1
|
Priyadarsini S, Mani P, Singh R, Nikhil KC, Sahoo PR, Kesavan M, Saxena M, Sahoo M, Saini M, Kumar A. Deletion of both anaerobic regulator genes fnr and narL compromises the colonization of Salmonella Typhimurium in mice model. World J Microbiol Biotechnol 2024; 40:373. [PMID: 39487264 DOI: 10.1007/s11274-024-04179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Salmonella Typhimurium (STM), a zoonotic pathogen, can adjust its metabolic pathway according to the variations in the partial pressure of atmospheric oxygen and nitrate via fumarate nitrate reductase regulator (Fnr) and NarL, the response regulator for nitrate reductase. Both Fnr and NarL have been individually reported to be the contributors of virulent phenotypes of STM. Hypoxia along with nitrate-rich environment are prevalent in macrophages and the Salmonella-induced inflammatory lumen of the host's large intestine activates both fnr and narL genes. In this study, the double (fnr and narL) knockout STM showed a synergistic reduction in the swimming (62%), swarming (84%) and biofilm density (86%) phenotypes anaerobically in association with its significant aerobic attenuation. The intracellular replication of the double mutant was reduced by 2.3 logs in chicken monocyte-derived macrophages. Furthermore, the competitive index of the double mutant in liver and spleen was found to be 0.3 and 0.44 respectively at 120 h post-infection (PI) in mice. Surprisingly, no double mutant could be recovered from the infected mouse liver 3 days PI. Histopathological findings showed moderate infiltration of mononuclear cells in the large intestine of mice infected with double mutant, but severe infiltration was seen with the wild-type strain.
Collapse
Affiliation(s)
- Swagatika Priyadarsini
- ICAR-National Research Centre on Camel, Bikaner, Rajasthan, India.
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.
| | - Pashupathi Mani
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
- College of Veterinary and Animal Sceinces, Rani Laxmi Bai Central Agricultural University, Jhansi, India
| | - Rohit Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - K C Nikhil
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - Pravas Ranjan Sahoo
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
- College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - M Kesavan
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Meeta Saxena
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Monalisa Sahoo
- ICAR-National Institute on Foot and Mouth Disease, Jatni, Bhubaneswar, Odisha, India
| | - Mohini Saini
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Ajay Kumar
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.
| |
Collapse
|
2
|
Gavriil A, Giannenas I, Skandamis PN. A current insight into Salmonella's inducible acid resistance. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39014992 DOI: 10.1080/10408398.2024.2373387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Salmonella is a diverse and ubiquitous group of bacteria and a major zoonotic pathogen implicated in several foodborne disease outbreaks worldwide. With more than 2500 distinct serotypes, this pathogen has evolved to survive in a wide spectrum of environments and across multiple hosts. The primary and most common source of transmission is through contaminated food or water. Although the main sources have been primarily linked to animal-related food products, outbreaks due to the consumption of contaminated plant-related food products have increased in the last few years. The perceived ability of Salmonella to trigger defensive mechanisms following pre-exposure to sublethal acid conditions, namely acid adaptation, has renewed a decade-long attention. The impact of acid adaptation on the subsequent resistance against lethal factors of the same or multiple stresses has been underscored by multiple studies. Α plethora of studies have been published, aiming to outline the factors that- alone or in combination- can impact this phenomenon and to unravel the complex networking mechanisms underlying its induction. This review aims to provide a current and updated insight into the factors and mechanisms that rule this phenomenon.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Athens, Greece
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Ilias Giannenas
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis N Skandamis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
3
|
