1
|
Miller JA, Drouet DE, Yermakov LM, Elbasiouny MS, Bensabeur FZ, Bottomley M, Susuki K. Distinct Changes in Calpain and Calpastatin during PNS Myelination and Demyelination in Rodent Models. Int J Mol Sci 2022; 23:15443. [PMID: 36499770 PMCID: PMC9737575 DOI: 10.3390/ijms232315443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Myelin forming around axons provides electrical insulation and ensures rapid and efficient transmission of electrical impulses. Disruptions to myelinated nerves often result in nerve conduction failure along with neurological symptoms and long-term disability. In the central nervous system, calpains, a family of calcium dependent cysteine proteases, have been shown to have a role in developmental myelination and in demyelinating diseases. The roles of calpains in myelination and demyelination in the peripheral nervous system remain unclear. Here, we show a transient increase of activated CAPN1, a major calpain isoform, in postnatal rat sciatic nerves when myelin is actively formed. Expression of the endogenous calpain inhibitor, calpastatin, showed a steady decrease throughout the period of peripheral nerve development. In the sciatic nerves of Trembler-J mice characterized by dysmyelination, expression levels of CAPN1 and calpastatin and calpain activity were significantly increased. In lysolecithin-induced acute demyelination in adult rat sciatic nerves, we show an increase of CAPN1 and decrease of calpastatin expression. These changes in the calpain-calpastatin system are distinct from those during central nervous system development or in acute axonal degeneration in peripheral nerves. Our results suggest that the calpain-calpastatin system has putative roles in myelination and demyelinating diseases of peripheral nerves.
Collapse
Affiliation(s)
- John A. Miller
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Domenica E. Drouet
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Leonid M. Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Mahmoud S. Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Fatima Z. Bensabeur
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Bottomley
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
2
|
Weninger G, Pochechueva T, El Chami D, Luo X, Kohl T, Brandenburg S, Urlaub H, Guan K, Lenz C, Lehnart SE. Calpain cleavage of Junctophilin-2 generates a spectrum of calcium-dependent cleavage products and DNA-rich NT 1-fragment domains in cardiomyocytes. Sci Rep 2022; 12:10387. [PMID: 35725601 PMCID: PMC9209451 DOI: 10.1038/s41598-022-14320-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Calpains are calcium-activated neutral proteases involved in the regulation of key signaling pathways. Junctophilin-2 (JP2) is a Calpain-specific proteolytic target and essential structural protein inside Ca2+ release units required for excitation-contraction coupling in cardiomyocytes. While downregulation of JP2 by Calpain cleavage in heart failure has been reported, the precise molecular identity of the Calpain cleavage sites and the (patho-)physiological roles of the JP2 proteolytic products remain controversial. We systematically analyzed the JP2 cleavage fragments as function of Calpain-1 versus Calpain-2 proteolytic activities, revealing that both Calpain isoforms preferentially cleave mouse JP2 at R565, but subsequently at three additional secondary Calpain cleavage sites. Moreover, we identified the Calpain-specific primary cleavage products for the first time in human iPSC-derived cardiomyocytes. Knockout of RyR2 in hiPSC-cardiomyocytes destabilized JP2 resulting in an increase of the Calpain-specific cleavage fragments. The primary N-terminal cleavage product NT1 accumulated in the nucleus of mouse and human cardiomyocytes in a Ca2+-dependent manner, closely associated with euchromatic chromosomal regions, where NT1 is proposed to function as a cardio-protective transcriptional regulator in heart failure. Taken together, our data suggest that stabilizing NT1 by preventing secondary cleavage events by Calpain and other proteases could be an important therapeutic target for future studies.
Collapse
Affiliation(s)
- Gunnar Weninger
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Tatiana Pochechueva
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany
| | - Dana El Chami
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany
| | - Xiaojing Luo
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Tobias Kohl
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC2067), University of Göttingen, 37073, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, 37075, Göttingen, Germany
| | - Sören Brandenburg
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany.,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC2067), University of Göttingen, 37073, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site, 37075, Göttingen, Germany
| | - Henning Urlaub
- Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany.,Proteomanalyse, Department of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307, Dresden, Germany
| | - Christof Lenz
- Proteomanalyse, Department of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany. .,Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| | - Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075, Göttingen, Germany. .,Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075, Göttingen, Germany. .,Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, 37073, Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC2067), University of Göttingen, 37073, Göttingen, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site, 37075, Göttingen, Germany.
| |
Collapse
|
3
|
Abstract
Calpain, an intracellular Ca2+-dependent cysteine protease, is known to play a role in a wide range of metabolic pathways through limited proteolysis of its substrates. However, only a limited number of these substrates are currently known, with the exact mechanism of substrate recognition and cleavage by calpain still largely unknown.Current sequencing technologies have made it possible to compile large amounts of cleavage data and brought greater understanding of the underlying protein interactions. However, the practical impossibility of exhaustively retrieving substrate sequences through experimentation alone has created the need for efficient computational prediction methods. Such methods must be able to quickly mark substrate candidates and putative cleavage sites for further analysis. While many methods exist for both calpain and other types of proteolytic actions, the expected reliability of these methods depends heavily on the type and complexity of proteolytic action, as well as the availability of well-labeled experimental datasets, which both vary greatly across enzyme families.This chapter introduces CalCleaveMKL: a tool for calpain cleavage prediction based on multiple kernel learning, an extension to the classic support vector machine framework that is able to train complex models based on rich, heterogeneous feature sets, leading to significantly improved prediction quality. Along with its improved accuracy, the method used by CalCleaveMKL provided numerous insights on the respective importance of sequence-related features, such as solvent accessibility and secondary structure. It notably demonstrated there existed significant specificity differences across calpain subtypes, despite previous assumption to the contrary.An online implementation of this prediction tool is available at http://calpain.org .
