS observed in these disorders.
Collapse
Affiliation(s)
- A de Mattos-Dutra
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | | | | | | |
Collapse
|
35
|
Gupta RP, Bing G, Hong JS, Abou-Donia MB. cDNA cloning and sequencing of Ca2+/calmodulin-dependent protein kinase IIalpha subunit and its mRNA expression in diisopropyl phosphorofluoridate (DFP)-treated hen central nervous system. Mol Cell Biochem 1998; 181:29-39. [PMID: 9562239 DOI: 10.1023/a:1006863705912] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diisopropyl phosphorofluoridate (DFP) produces delayed neurotoxicity, known as organophosphorus ester-induced delayed neurotoxicity (OPIDN), in hen, human, and other sensitive species. A single dose of DFP (1.7 mg/kg, se.) produces first mild ataxia followed by paralysis in 7-14 days in hens. DFP treatment also increases in vitro autophosphorylation of Ca2+ calmodulin-dependent protein kinase II (CaM kinase II) and the phosphorylation of several cytoskeletal proteins in the hen brain. To investigate whether increase in CaM kinase II activity is associated with increased expression of its mRNA, we cloned and sequenced CaM kinase II alpha subunit cDNA, and used it to study CaM kinase II expression in brain regions and spinal cord. Hen CaM kinase II alpha subunit differs in 7 amino acids from that of rat CaM kinase II. Its mRNA occurs predominantly as a 6.7 kb message, which is very close to that of human CaM kinase II alpha subunit. Northern blot analysis showed a transient increase in CaM kinase II alpha subunit mRNA in the cerebellum and spinal cord of DFP-treated chickens. The increase in CaM kinase II mRNA expression is consistent with the previously reported increase in its activity in brain and spinal cord, and its increased expression only in cerebellum and spinal cord, which are sensitive to the Wallerian-type degeneration characteristic of OPIDN, suggests the probable role of this enzyme in delayed neurotoxicity.
Collapse
Affiliation(s)
- R P Gupta
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
36
|
Doroudchi MM, Durham HD. Activation of NMDA receptors and Ca2+/calmodulin-dependent protein kinase participate in phosphorylation of neurofilaments induced by protein kinase C. J Neurosci Res 1997; 50:514-21. [PMID: 9404713 DOI: 10.1002/(sici)1097-4547(19971115)50:4<514::aid-jnr2>3.0.co;2-h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aberrant phosphorylation of neurofilaments, similar to that occurring in various motor neuron diseases, is produced in cultured motor neurons by activation of protein kinase C (PKC). Following exposure to synthetic diacylglycerol, persistent change in the phosphorylation state of C-terminal domains of neurofilament proteins was detected by increased perikaryal immunoreactivity with the antibody SMI34; this antibody recognizes NF-M/NF-H when C-terminal KSP repeat domains are highly phosphorylated. SMI34 labeling of perikarya and dendrites was prevented by pretreatment with either the NMDA receptor antagonist APV or by the Ca2+/calmodulin-dependent protein kinase (CaMK) inhibitor KN-62, but not by antagonists of AMPA/kainate or metabotropic glutamate receptors or by inhibitors of arachidonic acid metabolic pathways. Thus, activation of PKC may induce neurofilament phosphorylation in motor neurons by acting in cooperation with stimulation of NMDA receptors and activation of CaMK. These mechanisms may be relevant to motor neuron disease and other neuronal injuries in which increased PKC activity has been measured.