Margolis A, Liu L, Porwollik S, Till JKA, Chu W, McClelland M, Vázquez-Torres A. Arginine Metabolism Powers Salmonella Resistance to Oxidative Stress. Infect Immun 2023; 91:e0012023. [PMID: 37191509 PMCID: PMC10269097 DOI: 10.1128/iai.00120-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Salmonella invades host cells and replicates inside acidified, remodeled vacuoles that are exposed to reactive oxygen species (ROS) generated by the innate immune response. Oxidative products of the phagocyte NADPH oxidase mediate antimicrobial activity, in part, by collapsing the ΔpH of intracellular Salmonella. Given the role of arginine in bacterial resistance to acidic pH, we screened a library of 54 single-gene mutants in Salmonella that are each involved in, but do not entirely block, arginine metabolism. We identified several mutants that affected Salmonella virulence in mice. The triple mutant ΔargCBH, which is deficient in arginine biosynthesis, was attenuated in immunocompetent mice, but recovered virulence in phagocyte NADPH oxidase deficient Cybb-/- mice. Furthermore, ΔargCBH Salmonella was profoundly susceptible to the bacteriostatic and bactericidal effects of hydrogen peroxide. Peroxide stress led to a larger collapse of the ΔpH in ΔargCBH mutants than occurred in wild-type Salmonella. The addition of exogenous arginine rescued ΔargCBH Salmonella from peroxide-induced ΔpH collapse and killing. Combined, these observations suggest that arginine metabolism is a hitherto unknown determinant of virulence that contributes to the antioxidant defenses of Salmonella by preserving pH homeostasis. In the absence of phagocyte NADPH oxidase-produced ROS, host cell-derived l-arginine appears to satisfy the needs of intracellular Salmonella. However, under oxidative stress, Salmonella must additionally rely on de novo biosynthesis to maintain full virulence.
Collapse
Affiliation(s)
- Alyssa Margolis
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, California, USA
| | - James Karl A. Till
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, California, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, California, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Liu Y, Zhang Y, Zhu L, Niu L, Luo X, Dong P. The acid tolerance responses of the Salmonella strains isolated from beef processing plants. Food Microbiol 2022; 104:103977. [DOI: 10.1016/j.fm.2022.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
|
5
|
Mendoza-Mejía BD, Medina-Aparicio L, Serrano-Fujarte I, Vázquez A, Calva E, Hernández-Lucas I. Salmonella enterica serovar Typhi genomic regions involved in low pH resistance and in invasion and replication in human macrophages. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Salmonella enterica serovar Typhi, the etiological agent of typhoid fever, causes a systemic life-threatening disease. To carry out a successful infection process, this bacterium needs to survive alkaline and acid pH conditions presented in the mouth, stomach, small intestine, and gallbladder. Therefore, in this work, a genetic screening to identify S. Typhi genes involved in acid and circumneutral pH resistance was performed.
Methods
A collection of S. Typhi mutants deleted of fragments ranging from 6 to 80 kb were obtained by the Datsenko and Wanner method. Bacterial growth rate assays of each mutant were performed to identify S. Typhi genes involved in circumneutral and acid pH resistance. S. Typhi mutants deficient to growth at specific pH were evaluated in their capacity to invade and replicate in phagocytic cells.
Results
In this work, it is reported that S. Typhi ∆F4 (pH 4.5), S. Typhi ∆F44 (pH 4.5, 5.5, and 6.5), and S. Typhi ∆F73 (pH 4.5, 5.5, 6.5, and 7.5) were deficient to grow in the pH indicated. These three mutant strains were also affected in their ability to invade and replicate in human macrophages.
Conclusions
S. Typhi contains defined genomic regions that influence the survival at specific pH values, as well as the invasion and replication inside human cells. Thus, this genetic information probably allows the bacteria to survive in different human compartments for an efficient infection cycle.
Collapse
|
6
|
Lang C, Zhang Y, Mao Y, Yang X, Wang X, Luo X, Dong P, Zhu L. Acid tolerance response of Salmonella during simulated chilled beef storage and its regulatory mechanism based on the PhoP/Q system. Food Microbiol 2020; 95:103716. [PMID: 33397629 DOI: 10.1016/j.fm.2020.103716] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/24/2022]
Abstract
To investigate the persistence of acid tolerance response (ATR) and the regulatory mechanism during chilled storage, Salmonella ATCC 14028 and the △phoP mutant were acid adapted and then incubated in meat extract at 4 °C for 24 days as simulated beef storage. The bacterial population, D values and expression of PhoP/PhoQ linked genes of both strains were determined at 6-day intervals. Although a mild suppression effect on the D values of adapted Salmonella was found during the long-time storage in meat extract at 4 °C, the D value of adapted strains was significantly higher than non-adapted strains, indicating the persistence of ATR during the whole aging and distribution of beef posing a threat to food safety. The fact that low temperature inhibits the formation of ATR at the early adapted stage emphasizes the importance of keeping a low-temperature environment during slaughter. An interaction between the acidic adaptation and phoP gene on D values was found and the expression levels of adiA, adiY, cadA and cadB genes was significantly reduced in the △phoP mutant, suggesting that PhoP/Q system plays an important role in the ATR by sensing the pH and regulating lysine and arginine decarboxylation directly or indirectly.