Collapse
|
4
|
An easy-to-use FRET protein substrate to detect calpain cleavage in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:221-230. [DOI: 10.1016/j.bbamcr.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/10/2017] [Accepted: 10/30/2017] [Indexed: 01/06/2023]
|
5
|
Weber JJ, Golla M, Guaitoli G, Wanichawan P, Hayer SN, Hauser S, Krahl AC, Nagel M, Samer S, Aronica E, Carlson CR, Schöls L, Riess O, Gloeckner CJ, Nguyen HP, Hübener-Schmid J. A combinatorial approach to identify calpain cleavage sites in the Machado-Joseph disease protein ataxin-3. Brain 2017; 140:1280-1299. [DOI: 10.1093/brain/awx039] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/06/2017] [Indexed: 11/13/2022] Open
|
6
|
W. Smith A, K. Ray S, Das A, Nozaki K, Rohrer B, L. Banik N. Calpain inhibition as a possible new therapeutic target in multiple sclerosis. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Smith AW, Rohrer B, Wheless L, Samantaray S, Ray SK, Inoue J, Azuma M, Banik NL. Calpain inhibition reduces structural and functional impairment of retinal ganglion cells in experimental optic neuritis. J Neurochem 2016; 139:270-284. [PMID: 27513991 DOI: 10.1111/jnc.13770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
Abstract
Optic neuritis (ON), inflammation of the optic nerve, is strongly associated with multiple sclerosis. ON pathology is characterized by attack of autoreactive T cells against optic nerve antigens, resulting in demyelination, death of retinal ganglion cells, and cumulative visual impairment. A model of experimental autoimmune encephalomyelitis (EAE) was utilized to study the onset and progression of ON and the neuroprotective efficacy of oral treatment with the calpain inhibitor SNJ 1945. EAE was actively induced in B10.PL mice with myelin basic protein on Days 0 and 2, and mice received twice daily oral dosing of SNJ 1945 from Day 9 until sacrificing (Day 26). Visual function was determined by electroretinogram recordings and daily measurement of optokinetic responses (OKR) to a changing pattern stimulus. Optic nerve and retinal histopathology was investigated by immunohistochemical and luxol fast blue staining. EAE mice manifested losses in OKR thresholds, a measurement of visual acuity, which began early in the disease course. There was a significant bias toward unilateral OKR impairment among EAE-ON eyes. Treatment with SNJ 1945, initiated after the onset of OKR threshold decline, improved visual acuity, pattern electroretinogram amplitudes, and paralysis, with attenuation of retinal ganglion cell death. Furthermore, calpain inhibition spared oligodendrocytes, prevented degradation of axonal neurofilament protein, and attenuated reactive astrocytosis. The trend of early, unilateral visual impairment in EAE-ON parallels the clinical presentation of ON exacerbations associated with multiple sclerosis. Calpain inhibition may represent an ideal candidate therapy for the preservation of vision in clinical ON. As in multiple sclerosis (MS) patients, optic neuritis (ON) and early, primarily monocular loss in spatial acuity is observed in a rodent model (EAE, experimental autoimmune encephalomyelitis). Daily oral treatment with the calpain inhibitor SNJ 1945 preserves visual acuity and preserves retinal ganglion cells (Brn3a, brain-specific homeobox/POU domain protein 3A) and their axons (MOSP, myelin oligodendrocyte-specific protein). Calpain inhibition may represent a candidate therapy for the preservation of vision in ON.
Collapse
Affiliation(s)
- Amena W Smith
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Baerbel Rohrer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA. .,Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA. .,Alexion Pharmaceuticals, Cheshire, Connecticut, USA. .,Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA.
| | - Lee Wheless
- Medicine-Division of Biostatistics and Epidemiology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Supriti Samantaray
- Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Jun Inoue
- Senju Pharmaceutical Co Ltd, Kobe, Japan
| | | | - Naren L Banik
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA. .,Alexion Pharmaceuticals, Cheshire, Connecticut, USA. .,Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA. .,Research Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA.
| |
Collapse
|
8
|
Rawlings ND. Bacterial calpains and the evolution of the calpain (C2) family of peptidases. Biol Direct 2015; 10:66. [PMID: 26527411 PMCID: PMC4631099 DOI: 10.1186/s13062-015-0095-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/27/2015] [Indexed: 12/04/2022] Open
Abstract
Homologues of calpain, often thought to be an essential, cytoplasmic, calcium-dependent cysteine endopeptidase found exclusively in eukaryotes, have been found in bacterial proteomes. The homologues lack calcium-binding sites, have differing domain architectures, and can be secreted or membrane-associated. Homologues are rare and occur in a minority of bacterial phyla and often in a minority of species in a genus. However, the differences in domain architecture argue against a recent, horizontal gene transfer from a eukaryote. From analysis of a phylogenetic tree and absence of homologues in archaea, calpains in eukaryotes may be derived from genes horizontally transferred from a bacterium. Reviewers: This article was reviewed by L. Aravind and Frank Eisenhaber.
Collapse
Affiliation(s)
- Neil D Rawlings
- Wellcome Trust Sanger Institute and the EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| |
Collapse
|
9
|
Fan X, Zhang Q, You C, Qian Y, Gao J, Liu P, Chen H, Song H, Chen Y, Chen K, Zhou Y. Proteolysis of the human DNA polymerase delta smallest subunit p12 by μ-calpain in calcium-triggered apoptotic HeLa cells. PLoS One 2014; 9:e93642. [PMID: 24691096 PMCID: PMC3972206 DOI: 10.1371/journal.pone.0093642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
Degradation of p12 subunit of human DNA polymerase delta (Pol δ) that results in an interconversion between Pol δ4 and Pol δ3 forms plays a significant role in response to replication stress or genotoxic agents triggered DNA damage. Also, the p12 is readily degraded by human calpain in vitro. However, little has been done for the investigation of its degree of participation in any of the more common apoptosis. Here, we first report that the p12 subunit is a substrate of μ-calpain. In calcium-triggered apoptotic HeLa cells, the p12 is degraded at 12 hours post-induction (hpi), restored thereafter by 24 hpi, and then depleted again after 36 hpi in a time-dependent manner while the other three subunits are not affected. It suggests a dual function of Pol δ by its interconversion between Pol δ4 and Pol δ3 that is involved in a novel unknown apoptosis mechanism. The proteolysis of p12 could be efficiently blocked by both calpain inhibitor ALLN and proteasome inhibitor MG132. In vitro pull down and co-immunoprecipitation assays show that the μ-calpain binds to p12 through the interaction of μ-calpain with Pol δ other three subunits, not p12 itself, and PCNA, implying that the proteolysis of p12 by μ-calpain might be through a Pol δ4/PCNA complex. The p12 cleavage sites by μ-calpain are further determined as the location within a 16-amino acids peptide 28-43 by in vitro cleavage assays. Thus, the p12/Pol δ is a target as a nuclear substrate of μ-calpain in a calcium-triggered apoptosis and appears to be a potential marker in the study of the chemotherapy of cancer therapies.
Collapse
Affiliation(s)
- Xiaoting Fan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Zhang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Chao You
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yuanxia Qian
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jing Gao
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Peng Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Huiqing Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Huifang Song
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yan Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yajing Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
10
|
Trager N, Butler JT, Haque A, Ray SK, Beeson C, Banik NL. The Involvement of Calpain in CD4 + T Helper Cell Bias in Multple Sclerosis. ACTA ACUST UNITED AC 2013; 4:1000153. [PMID: 24707444 PMCID: PMC3972924 DOI: 10.4172/2155-9899.1000153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pathogenesis of multiple sclerosis (MS) is mediated by massive infiltration of myelin-specific T cells into the central nervous system (CNS). Self-reactive CD4+ T helper (Th) cells, specifically Th1 and Th17 cells, are hallmarks of active disease in progression, whereas Th2 cells are predominately in remission stages. Calpain has been shown to be upregulated in the CNS of MS patients and inhibition of calpain has been shown previously to decrease disease in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We investigated calpain involvement in Thcell bias. Here, we show that calpain inhibition in primary myelin basic protein (MBP) Ac1-11-specific T cells and MBP-specific T cell line cultures increase Th2 proliferation, cytokine profile, and transcription and signaling molecules. We also show a relative decrease in Th1 inflammatory factors in these same categories and a relative decrease in Th17 proliferation. These studies provide insight into the various roles that calpain plays in Th cell bias and proliferation and increases our understanding of the role that T cells play in the pathophysiology of EAE and MS. Results also indicate the mechanisms involved by which calpain inhibitor decreases the disease signs of EAE, suggesting that calpain inhibitor can be a possible therapeutic agent for the treatment of EAE and MS.