Collapse
Affiliation(s)
- M M Doroudchi
- Montreal Neurological Institute and Department of Neurology/Neurosurgery, McGill University, Quebec, Canada
| | | |
Collapse
|
37
|
Gupta RP, Abou-Donia MB. Neurofilament phosphorylation and [125I]calmodulin binding by Ca2+/calmodulin-dependent protein kinase in the brain subcellular fractions of diisopropyl phosphorofluoridate (DFP)-treated hen. Neurochem Res 1995; 20:1095-105. [PMID: 8570015 DOI: 10.1007/bf00995565] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in humans and sensitive animal species, e.g., adult chicken. The chickens were sacrificed 18 days after a single dose of DFP (1.7 mg/kg, s.c.), which produced severe ataxia or paralysis in 10-14 days. We studied Ca2+/calmodulin-dependent in vitro neurofilament phosphorylation by the brain subcellular fractions of control and DFP-treated hens. There was enhanced phosphorylation of all three NF subunits by the brain supernatant of treated hens. This was accompanied by enhanced autophosphorylation of both Ca2+/CaM-dependent protein kinase II (CaM-kinase II) subunits and increased calmodulin binding using either 125I-CaM or biotinylated calmodulin to only alpha subunit without concomitant increase in the amount of this enzyme. This enhanced phosphorylation of neurofilament subunits was completely and partially inhibited by mastoparan and KN-62, respectively. There was no alteration in the distribution of CaM-kinase II activity in treated hens and the activity was not related to its concentration in different subcellular fractions. The difference in 125I-CaM binding to CaM-kinase II alpha subunit in the brain supernatants of control and DFP-treated hens was not altered by its phosphorylation or dephosphorylation. The increased CaM-kinase II activity in the soluble fraction of DFP-treated hen brain may be involved in the aberrant phosphorylation of axonal neurofilaments, and thus play a role in OPIDN.
Collapse
Affiliation(s)
- R P Gupta
- Duke University Medical Center, Department of Pharmacology, Durham, North Carolina 27710-0001, USA
| | | |
Collapse
|
38
|
Abou-Donia MB. Involvement of cytoskeletal proteins in the mechanisms of organophosphorus ester-induced delayed neurotoxicity. Clin Exp Pharmacol Physiol 1995; 22:358-9. [PMID: 7554428 DOI: 10.1111/j.1440-1681.1995.tb02015.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. Organophosphorus ester-induced delayed neurotoxicity (OPIDN) is a neurodegenerative disorder characterized by the presence of swellings in the distal parts of large axons in the central and peripheral nervous systems with subsequent axonal degeneration and paralysis. 2. An early change in OPIDN is enhanced activity and autophosphorylation of Ca2+/calmodulin-dependent kinase II. 3. In OPIDN, there is also a dose- and time-dependent increase in Ca2+/calmodulin-dependent kinase mediated phosphorylation of the cytoskeletal proteins, alpha- and beta-tubulin, microtubule associated protein-2, neurofilament triplet proteins and myelin basic protein. 4. Anomalous hyperphosphorylation of neurofilaments decreases their transport rate down the axon relative to their rate of entry resulting in their accumulation. 5. Consistent with the neurochemical results is the presence of anomalous aggregations of phosphorylated neurofilaments in early stages of OPIDN. 6. These findings suggest that aberrant hyperphosphorylation of cytoskeletal proteins is a post-translational modification involved in the pathogenesis of OPIDN.
Collapse
Affiliation(s)
- M B Abou-Donia
- Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
39
|
Reagan KE, Wilmarth KR, Friedman MA, Abou-Donia MB. In vitro calcium and calmodulin-dependent kinase-mediated phosphorylation of rat brain and spinal cord neurofilament proteins is increased by glycidamide administration. Brain Res 1995; 671:12-20. [PMID: 7728524 DOI: 10.1016/0006-8993(94)01288-s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study was carried out to determine the action of glycidamide (2,3-epoxy-1-propanamide), a neurotoxic metabolite of acrylamide, on Ca2+/calmodulin (CaM)-dependent protein kinase phosphorylation of cytoskeletal proteins. Acrylamide has been shown to increase Ca2+/CaM-dependent phosphorylation of neurofilament (NF) triplet proteins and autophosphorylation of Ca2+/CaM-dependent protein kinase II (CaM kinase II; EC 2.7.1.37). A daily intraperitoneal dose of 0.7 mmol/kg b.wt. of glycidamide or deionized water was administered to male Sprague-Dawley rats. Animals were sacrificed when signs of severe neurotoxicity became apparent at 13-16 days of treatment. Axonal floatation was used to isolate neurofilaments (NFs) and endogenous kinases from brains and spinal cords of treated and control animals. Samples isolated from brain and spinal cord of glycidamide-treated animals showed increased in vitro Ca2+/CaM-dependent phosphorylation of endogenous and exogenous NF proteins and increased autophosphorylation of CaM kinase II when compared with controls. CaM binding to the alpha, beta, and beta' subunits of CaM kinase II and antibody binding to the alpha-subunit of CaM kinase II in brain supernatant isolates was increased as a result of glycidamide treatment. These results suggest that increased Ca2+/CaM-dependent phosphorylation of cytoskeletal proteins may be involved in the pathogenesis of glycidamide-induced neurotoxicity.