Collapse
Affiliation(s)
- Chenxiao Lang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xiaoyun Wang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
7
|
Gavriil A, Paramithiotis S, Skordaki A, Tsiripov E, Papaioannou A, Skandamis PN. Prior exposure to different combinations of pH and undissociated acetic acid can affect the induced resistance of Salmonella spp. strains in mayonnaise stored under refrigeration and the regulation of acid-resistance related genes. Food Microbiol 2020; 95:103680. [PMID: 33397612 DOI: 10.1016/j.fm.2020.103680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022]
Abstract
The innate and inducible resistance of six Salmonella strains (4/74, FS8, FS115, P167807, ATCC 13076, WT) in mayonnaise at 5 °C following adaptation to different pH/undissociated acetic acid (UAA) combinations (15mM/pH5.0, 35mM/pH5.5, 45mM/pH6.0) was investigated. The inherent and acid-induced responses were strain-dependent. Two strains (ATCC 13076, WT), albeit not the most resistant innately, exhibited the most prominent adaptive potential. Limited/no adaptability was observed regarding the rest strains, though being more resistant inherently. The individual effect of pH and UAA adaptation in the phenotypic and transcriptomic profiles of ATCC 13076 and WT was further examined. The type (pH, UAA) and magnitude of stress intensity affected their responses. Variations in the type and magnitude of stress intensity also determined the relative gene expression of four genes (adiA, cadB, rpoS, ompR) implicated in Salmonella acid resistance mechanisms. adiA and cadB were overexpressed following adaptation to some treatments; rpoS and ompR were downregulated following adaptation to 15mM/pH5.0 and 35mM/pH5.5, respectively. Nonetheless, the transcriptomic profiles did not always correlate with the corresponding phenotypes. In conclusion, strain variations in Salmonella are extensive. The ability of the strains to adapt and induce resistant phenotypes and acid resistance-related genes is affected by the type and magnitude of the stress applied during adaptation.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Spiros Paramithiotis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Asimina Skordaki
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Eleni Tsiripov
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Adamantia Papaioannou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens, 11855, Greece.
| |
Collapse
|
8
|
Gavriil A, Thanasoulia A, Skandamis PN. Sublethal concentrations of undissociated acetic acid may not always stimulate acid resistance in Salmonella enterica sub. enterica serovar Enteritidis Phage Type 4: Implications of challenge substrate associated factors. PLoS One 2020; 15:e0234999. [PMID: 32702039 PMCID: PMC7377465 DOI: 10.1371/journal.pone.0234999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/06/2020] [Indexed: 11/26/2022] Open
Abstract
Acid adaptation enhances survival of foodborne pathogens under lethal acid conditions that prevail in several food-related ecosystems. In the present study, the role of undissociated acetic acid in inducing acid resistance of Salmonella Enteritidis Phage Type 4 both in laboratory media and in an acid food matrix was investigated. Several combinations of acetic acid (0, 15, 25, 35 and 45 mM) and pH values (4.0, 4.5, 5.0, 5.5, 6.0) were screened for their ability to activate acid resistance mechanisms of pathogen exposed to pH 2.5 (screening assay). Increased survival was observed when increasing undissociated acetic acid within a range of sublethal concentrations (1.9–5.4 mM), but only at pH 5.5 and 6.0. No effect was observed at lower pH values, regardless of the undissociated acetic acid levels. Three combinations (15mM/pH5.0, 35mM/pH5.5, 45mM/pH6.0) were selected and further used for adaptation prior to inoculation in commercial tarama (fish roe) salad, i.e., an acid spread (pH 4.35 ± 0.02), stored at 5°C. Surprisingly and contrary to the results of the screening assay, none of the acid adaptation treatments enhanced survival of Salmonella Enteritidis in the food matrix, as compared to non-adapted cells (control). Further examination of the food pH value, acidulant and storage (challenge) temperature on the responses of the pathogen adapted to 15mM/pH5.0, 35mM/pH5.5 and 45mM/pH6.0 was performed in culture media. Cells adapted to 35mM/pH5.5 were unable to induce acid resistance when exposed to pH 4.35 (tarama salad pH value) at 37°C and 5°C, whereas incubation under refrigeration (5°C) at pH 4.35 sensitized 45mM/pH6.0 adapted cells against the subsequent acid and cold stress. In conclusion, pre-exposure to undissociated acetic acid affected the adaptive responses of Salmonella Enteritidis Phage Type 4 in a concentration- and pH-dependent manner, with regard to conditions prevailing during acid challenge.