Collapse
Affiliation(s)
- Nicole Trager
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, South Carolina, SC 29425, USA ; Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, South Carolina, SC 29425, USA
| | - Jonathan T Butler
- Vanderbilt Neurosciences, Vanderbilt University, 1211 Medical Center Dr, Nashville, TN 37232, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, South Carolina, SC 29425, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA
| | - Craig Beeson
- Department of Drug Discovery and Biomedical Science, Medical University of South Carolina, 280 Calhoun Street, Charleston, SC 29425, USA
| | - Naren L Banik
- Department of Neurosciences, Medical University of South Carolina, 96 Jonathan Lucas Street, South Carolina, SC 29425, USA
| |
Collapse
|
11
|
Ueda H, Matsunaga H, Olaposi OI, Nagai J. Lysophosphatidic acid: Chemical signature of neuropathic pain. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:61-73. [DOI: 10.1016/j.bbalip.2012.08.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023]
|
12
|
Fan YX, Zhang Y, Shen HB. LabCaS: labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields. Proteins 2012. [PMID: 23180633 DOI: 10.1002/prot.24217] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The calpain family of Ca(2+) -dependent cysteine proteases plays a vital role in many important biological processes which is closely related with a variety of pathological states. Activated calpains selectively cleave relevant substrates at specific cleavage sites, yielding multiple fragments that can have different functions from the intact substrate protein. Until now, our knowledge about the calpain functions and their substrate cleavage mechanisms are limited because the experimental determination and validation on calpain binding are usually laborious and expensive. In this work, we aim to develop a new computational approach (LabCaS) for accurate prediction of the calpain substrate cleavage sites from amino acid sequences. To overcome the imbalance of negative and positive samples in the machine-learning training which have been suffered by most of the former approaches when splitting sequences into short peptides, we designed a conditional random field algorithm that can label the potential cleavage sites directly from the entire sequences. By integrating the multiple amino acid features and those derived from sequences, LabCaS achieves an accurate recognition of the cleave sites for most calpain proteins. In a jackknife test on a set of 129 benchmark proteins, LabCaS generates an AUC score 0.862. The LabCaS program is freely available at: http://www.csbio.sjtu.edu.cn/bioinf/LabCaS. Proteins 2013. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yong-Xian Fan
- Department of Automation, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | | | | |
Collapse
|
13
|
Low dose estrogen prevents neuronal degeneration and microglial reactivity in an acute model of spinal cord injury: effect of dosing, route of administration, and therapy delay. Neurochem Res 2011; 36:1809-16. [PMID: 21611834 DOI: 10.1007/s11064-011-0498-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Spinal cord injury (SCI), depending on the severity of injury, leads to neurological dysfunction and paralysis. Methylprednisolone, the only currently available therapy renders limited protection in SCI. Therefore, other therapeutic agents must be tested to maximize neuroprotection and functional recovery. Previous data from our laboratory indicate that estrogen (17β-estradiol) at a high dose may attenuate multiple damaging pathways involved in SCI and improve locomotor outcome. Since use of high dose estrogen may have detrimental side effects and therefore may never be used in the clinic, the current study investigated the efficacy of this steroid hormone at very low doses in SCI. In particular, we tested the impact of dosing (1-10 μg/kg), mode of delivery (intravenous vs. osmotic pump), and delay in estrogen application (15 min-4 h post-SCI) on microgliosis and neuronal death in acute SCI in rats. Treatment with 17β-estradiol (1-10 μg/kg) significantly reduced microglial activation and also attenuated apoptosis of neurons compared to untreated SCI animals. The attenuation of cell death and inflammation by estrogen was observed regardless of mode and time of delivery following injury. These findings suggest estrogen as a potential agent for the treatment of individuals with SCI.
Collapse
|
14
|
Bacheva AV, Belogurov AA, Kuzina ES, Serebriakova MV, Ponomarenko NA, Knorre VD, Govorun VM, Gabibov AG. [Functional degradation of myelin basic protein. Proteomic approach]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:45-54. [PMID: 21460880 DOI: 10.1134/s1068162011010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteolytic degradation of autoantigens is of prime importance in current biochemistry and immunology. The most fundamental issue in this field is the functional role of peptides produced when the specificity of hydrolysis changes during the shift from health to disease and from normal state to pathology. The identification of specific peptide fragments in many cases proposes the diagnostic and prognostic criterion in the pathology progression. The aim of this work is comparative study of the degradation peculiarities of one of the main neuroantigen, myelin basic protein by proteases, activated during progress of pathological demyelinating process, and by proteasome of different origin. The comparison of specificity of different studied biocatalysts gives reason to discuss the critical change in the set of myelin basic protein fragments capable to be presented by major histocompatibility complex class I during neurodegeneration, which can promote the progress of autoimmune pathological process.
Collapse
|
15
|
DuVerle DA, Ono Y, Sorimachi H, Mamitsuka H. Calpain cleavage prediction using multiple kernel learning. PLoS One 2011; 6:e19035. [PMID: 21559271 PMCID: PMC3086883 DOI: 10.1371/journal.pone.0019035] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/23/2011] [Indexed: 11/19/2022] Open
Abstract
Calpain, an intracellular Ca²⁺-dependent cysteine protease, is known to play a role in a wide range of metabolic pathways through limited proteolysis of its substrates. However, only a limited number of these substrates are currently known, with the exact mechanism of substrate recognition and cleavage by calpain still largely unknown. While previous research has successfully applied standard machine-learning algorithms to accurately predict substrate cleavage by other similar types of proteases, their approach does not extend well to calpain, possibly due to its particular mode of proteolytic action and limited amount of experimental data. Through the use of Multiple Kernel Learning, a recent extension to the classic Support Vector Machine framework, we were able to train complex models based on rich, heterogeneous feature sets, leading to significantly improved prediction quality (6% over highest AUC score produced by state-of-the-art methods). In addition to producing a stronger machine-learning model for the prediction of calpain cleavage, we were able to highlight the importance and role of each feature of substrate sequences in defining specificity: primary sequence, secondary structure and solvent accessibility. Most notably, we showed there existed significant specificity differences across calpain sub-types, despite previous assumption to the contrary. Prediction accuracy was further successfully validated using, as an unbiased test set, mutated sequences of calpastatin (endogenous inhibitor of calpain) modified to no longer block calpain's proteolytic action. An online implementation of our prediction tool is available at http://calpain.org.
Collapse
|
16
|
Guyton MK, Das A, Samantaray S, Wallace GC, Butler JT, Ray SK, Banik NL. Calpeptin attenuated inflammation, cell death, and axonal damage in animal model of multiple sclerosis. J Neurosci Res 2010; 88:2398-408. [PMID: 20623621 PMCID: PMC3164817 DOI: 10.1002/jnr.22408] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model for studying multiple sclerosis (MS). Calpain has been implicated in many inflammatory and neurodegenerative events that lead to disability in EAE and MS. Thus, treating EAE animals with calpain inhibitors may block these events and ameliorate disability. To test this hypothesis, acute EAE Lewis rats were treated dose dependently with the calpain inhibitor calpeptin (50-250 microg/kg). Calpain activity, gliosis, loss of myelin, and axonal damage were attenuated by calpeptin therapy, leading to improved clinical scores. Neuronal and oligodendrocyte death were also decreased, with down-regulation of proapoptotic proteins, suggesting that decreases in cell death were due to decreases in the expression or activity of proapoptotic proteins. These results indicate that calpain inhibition may offer a novel therapeutic avenue for treating EAE and MS.