Collapse
Affiliation(s)
- K E Reagan
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
40
|
|
41
|
Reagan KE, Wilmarth KR, Friedman M, Abou-Donia MB. Acrylamide increases in vitro calcium and calmodulin-dependent kinase-mediated phosphorylation of rat brain and spinal cord neurofilament proteins. Neurochem Int 1994; 25:133-43. [PMID: 7994194 DOI: 10.1016/0197-0186(94)90032-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Male Sprague-Dawley rats were administered a daily i.p. dose of 0.70 mmol/kg body weight of acrylamide, propionamide (a non-neurotoxic structural analog of acrylamide) or deionized water. Animals were sacrificed when signs of severe neurotoxicity were apparent. Neurofilaments (NFs) and endogenous kinase were isolated from the brain and spinal cord by axonal floatation. Increased in vitro Ca2+/calmodulin-dependent phosphorylation of endogenous and exogenous NF proteins and autophosphorylation of Ca2+/calmodulin protein kinase II (CaM kinase II, EC 2-7-1-37) were observed in samples from both brain and spinal cord of acrylamide-treated animals compared with controls. There was no significant difference between samples isolated from propionamide-treated animals and controls. Increased calmodulin binding to brain supernatant CaM kinase II was also observed as a result of acrylamide treatment. There was no significant difference observed in the amount of antibody binding to the alpha-subunit of brain supernatant CaM kinase II between treated or control animals. These results suggest that increased CaM kinase II-dependent phosphorylation of cytoskeletal proteins may be involved in the mechanisms of acrylamide-induced neurotoxicity.
Collapse
Affiliation(s)
- K E Reagan
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|
42
|
Gupta RP, Abou-Donia MB. In vivo and in vitro effects of diisopropyl phosphorofluoridate (DFP) on the rate of hen brain tubulin polymerization. Neurochem Res 1994; 19:435-44. [PMID: 8065500 DOI: 10.1007/bf00967321] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Diisopropyl phosphorofluoridate (DFP) produces organophosphorus ester-induced delayed neurotoxicity (OPIDN) in sensitive species. We have investigated the in vivo and in vitro effects of DFP on hen brain tubulin polymerization. Hens were treated with a single dose of DFP (1.7 mg/kg, sc.), and were sacrificed after 18-21 days. Tubulin from DFP-treated hen brains showed small but significant decrease (14.42%) in the rate of polymerization and 11.05% decrease in rise in O.D. at 340 nm in 30 min. DFP in vivo treatment also resulted in decreased concentration of tau and an enhanced concentration of two peptides (45 kDa, 35 kDa) in the brain supernatant. These peptides seemed to be the degradation products of MAP-2. The decrease in the rate of brain tubulin polymerization in treated hens is consistent with neurochemical alterations and the focal degeneration and aggregation of these filamentous structures in OPIDN.
Collapse
Affiliation(s)
- R P Gupta
- Duke University Medical Center, Department of Pharmacology, Durham, North Carolina
| | | |
Collapse
|
43
|
Wilmarth KR, Viana ME, Abou-Donia MB. Carbon disulfide inhalation increases Ca2+/calmodulin-dependent kinase phosphorylation of cytoskeletal proteins in the rat central nervous system. Brain Res 1993; 628:293-300. [PMID: 8313158 DOI: 10.1016/0006-8993(93)90967-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Ca2+/calmodulin-dependent phosphorylation of neuronal cytoskeletal proteins was studied in brain supernatants prepared from rats exposed via inhalation to 600 to 800 ppm carbon disulfide (CS2) for 14 days. Exposure to CS2 resulted in increased phosphorylation of endogenous MAP-2 and exogenously added neurofilament triplet proteins. There also was an observed increase in the autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Slight increases in the binding of a monoclonal antibody to the alpha subunit of CaM kinase II were seen, while large increases in the binding of [125I]calmodulin to the alpha subunit of CaM kinase II also were observed. The finding of large increases in the autophosphorylation and calmodulin-binding to CaM kinase II with only slight increases in the amount of antibody-binding suggests that CS2 exposure results in increased Ca2+/calmodulin-dependent phosphorylation of proteins by inducing an increase in kinase activity.