Collapse
Affiliation(s)
- Alkmini Gavriil
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Athina Thanasoulia
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
9
|
Murret-Labarthe C, Kerhoas M, Dufresne K, Daigle F. New Roles for Two-Component System Response Regulators of Salmonella enterica Serovar Typhi during Host Cell Interactions. Microorganisms 2020; 8:microorganisms8050722. [PMID: 32413972 PMCID: PMC7285189 DOI: 10.3390/microorganisms8050722] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
In order to survive external stresses, bacteria need to adapt quickly to changes in their environment. One adaptive mechanism is to coordinate and alter their gene expression by using two-component systems (TCS). TCS are composed of a sensor kinase that activates a transcriptional response regulator by phosphorylation. TCS are involved in motility, virulence, nutrient acquisition, and envelope stress in many bacteria. The pathogenic bacteria Salmonella enterica serovar Typhi (S. Typhi) possess 30 TCSs, is specific to humans, and causes typhoid fever. Here, we have individually deleted each of the 30 response regulators. We have determined their role during interaction with host cells (epithelial cells and macrophages). Deletion of most of the systems (24 out of 30) resulted in a significant change during infection. We have identified 32 new phenotypes associated with TCS of S. Typhi. Some previously known phenotypes associated with TCSs in Salmonella were also confirmed. We have also uncovered phenotypic divergence between Salmonella serovars, as distinct phenotypes between S. Typhi and S. Typhimurium were identified for cpxR. This finding highlights the importance of specifically studying S. Typhi to understand its pathogenesis mechanisms and to develop strategies to potentially reduce typhoid infections.
Collapse
|
10
|
Biological and regulatory roles of acid-induced small RNA RyeC in Salmonella Typhimurium. Biochimie 2018; 150:48-56. [PMID: 29730297 DOI: 10.1016/j.biochi.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022]
Abstract
Salmonella Typhimurium is an enteric pathogen that has evolved masterful strategies to enable survival under stress conditions both within and outside a host. The acid tolerance response (ATR) is one such mechanism that enhances the viability of acid adapted bacteria to lethal pH levels. While numerous studies exist on the protein coding components of this response, there is very little data on the roles of small RNAs (sRNAs). These non-coding RNA molecules have recently been shown to play roles as regulators of bacterial stress response and virulence pathways. They function through complementary base pairing interactions with target mRNAs and affect their translation and/or stability. There are also a few that directly bind to proteins by mimicking their respective targets. Here, we identify several sRNAs expressed during the ATR of S. Typhimurium and characterize one highly induced candidate, RyeC. Further, we identify ptsI as a trans-encoded target that is directly regulated by this sRNA. From a functional perspective, over-expression of RyeC in Salmonella produced a general attenuation of several in vitro phenotypes including acid survival, motility, adhesion and invasion of epithelial cell lines as well as replication within macrophages. Together, this study highlights the diverse roles played by sRNAs in acid tolerance and virulence of S. Typhimurium.