Collapse
Affiliation(s)
- M. Kelly Guyton
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Arabinda Das
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Supriti Samantaray
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Gerald C. Wallace
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Jonathan T. Butler
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Naren L. Banik
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
17
|
Guyton MK, Brahmachari S, Das A, Samantaray S, Inoue J, Azuma M, Ray SK, Banik NL. Inhibition of calpain attenuates encephalitogenicity of MBP-specific T cells. J Neurochem 2009; 110:1895-907. [PMID: 19627443 DOI: 10.1111/j.1471-4159.2009.06287.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a T-cell mediated autoimmune disease of the CNS, possessing both immune and neurodegenerative events that lead to disability. Adoptive transfer (AT) of myelin basic protein (MBP)-specific T cells into naïve female SJL/J mice results in a relapsing-remitting (RR) form of experimental autoimmune encephalomyelitis (EAE). Blocking the mechanisms by which MBP-specific T cells are activated before AT may help characterize the immune arm of MS and offer novel targets for therapy. One such target is calpain, which is involved in activation of T cells, migration of immune cells into the CNS, degradation of axonal and myelin proteins, and neuronal apoptosis. Thus, the hypothesis that inhibiting calpain in MBP-specific T cells would diminish their encephalitogenicity in RR-EAE mice was tested. Incubating MBP-specific T cells with the calpain inhibitor SJA6017 before AT markedly suppressed the ability of these T cells to induce clinical symptoms of RR-EAE. These reductions correlated with decreases in demyelination, inflammation, axonal damage, and loss of oligodendrocytes and neurons. Also, calpain : calpastatin ratio, production of truncated Bid, and Bax : Bcl-2 ratio, and activities of calpain and caspases, and internucleosomal DNA fragmentation were attenuated. Thus, these data suggest calpain as a promising target for treating EAE and MS.
Collapse
Affiliation(s)
- Mary K Guyton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sribnick EA, Matzelle DD, Banik NL, Ray SK. Direct evidence for calpain involvement in apoptotic death of neurons in spinal cord injury in rats and neuroprotection with calpain inhibitor. Neurochem Res 2007; 32:2210-6. [PMID: 17676387 DOI: 10.1007/s11064-007-9433-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/02/2007] [Indexed: 12/18/2022]
Abstract
To demonstrate calpain involvement in neurodegeneration in rat spinal cord injury (SCI), we examined SCI segments for DNA fragmentation, neurons for calpain overexpression, neuronal death, and neuroprotection with calpain inhibitor (E-64-d). After the induction of SCI (40 g cm force) on T12, rats were treated within 15 min with vehicle (DMSO) or E-64-d. Sham animals underwent laminectomy only. Animals were sacrificed at 24 h, and five 1-cm long spinal cord segments were collected: two rostral (S1 and S2), one lesion (S3), and two caudal segments (S4 and S5). Agarose gel electrophoresis of DNA samples isolated from the SCI segments showed both random and internucleosomal DNA fragmentation indicating occurrence of necrosis as well as apoptosis mostly in the lesion, moderately in caudal, and slightly in rostral segments from SCI rats. Treatment of SCI rats with E-64-d (1 mg/kg) reduced DNA fragmentation in all segments. The lesion and adjacent caudal segments (S3 and S4) were further investigated by in situ double-immunofluorescent labelings that showed increase in calpain expression in neurons in SCI rats and decrease in calpain expression in SCI rats treated with E-64-d. In situ combined TUNEL and double-immunofluorescent labelings directly detected co-localization of neuronal death and calpain overexpressin in SCI rats treated with only vehicle while attenuation of neuronal death in SCI rats treated with E-64-d. Previous studies from our laboratory indirectly showed neuroprotective effect of E-64-d in SCI rats. Our current results provide direct in situ evidence for calpain involvement in neuronal death and neuroprotective efficacy of E-64-d in lesion and penumbra in SCI rats.
Collapse
Affiliation(s)
- Eric A Sribnick
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
19
|
Sribnick EA, Matzelle DD, Ray SK, Banik NL. Estrogen treatment of spinal cord injury attenuates calpain activation and apoptosis. J Neurosci Res 2006; 84:1064-75. [PMID: 16902996 DOI: 10.1002/jnr.21016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurologic injury, and currently, the only recommended pharmacotherapy is high-dose methylprednisolone, which has limited efficacy. Estrogen is a multi-active steroid with anti-oxidant and anti-apoptotic effects. Estrogen may modulate intracellular Ca2+ and prevent inflammation. For this study, male rats were divided into three groups. Sham-group animals received a laminectomy at T12. Injured rats received both laminectomy and 40 gram centimeter force SCI. Estrogen-group rats received 4 mg/kg 17beta-estradiol (estrogen) at 15 min and 24 hr post-injury, and vehicle-group rats received equal volumes of dimethyl sulfoxide. Animals were sacrificed at 48 hr post-injury, and 1-cm segments of the lesion, rostral penumbra, and caudal penumbra were excised. The degradation of 68 kD neurofilament protein (NFP) and estrogen receptors (ER) was examined by Western blot analysis. Protein levels of calpain and the activities of calpain and caspase-3 were also examined. Levels of cytochrome c were determined in both cytosolic and mitochondrial fractions. Cell death with DNA fragmentation was examined using the TUNEL assay. At the lesion, samples from both vehicle and estrogen treated animals showed increased levels of 68 kD NFP degradation, calpain content, calpain activity, cytochrome c release, and degradation of ERalpha and ERbeta, as compared to sham. In the caudal penumbra, estrogen treatment significantly attenuated 68 kD NFP degradation, calpain content, calpain activity, levels of cytosolic cytochrome c, and ERbeta degradation. At the lesion, vehicle-treated animals displayed more TUNEL+ cells, and estrogen treatment significantly attenuated this cell death marker. We conclude that estrogen may inhibit cell death in SCI through calpain inhibition.
Collapse
Affiliation(s)
- Eric Anthony Sribnick
- Department of Neurosciences, Division of Neurology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | |
Collapse
|
20
|
Liu MC, Akle V, Zheng W, Kitlen J, O'Steen B, Larner SF, Dave JR, Tortella FC, Hayes RL, Wang KKW. Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem 2006; 98:700-12. [PMID: 16893416 DOI: 10.1111/j.1471-4159.2006.03882.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Axonal injury is one of the key features of traumatic brain injury (TBI), yet little is known about the integrity of the myelin sheath. We report that the 21.5 and 18.5-kDa myelin basic protein (MBP) isoforms degrade into N-terminal fragments (of 10 and 8 kDa) in the ipsilateral hippocampus and cortex between 2 h and 3 days after controlled cortical impact (in a rat model of TBI), but exhibit no degradation contralaterally. Using N-terminal microsequencing and mass spectrometry, we identified a novel in vivo MBP cleavage site between Phe114 and Lys115. A MBP C-terminal fragment-specific antibody was then raised and shown to specifically detect MBP fragments in affected brain regions following TBI. In vitro naive brain lysate and purified MBP digestion showed that MBP is sensitive to calpain, producing the characteristic MBP fragments observed in TBI. We hypothesize that TBI-mediated axonal injury causes secondary structural damage to the adjacent myelin membrane, instigating MBP degradation. This could initiate myelin sheath instability and demyelination, which might further promote axonal vulnerability.