Collapse
Affiliation(s)
- K R Wilmarth
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| | | | | |
Collapse
|
44
|
Abou-Donia MB. The cytoskeleton as a target for organophosphorus ester-induced delayed neurotoxicity (OPIDN). Chem Biol Interact 1993; 87:383-93. [PMID: 8343995 DOI: 10.1016/0009-2797(93)90066-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although the immediate action of organophosphorus esters is the inhibition of acetylcholinesterase, some of these compounds also produce a neurodegenerative disorder known as organophosphorus ester-induced delayed neurotoxicity (OPIDN). Tri-o-cresyl phosphate (TOCP) first produced this condition in humans and later in sensitive animal species. OPIDN is characterized by a delay period prior to onset of ataxia and paralysis. The neuropathologic lesions are Wallerian-type degeneration of the axon and myelin in the distal parts of the large tracts in both the central and peripheral nervous systems. In the past decade we have demonstrated that the pathognomonic features of OPIDN are an aberrant increase in autophosphorylation of calcium/calmodulin kinase II (CaM kinase II) and an increase in phosphorylation of cytoskeletal proteins, i.e., MAPs, tubulin, neurofilament triplet proteins, and myelin basic protein. Protein kinase-mediated phosphorylation of cytoskeletal proteins plays a critical role in regulating the growth and maintenance of the axon. We hypothesize that, in OPIDN, hyperphosphorylation of cytoskeletal proteins and axonal swelling are causally linked. Hyperphosphorylation of cytoskeletal proteins decreases their transport rate down the axon relative to their rate of entry into the axon, thus leading to their accumulation. Consistent with this hypothesis is our finding of the anomalous accumulation of phosphorylated neurofilament aggregates in the central and peripheral axons of hens treated with TOCP.
Collapse
Affiliation(s)
- M B Abou-Donia
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
45
|
Abou-Donia MB, Viana ME, Gupta RP, Anderson JK. Enhanced calmodulin binding concurrent with increased kinase-dependent phosphorylation of cytoskeletal proteins following a single subcutaneous injection of diisopropyl phosphorofluoridate in hens. Neurochem Int 1993; 22:165-73. [PMID: 7679940 DOI: 10.1016/0197-0186(93)90009-t] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diisopropyl phosphorofluoridate (DFP) produces Type I organophosphorus compound-induced delayed neurotoxicity (OPIDN) in adult female chickens. We have proposed that calcium/calmodulin protein kinase II (CaM kinase II) plays a role in the development of OPIDN by increasing the phosphorylation of cytoskeletal proteins. We investigated in vivo the effects of treatment of DFP on CaM kinase II-dependent phosphorylation. In isolated brain supernatants from DFP-treated hens, calmodulin binding increased concurrent with increases in CaM kinase II-dependent autophosphorylation and phosphorylation of cytoskeleton proteins. There were no changes in the relative amounts of the enzyme based on immunobinding studies of antibodies to the CaM kinase II. In the absence of any exogenously added substrate. CaM kinase II and microtubule associated protein-2 (MAP-2) exhibited substantially increased phosphorylation, 833 and 275%, respectively, over brain supernatants from untreated hens. Moreover, isolated brain supernatants from treated hens with exogenously added cytoskeletal proteins and myelin basic protein (MBP) exhibited significant increases in phosphorylation over control, 233, 332 and 60%, for MAP-2, tubulin, and MBP, respectively. 125I-Calmodulin binding studies revealed a 136% increase in calmodulin binding to CaM kinase II in treated hens when compared to control groups. The data suggest that in vivo DFP treatment increases the percentage of unphosphorylated, active CaM kinase II resulting in increased calmodulin binding and subsequent enhanced phosphorylation of cytoskeletal proteins that leads to their aggregation and the production of axonal degeneration.
Collapse
Affiliation(s)
- M B Abou-Donia
- Department of Pharmacology, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|