Collapse
|
11
|
Lee YH, Kim JH. Direct interaction between the transcription factors CadC and OmpR involved in the acid stress response of Salmonella enterica. J Microbiol 2017; 55:966-972. [DOI: 10.1007/s12275-017-7410-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023]
|
12
|
Ryan D, Pati NB, Ojha UK, Padhi C, Ray S, Jaiswal S, Singh GP, Mannala GK, Schultze T, Chakraborty T, Suar M. Global transcriptome and mutagenic analyses of the acid tolerance response of Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 2015; 81:8054-65. [PMID: 26386064 PMCID: PMC4651094 DOI: 10.1128/aem.02172-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/01/2015] [Indexed: 01/18/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causative agents of food-borne bacterial gastroenteritis. Swift invasion through the intestinal tract and successful establishment in systemic organs are associated with the adaptability of S. Typhimurium to different stress environments. Low-pH stress serves as one of the first lines of defense in mammalian hosts, which S. Typhimurium must efficiently overcome to establish an infection. Therefore, a better understanding of the molecular mechanisms underlying the adaptability of S. Typhimurium to acid stress is highly relevant. In this study, we have performed a transcriptome analysis of S. Typhimurium under the acid tolerance response (ATR) and found a large number of genes (∼47%) to be differentially expressed (more than 1.5-fold or less than -1.5-fold; P < 0.01). Functional annotation revealed differentially expressed genes to be associated with regulation, metabolism, transport and binding, pathogenesis, and motility. Additionally, our knockout analysis of a subset of differentially regulated genes facilitated the identification of proteins that contribute to S. Typhimurium ATR and virulence. Mutants lacking genes encoding the K(+) binding and transport protein KdpA, hypothetical protein YciG, the flagellar hook cap protein FlgD, and the nitrate reductase subunit NarZ were significantly deficient in their ATRs and displayed varied in vitro virulence characteristics. This study offers greater insight into the transcriptome changes of S. Typhimurium under the ATR and provides a framework for further research on the subject.
Collapse
Affiliation(s)
- Daniel Ryan
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Niladri Bhusan Pati
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Urmesh K Ojha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Sangeeta Jaiswal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Gajinder P Singh
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Gopala K Mannala
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Tilman Schultze
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, German Centre of Infection Research, Site Giessen-Marburg-Langen, Justus-Liebig-University Giessen, Giessen, Germany
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| |
Collapse
|
13
|
Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin Microbiol Rev 2015; 28:901-37. [PMID: 26180063 PMCID: PMC4503790 DOI: 10.1128/cmr.00002-15] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Salmonella enterica infections are common causes of bloodstream infection in low-resource areas, where they may be difficult to distinguish from other febrile illnesses and may be associated with a high case fatality ratio. Microbiologic culture of blood or bone marrow remains the mainstay of laboratory diagnosis. Antimicrobial resistance has emerged in Salmonella enterica, initially to the traditional first-line drugs chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole. Decreased fluoroquinolone susceptibility and then fluoroquinolone resistance have developed in association with chromosomal mutations in the quinolone resistance-determining region of genes encoding DNA gyrase and topoisomerase IV and also by plasmid-mediated resistance mechanisms. Resistance to extended-spectrum cephalosporins has occurred more often in nontyphoidal than in typhoidal Salmonella strains. Azithromycin is effective for the management of uncomplicated typhoid fever and may serve as an alternative oral drug in areas where fluoroquinolone resistance is common. In 2013, CLSI lowered the ciprofloxacin susceptibility breakpoints to account for accumulating clinical, microbiologic, and pharmacokinetic-pharmacodynamic data suggesting that revision was needed for contemporary invasive Salmonella infections. Newly established CLSI guidelines for azithromycin and Salmonella enterica serovar Typhi were published in CLSI document M100 in 2015.