Collapse
Affiliation(s)
- Ming Cheng Liu
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainsville, Florida 32610, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Calpains, the cytoplasmic Ca2+-activated regulatory proteases, have no simple and clearly definable cleavage site specificity, which is in sharp contrast to digestive (e.g., pancreatic) proteases. For calpains, an approximate 10-aa segment having a variety of sequences and spanning the scissile bond, governs proteolytic cleavage. This permissivity is a precondition for calpains to act on several different substrate proteins in the cell. The specificity of calpain action may be ensured by anchoring/targeting proteins. Intriguingly, the established endogenous inhibitor protein, calpastatin, might also serve as a storage site. Furthermore, specificity may be encoded in the 'goodness' of the undecapeptide sequence in substrate proteins. Novel approaches are needed to reveal how calpains find their substrates in cells at the proper time and location.
Collapse
Affiliation(s)
- Peter Friedrich
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, HU-P.O. Box 7, H-1518 Budapest, Hungary.
| | | |
Collapse
|
22
|
Cuerrier D, Moldoveanu T, Davies PL. Determination of Peptide Substrate Specificity for μ-Calpain by a Peptide Library-based Approach. J Biol Chem 2005; 280:40632-41. [PMID: 16216885 DOI: 10.1074/jbc.m506870200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calpains are proteases that catalyze the limited cleavage of target proteins in response to Ca(2+) signaling. Because of their involvement in pathological conditions such as post-ischemic injury and Alzheimer and Parkinson disease, calpains form a class of pharmacologically significant targets for inhibition. We have determined the sequence preference for the hydrolysis of peptide substrates of the ubiquitous mu-calpain isoform by a peptide library-based approach using the proteolytic core of mu-calpain (muI-II). The approach, first described by Turk et al. (Turk, B. E., Huang, L. L., Piro, E. T., and Cantley, L. C. (2001) Nat. Biotechnol. 19, 661-667), involved the digestion of an N-terminally acetylated degenerate peptide library in conjunction with Edman sequencing to determine the specificity for residues found at primed positions. The cleavage consensus for these positions was then used to design a second, partially degenerate library, to determine specificity at unprimed positions. We have improved upon the original methodology by using a degenerate peptide dendrimer for determination of specificity at unprimed positions. By using this modified approach, the complete cleavage specificity profile for muI-II was determined for all positions flanking the cleaved peptide. A previously known preference of calpains for hydrophobic amino acids at unprimed positions was confirmed. In addition, a novel residue specificity for primed positions was revealed to highlight the importance of these sites for substrate recognition. The optimal primed site motif (MER) was shown to be capable of directing cleavage to a specific peptide bond. Accordingly, we designed a fluorescent resonance energy transfer-based substrate with optimal cleavage motifs on the primed and non-primed sides (PLFAER). The mu-calpain core shows a far greater turnover rate for our substrate than for those based on the cleavage site of alpha-spectrin or the proteolytic sequence consensus compiled from substrate alignments.
Collapse
Affiliation(s)
- Dominic Cuerrier
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
23
|
Duce JA, Hollander W, Jaffe R, Abraham CR. Activation of early components of complement targets myelin and oligodendrocytes in the aged rhesus monkey brain. Neurobiol Aging 2005; 27:633-44. [PMID: 15992964 DOI: 10.1016/j.neurobiolaging.2005.03.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 02/16/2005] [Accepted: 03/09/2005] [Indexed: 02/03/2023]
Abstract
The disruption and loss of myelin in the white matter are some of the major changes that occur in the brain with age. In vitro studies suggest a role of the complement system in the catabolic breakdown of myelin membranes. This study presents findings on activation of the early components of complement cascade in the brains of both young and aged rhesus monkeys with evidence of increased complement activation in aged animals. Complement containing oligodendrocytes (CAOs) containing C3d and C4d complement activation products bound to oligodendrocytes and myelinated fibers were found in the brain of normal young and old animals. The CAOs, which also contained activated microglia, were distributed throughout the whole brain and in significantly greater numbers in the aged monkeys. These findings, together with the demonstration of covalent binding of the C3 fragments to myelin, suggest the initiation of the complement cascade by myelin and oligodendrocytes, which are known classical complement activators. Activation of terminal complement components was not demonstrable in the CAOs. Taken together the findings support the concept that activation of early components of complement in the brain may be a normal biological process that involves the metabolism of myelin and oligodendrocytes and up-regulates with age.
Collapse
Affiliation(s)
- James A Duce
- Department of Biochemistry, Boston University School of Medicine, 715 Albany Street, K620, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
24
|
Panicot-Dubois L, Aubert M, Franceschi C, Mas E, Silvy F, Crotte C, Bernard JP, Lombardo D, Sadoulet MO. Monoclonal antibody 16D10 to the C-terminal domain of the feto-acinar pancreatic protein binds to membrane of human pancreatic tumoral SOJ-6 cells and inhibits the growth of tumor xenografts. Neoplasia 2005; 6:713-24. [PMID: 15720797 PMCID: PMC1531675 DOI: 10.1593/neo.04298] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Feto-acinar pancreatic protein (FAPP) characterized by mAbJ28 reactivity is a specific component associated with ontogenesis and behaves as an oncodevelopment-associated antigen. We attempted to determine whether pancreatic tumoral SOJ-6 cells are expressed at their surface FAPP antigens and to examine if specific antibodies directed against these FAPP epitopes could decrease the growth of pancreatic tumors in a mice model. For this purpose, we used specific antibodies against either the whole FAPP, the O-glycosylated C-terminal domain, or the N-terminal domain of the protein. Our results indicate that SOJ-6 cells expressed at their surface a 32-kDa peptide corresponding to the C-terminal domain of the FAPP. Furthermore, we show, by using endoproteinase Lys-C or geldanamycin, a drug able to impair the FAPP secretion, that this 32-kDa peptide expressed on the SOJ-6 cell surface comes from the degradation of the FAPP. Finally, an in vivo prospective study using a preventative tumor model in nude mice indicates that targeting this peptide by the use of mAb16D10 inhibits the growth of SOJ-6 xenografts. The specificity of mAb16D10 for pancreatic tumors and the possibility to obtain recombinant structures of mucin-like peptides recognized by mAb16D10 and mAbJ28 are promising tools in immunologic approaches to cure pancreatic cancers.
Collapse
Affiliation(s)
- Laurence Panicot-Dubois
- Institut National de la Santé et de la Recherche Médicale Unité 559 and EA 3289, Faculté de Médecine-Timone, Université de la Méditerranée, Marseilles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hinman JD, Duce JA, Siman RA, Hollander W, Abraham CR. Activation of calpain-1 in myelin and microglia in the white matter of the aged rhesus monkey. J Neurochem 2004; 89:430-41. [PMID: 15056286 DOI: 10.1046/j.1471-4159.2004.02348.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ultrastructural disruption of myelin sheaths and a loss of myelin with age are well-documented phenomena in both the human and rhesus monkey. Age-dependent activation of calpain-1 (EC 3.4.22.52) has been suggested as a plausible mechanism for increased proteolysis in the white matter of the rhesus monkey. The present study documents activation of calpain-1 throughout brain white matter in aged animals, evidenced by immunodetection of the activated enzyme as well as a calpain-derived spectrin fragment in both tissue section and Triton X-100-soluble homogenate of subcortical white matter from the frontal, temporal, and parietal lobes. Separation of myelin fractions from brain stem tissue into intact and floating myelin confirmed previous reports of an age-related increase in activated calpain-1 in the floating fraction. Measurements of calpain-1 activity using a fluorescent substrate revealed an age-related increase in calpain-1 proteolytic activity in the floating myelin fraction consistent with immunodetection of the activated enzyme in this fraction. Double-immunofluorescence demonstrated co-localization of activated calpain-1 with human leukocyte antigen-DR (HLA-DR), a marker for activated microglia, suggesting that these cells represent the major source of the increase in activated calpain-1 in the aging brain. These data solidify the role of calpain-1 in myelin protein metabolism and further implicate activated microglia in the pathology of the aging brain.
Collapse
Affiliation(s)
- Jason D Hinman
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
26
|
Tompa P, Buzder-Lantos P, Tantos A, Farkas A, Szilágyi A, Bánóczi Z, Hudecz F, Friedrich P. On the sequential determinants of calpain cleavage. J Biol Chem 2004; 279:20775-85. [PMID: 14988399 DOI: 10.1074/jbc.m313873200] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural clues of substrate recognition by calpain are incompletely understood. In this study, 106 cleavage sites in substrate proteins compiled from the literature have been analyzed to dissect the signal for calpain cleavage and also to enable the design of an ideal calpain substrate and interfere with calpain action via site-directed mutagenesis. In general, our data underline the importance of the primary structure of the substrate around the scissile bond in the recognition process. Significant amino acid preferences were found to extend over 11 residues around the scissile bond, from P(4) to P(7)'. In compliance with earlier data, preferred residues in the P(2) position are Leu, Thr, and Val, and in P(1) Lys, Tyr, and Arg. In position P(1) ', small hydrophilic residues, Ser and to a lesser extent Thr and Ala, occur most often. Pro dominates the region flanking the P(2)-P(1)' segment, i.e. positions P(3) and P(2)'-P(4)'; most notable is its occurrence 5.59 times above chance in P(3)'. Intriguingly, the segment C-terminal to the cleavage site resembles the consensus inhibitory region of calpastatin, the specific inhibitor of the enzyme. Further, the position of the scissile bond correlates with certain sequential attributes, such as secondary structure and PEST score, which, along with the amino acid preferences, suggests that calpain cleaves within rather disordered segments of proteins. The amino acid preferences were confirmed by site-directed mutagenesis of the autolysis sites of Drosophila calpain B; when amino acids at key positions were changed to less preferred ones, autolytic cleavage shifted to other, adjacent sites. Based on these preferences, a new fluorogenic calpain substrate, DABCYLTPLKSPPPSPR-EDANS, was designed and synthesized. In the case of micro- and m-calpain, this substrate is kinetically superior to commercially available ones, and it can be used for the in vivo assessment of the activity of these ubiquitous mammalian calpains.
Collapse
Affiliation(s)
- Peter Tompa
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 7, H-1518 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sur P, Sribnick EA, Wingrave JM, Nowak MW, Ray SK, Banik NL. Estrogen attenuates oxidative stress-induced apoptosis in C6 glial cells. Brain Res 2003; 971:178-88. [PMID: 12706234 DOI: 10.1016/s0006-8993(03)02349-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We examined the mechanism of 17beta-estradiol (estrogen)-mediated inhibition of apoptosis in C6 (rat glioma) cells following exposure to hydrogen peroxide (H(2)O(2)). Cells were preincubated with 4 microM estrogen for 2 h and then exposed to 100 microM H(2)O(2) for 24 h. Exposure to H(2)O(2) caused significant increases in intracellular calcium (Ca(2+)), as determined by fura-2, which was attenuated by preincubation with estrogen. H(2)O(2) and ionomycin caused cell death in a dose-dependent manner, as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Preincubation with estrogen restored viability in cells exposed to H(2)O(2) but not in cells exposed to ionomycin. Western blot analysis showed an increase in Bax/Bcl-2 ratio, calpain activity, and caspase-3 activity following treatment with H(2)O(2), and estrogen pretreatment decreased levels of all three. Cell morphology, as evaluated by Wright staining, indicated apoptosis in cells treated with H(2)O(2), and pretreatment with estrogen reduced apoptosis. Results from MTT and Wright staining were further supported by the terminal deoxyribonucleotidyl transferase (TdT)-mediated dUTP Nick End Labeling (TUNEL) assay. These results indicate a role for estrogen in preventing apoptosis in C6 glial cells exposed to H(2)O(2). Our results suggest that estrogen may have a protective role in minimizing glial cell apoptosis in neurological diseases such as demyelinating disease or central nervous system trauma.
Collapse
Affiliation(s)
- Pratima Sur
- Department of Neurology, Medical University of South Carolina, 96 Johnathan Lucas Street, Suite 309, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
28
|
Ray SK, Hogan EL, Banik NL. Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:169-85. [PMID: 12738057 DOI: 10.1016/s0165-0173(03)00152-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spinal cord injury (SCI) evokes an increase in intracellular free Ca(2+) level resulting in activation of calpain, a Ca(2+)-dependent cysteine protease, which cleaves many cytoskeletal and myelin proteins. Calpain is widely expressed in the central nervous system (CNS) and regulated by calpastatin, an endogenous calpain-specific inhibitor. Calpastatin degraded by overactivation of calpain after SCI may lose its regulatory efficiency. Evidence accumulated over the years indicates that uncontrolled calpain activity mediates the degradation of many cytoskeletal and membrane proteins in the course of neuronal death and contributes to the pathophysiology of SCI. Cleavage of the key cytoskeletal and membrane proteins by calpain is an irreversible process that perturbs the integrity and stability of CNS cells leading to cell death. Calpain in conjunction with caspases, most notably caspase-3, can cause apoptosis of the CNS cells following trauma. Aberrant Ca(2+) homeostasis following SCI inevitably activates calpain, which has been shown to play a crucial role in the pathophysiology of SCI. Therefore, calpain appears to be a potential therapeutic target in SCI. Substantial research effort has been focused upon the development of highly specific inhibitors of calpain and caspase-3 for therapeutic applications. Administration of cell permeable and specific inhibitors of calpain and caspase-3 in experimental animal models of SCI has provided significant neuroprotection, raising the hope that humans suffering from SCI may be treated with these inhibitors in the near future.
Collapse
Affiliation(s)
- Swapan K Ray
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 309, P.O. Box 250606, Charleston, SC 29425, USA
| | | | | |
Collapse
|
29
|
Schaecher KE, Shields DC, Banik NL. Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain. Neurochem Res 2001; 26:731-7. [PMID: 11519732 DOI: 10.1023/a:1010903823668] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although calpain has been extensively studied, its physiological function is poorly understood. In contrast, its role in the pathophysiology of various diseases has been implicated, including that of experimental allergic encephalomyelitis (EAE), an animal model of the demyelinating disease multiple sclerosis (MS). In EAE, calpain degrades myelin proteins, including myelin basic protein (MBP), suggesting a role for calpain in the breakdown of myelin in this disease. Subsequent studies revealed increased calpain activity and expression in the glial and inflammatory cells concomitant with loss of axon and myelin proteins. This suggested a crucial role for calpain in demyelinating diseases.
Collapse
Affiliation(s)
- K E Schaecher
- Department of Neurology, Medical University of South Carolina, Charleston 29425, USA
| | | | | |
Collapse
|
30
|
South SA, Deibler GE, Tzeng SF, Badache A, Kirchner MG, Muja N, De Vries GH. Myelin basic protein (MBP) and MBP peptides are mitogens for cultured astrocytes. Glia 2000; 29:81-90. [PMID: 10594925 DOI: 10.1002/(sici)1098-1136(20000101)29:1<81::aid-glia8>3.0.co;2-o] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
After CNS demyelination, astrogliosis interferes with axonal regeneration and remyelination. We now provide evidence that myelin basic protein (MBP) can contribute to this observed astrocyte proliferation. We found that astrocytes grown in either serum-containing or serum-free medium proliferate in response to MBP. The mitogenic regions of MBP in both media were MBP(1-44), MBP(88-151) and MBP(152-167). The mitogenic effect of these individual peptides was potentiated by simultaneous treatment with microglia conditioned media (CM). MBP-induced proliferation was inhibited by suramin at concentrations known to block the fibroblast growth factor receptor (FGFR), whereas neither MBP(1-44), MBP(88-151) nor MBP(152-167) were affected. Cholera toxin B, that binds to ganglioside GM(1), inhibited the mitogenicity of MBP(1-44) and had no significant effect on the mitogenicity of MBP, MBP(88-151) or MBP(152-167). Treatment of astrocytes with MBP and MBP(152-167) caused a modest and transitory elevation of intracellular calcium, whereas treatment with MBP(1-44) resulted in a substantial and sustained increase in intracellular calcium. These results suggest that for cultured astrocytes 1) FGFR and extracellular calcium play a major role in MBP mitogenicity; 2) MBP(1-44), MBP(88-151) and MBP(152-167) are the mitogenic regions of MBP; 3) MBP(1-44) and MBP(152-167) interact with ganglioside GM(1) and FGFR, respectively; 4) Component(s) present in microglial CM potentiate the mitogenicity of MBP(1-44), MBP(88-151) and MBP(152-167). These data support the hypothesis that MBP related peptides in conjunction with microglial secreted factors may stimulate astrogliosis after demyelination in vivo.
Collapse
Affiliation(s)
- S A South
- Research Service, Hines VA Hospital, Hines, IL 60141, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Sazontova TG, Matskevich AA, Arkhipenko YV. Calpains: physiological and pathophysiological significance. PATHOPHYSIOLOGY 1999. [DOI: 10.1016/s0928-4680(99)00015-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
32
|
Ray SK, Wilford GG, Crosby CV, Hogan EL, Banik NL. Diverse stimuli induce calpain overexpression and apoptosis in C6 glioma cells. Brain Res 1999; 829:18-27. [PMID: 10350526 DOI: 10.1016/s0006-8993(99)01290-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Calpain, a Ca2+-activated cysteine protease, has been implicated in apoptosis of immune cells. Since central nervous system (CNS) is abundant in calpain, the possible involvement of calpain in apoptosis of CNS cells needs to be investigated. We studied calpain expression in rat C6 glioma cells exposed to reactive hydroxyl radical (.OH) [formed via the Fenton reaction (Fe2++H2O2+H+-->Fe3++H2O+.OH)], interferon-gamma (IFN-gamma), and calcium ionophore (A23187). Cell death, cell cycle, calpain expression, and calpain activity were examined. Diverse stimuli induced apoptosis in C6 cells morphologically (chromatin condensation as detected by light microscopy) and biochemically [DNA fragmentation as detected by TdT-mediated dUTP Nick-End Labeling (TUNEL) assay]. Oxidative stress arrested a population of C6 cells at the G2/M phase of cell cycle. The levels of mRNA expression of six genes were analyzed by the reverse transcriptase-polymerase chain reaction (RT-PCR). Diverse stimuli did not alter beta-actin (internal control) expression, but increased calpain expression, and the upregulated bax (pro-apoptotic)/bcl-2 (anti-apoptotic) ratio. There was no significant increase in expression of calpastatin (endogenous calpain inhibitor). Western blot analysis showed an increase in calpain content and degradation of myelin-associated glycoprotein (MAG), a calpain substrate. Pretreatment of C6 cells with calpeptin (a cell-permeable calpain inhibitor) blocked calpain overexpression, MAG degradation, and DNA fragmentation. We conclude that calpain overexpression due to.OH stress, IFN-gamma stimulation, or Ca2+ influx is involved in C6 cell death, which is attenuated by a calpain-specific inhibitor.
Collapse
Affiliation(s)
- S K Ray
- Department of Neurology, Medical University of South Carolina (MUSC), 600 MUSC Complex, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
33
|
Kakkar R, Raju RV, Sharma RK. In vitro generation of an active calmodulin-independent phosphodiesterase from brain calmodulin-dependent phosphodiesterase (PDE1A2) by m-calpain. Arch Biochem Biophys 1998; 358:320-8. [PMID: 9784246 DOI: 10.1006/abbi.1998.0858] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study we have shown that bovine brain 60-kDa calmodulin-dependent cyclic nucleotide phosphodiesterase isozyme (CaMPDE - PDE1A2) is proteolyzed by a Ca2+-dependent cysteine protease, m-calpain. The proteolysis of PDE1A2 by m-calpain results in its conversion to a totally calmodulin (CaM)-independent form accompanied by degradation of PDE1A2 into a 45-kDa catalytic fragment and a 15-kDa fragment. The activity of PDE1A2 is unaffected by the presence or absence of CaM during cleavage, suggesting that the interaction between CaM and PDE1A2 does not alter substrate recognition by calpain. Furthermore, we provide evidence, based on the studies of CaM overlay and phosphorylation, that the cleavage site is not present either in the CaM-binding domain or phosphorylation site. N-terminal sequence analysis of the 45-kDa fragment indicated that cleavage occurs between residues 126Gln and 127Ala, and eliminates the CaM-dependent activity of carboxy termini PDE1A2. The present findings suggest that limited proteolysis in the brain through calpains could be an alternate mechanism for activating CaMPDE(s) and for regulating intracellular levels of cAMP.
Collapse
Affiliation(s)
- R Kakkar
- College of Medicine, University of Saskatchewan, Saskatoon, S7N 4H4, Canada
| | | | | |
Collapse
|
34
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
35
|
Shields DC, Banik NL. Upregulation of calpain activity and expression in experimental allergic encephalomyelitis: a putative role for calpain in demyelination. Brain Res 1998; 794:68-74. [PMID: 9630523 DOI: 10.1016/s0006-8993(98)00193-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The degradation of myelin proteins has been implicated in destabilization of the myelin sheath in autoimmune demyelinating diseases such as multiple sclerosis (MS). In order to investigate the role of calcium-activated neutral proteinase (calpain), which degrades myelin proteins, the activity and expression (translational and transcriptional) of this enzyme were examined in spinal cords of Lewis rats with experimental allergic encephalomyelitis (EAE), an animal model of MS. In addition to calpain, the translational expression of calpastatin (endogenous inhibitor of calpain) and extent of neurofilament (NFP) and myelin protein degradation were evaluated via Western blotting in controls and rats with EAE. The transcriptional expression of millicalpain, microcalpain, and calpastatin as examined by RT-PCR was not significantly increased in EAE. However, calpain translational expression was increased by 206. 5% while the levels of 68 kDa NFP and myelin-associated glycoprotein were decreased by 42.9 and 39.7%, respectively, in animals with EAE compared to controls. Calpastatin isoforms (180, 110, 80, and 68 kDa) were significantly increased in EAE as well. The findings of increased activity and translational expression of calpain in EAE suggest a major role for this enzyme in myelinolysis associated with autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- D C Shields
- Department of Neurology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | |
Collapse
|
36
|
Shields DC, Tyor WR, Deibler GE, Hogan EL, Banik NL. Increased calpain expression in activated glial and inflammatory cells in experimental allergic encephalomyelitis. Proc Natl Acad Sci U S A 1998; 95:5768-72. [PMID: 9576959 PMCID: PMC20454 DOI: 10.1073/pnas.95.10.5768] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1998] [Accepted: 03/04/1998] [Indexed: 02/07/2023] Open
Abstract
In demyelinating diseases such as multiple sclerosis (MS), myelin membrane structure is destabilized as myelin proteins are lost. Calcium-activated neutral proteinase (calpain) is believed to participate in myelin protein degradation because known calpain substrates [myelin basic protein (MBP); myelin-associated glycoprotein] are degraded in this disease. In exploring the role of calpain in demyelinating diseases, we examined calpain expression in Lewis rats with acute experimental allergic encephalomyelitis (EAE), an animal model for MS. Using double-immunofluorescence labeling to identify cells expressing calpain, we labeled rat spinal cord sections for calpain with a polyclonal millicalpain antibody and with mAbs for glial (GFAP, OX42, GalC) and inflammatory (CD2, ED2, interferon gamma) cell-specific markers. Calpain expression was increased in activated microglia (OX42) and infiltrating macrophages (ED2) compared with controls. Oligodendrocytes (galactocerebroside) and astrocytes (GFAP) had constitutive calpain expression in normal spinal cords whereas reactive astrocytes in spinal cords from animals with EAE exhibited markedly increased calpain levels compared with astrocytes in adjuvant controls. Oligodendrocytes in spinal cords from rats with EAE expressed increased calpain levels in some areas, but overall the increases in calpain expression were small. Most T cells in grade 4 EAE expressed low levels of calpain, but interferon gamma-positive cells demonstrated markedly increased calpain expression. These findings suggest that increased levels of calpain in activated glial and inflammatory cells in EAE may contribute to myelin destruction in demyelinating diseases such as MS.
Collapse
Affiliation(s)
- D C Shields
- Department of Neurology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
37
|
Buki KG, Bauer PI, Kun E. Isolation and identification of a proteinase from calf thymus that cleaves poly(ADP-ribose) polymerase and histone H1. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1338:100-6. [PMID: 9074620 DOI: 10.1016/s0167-4838(96)00189-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A proteinase was isolated from calf thymus that degraded pADPRT, histone H1 and alpha-casein in a Ca(2+)-dependent manner. In a five-step procedure, a homogenous proteinase was obtained with a subunit structure of 80 and 30 kDa. The amino-acid homology of an internal sequence as well as kinetic and inhibitor assays identified the proteinase as calpain I. It is suggested that even though the general substrate alpha-casein is widely used for the assaying of calpains, more appropriately physiological cellular components (pADPRT and histone H1) specify the thymus proteinase.
Collapse
Affiliation(s)
- K G Buki
- Octamer Research Foundation, Romberg Tiburon Centers, San Francisco State University, CA 94920, USA.
| | | | | |
Collapse
|
38
|
Deshpande RV, Goust JM, Hogan EL, Banik NL. Calpain secreted by activated human lymphoid cells degrades myelin. J Neurosci Res 1995; 42:259-65. [PMID: 8568927 DOI: 10.1002/jnr.490420214] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calpain secreted by lymphoid (MOLT-3, M.R.) or monocytic (U-937, THP-1) cell lines activated with PMA and A23187 degraded myelin antigens. The degradative effect of enzymes released in the extracellular medium was tested on purified myelin basic protein and rat central nervous system myelin in vitro. The extent of protein degradation was determined by SDS-PAGE and densitometric analysis. Various proteinase inhibitors were used to determine to what extent protein degradation was mediated by calpain and/or other enzymes. Lysosomal and serine proteinase inhibitors inhibited 20-40% of the myelin-degradative activity found in the incubation media of cell lines, whereas the calcium chelator (EGTA), the calpain-specific inhibitor (calpastatin), and a monoclonal antibody to m calpain blocked myelin degradation by 60-80%. Since breakdown products of MBP generated by calpain may include fragments with antigenic epitopes, this enzyme may play an important role in the initiation of immune-mediated demyelination.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Calcimycin/pharmacology
- Calcium/metabolism
- Calcium-Binding Proteins/pharmacology
- Calpain/antagonists & inhibitors
- Calpain/immunology
- Calpain/metabolism
- Calpain/pharmacology
- Chelating Agents/pharmacology
- Culture Media, Conditioned/pharmacology
- Demyelinating Diseases/enzymology
- Egtazic Acid/pharmacology
- Humans
- Leukemia-Lymphoma, Adult T-Cell/enzymology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Monocytes/drug effects
- Monocytes/enzymology
- Monocytes/metabolism
- Myelin Basic Protein/metabolism
- Myelin Sheath/drug effects
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/pharmacology
- Protease Inhibitors/pharmacology
- Rabbits
- Rats
- T-Lymphocytes/drug effects
- T-Lymphocytes/enzymology
- T-Lymphocytes/metabolism
- Tetradecanoylphorbol Acetate/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R V Deshpande
- Department of Neurology, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Many short-lived proteins which are devoid of proteolytic activity contain PEST sequences which are segments along the polypeptide chain that are rich in proline (P), glutamate (E), serine (S) and threonine (T). These designated PEST sequences are believed to be putative intramolecular signals for rapid proteolytic degradation. Calmodulin is a ubiquitous, 17 kDa, acidic Ca(2+)-binding protein which plays an important role in the regulation of many physiological processes through its interaction with a wide range of calmodulin-binding proteins. Several calmodulin-binding proteins are known to contain PEST sequences and are susceptible to proteolysis by endogenous neutral proteases such as calpain I and calpain II. In this report, we discuss the functions of PEST sequences in calmodulin-binding proteins and assess the correlation between calmodulin-binding proteins and PEST sequences.
Collapse
Affiliation(s)
- J A Barnes
- Department of Biochemistry, Faculty of Medical Sciences, University of The West Indies, St. Augustine, Trinidad and Tobago, West Indies
| | | |
Collapse
|