Collapse
Affiliation(s)
- John A Crump
- Centre for International Health, University of Otago, Dunedin, Otago, New Zealand Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Sjölund-Karlsson
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melita A Gordon
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Christopher M Parry
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
14
|
Varsaki A, Murphy C, Barczynska A, Jordan K, Carroll C. The acid adaptive tolerance response in Campylobacter jejuni induces a global response, as suggested by proteomics and microarrays. Microb Biotechnol 2015. [PMID: 26221965 PMCID: PMC4621450 DOI: 10.1111/1751-7915.12302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Campylobacter jejuni CI 120 is a natural isolate obtained during poultry processing and has the ability to induce an acid tolerance response (ATR) to acid + aerobic conditions in early stationary phase. Other strains tested they did not induce an ATR or they induced it in exponential phase. Campylobacter spp. do not contain the genes that encode the global stationary phase stress response mechanism. Therefore, the aim of this study was to identify genes that are involved in the C. jejuni CI 120 early stationary phase ATR, as it seems to be expressing a novel mechanism of stress tolerance. Two-dimensional gel electrophoresis was used to examine the expression profile of cytosolic proteins during the C. jejuni CI 120 adaptation to acid + aerobic stress and microarrays to determine the genes that participate in the ATR. The results indicate induction of a global response that activated a number of stress responses, including several genes encoding surface components and genes involved with iron uptake. The findings of this study provide new insights into stress tolerance of C. jejuni, contribute to a better knowledge of the physiology of this bacterium and highlight the diversity among different strains.
Collapse
Affiliation(s)
- Athanasia Varsaki
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Caroline Murphy
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Alicja Barczynska
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Cyril Carroll
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
15
|
Liu Y, Tang H, Lin Z, Xu P. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 2015; 33:1484-92. [PMID: 26057689 DOI: 10.1016/j.biotechadv.2015.06.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 02/05/2023]
Abstract
Acidogenic and aciduric bacteria have developed several survival systems in various acidic environments to prevent cell damage due to acid stress such as that on the human gastric surface and in the fermentation medium used for industrial production of acidic products. Common mechanisms for acid resistance in bacteria are proton pumping by F1-F0-ATPase, the glutamate decarboxylase system, formation of a protective cloud of ammonia, high cytoplasmic urease activity, repair or protection of macromolecules, and biofilm formation. The field of synthetic biology has rapidly advanced and generated an ever-increasing assortment of genetic devices and biological modules for applications in biofuel and novel biomaterial productions. Better understanding of aspects such as overproduction of general shock proteins, molecular mechanisms, and responses to cell density adopted by microorganisms for survival in low pH conditions will prove useful in synthetic biology for potential industrial and environmental applications.
Collapse
Affiliation(s)
- Yuping Liu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing 100084, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
16
|
Senouci-Rezkallah K, Jobin MP, Schmitt P. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH. Microbiologyopen 2015; 4:313-322. [PMID: 25740257 PMCID: PMC4398511 DOI: 10.1002/mbo3.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/17/2014] [Accepted: 12/22/2014] [Indexed: 11/08/2022] Open
Abstract
This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe ) 7.0 or 5.5 and at a growth rate of 0.2 h-1 . Population reduction and internal pH (pHi ) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells.
Collapse
Affiliation(s)
- Khadidja Senouci-Rezkallah
- UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon, 84914, Avignon, France.,Faculté des Sciences de la Nature et de la Vie, Université de Mascara, Mascara, Algérie.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Michel P Jobin
- UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon, 84914, Avignon, France
| | - Philippe Schmitt
- UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon, 84914, Avignon, France
| |
Collapse
|
17
|
Chiang ML, Chen HC, Wu C, Chen MJ. Effect of Acid Adaptation on the Environmental Stress Tolerance of Three Strains ofVibrio parahaemolyticus. Foodborne Pathog Dis 2014; 11:287-94. [DOI: 10.1089/fpd.2013.1641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ming-Lun Chiang
- Department of Tourism and Hospitality, Kainan University, Taoyuan, Taiwan
| | - Hsi-Chia Chen
- Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chieh Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ming-Ju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
18
|
A low gastric pH mouse model to evaluate live attenuated bacterial vaccines. PLoS One 2014; 9:e87411. [PMID: 24489912 PMCID: PMC3906194 DOI: 10.1371/journal.pone.0087411] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/27/2013] [Indexed: 12/19/2022] Open
Abstract
The low pH of the stomach serves as a barrier to ingested microbes and must be overcome or bypassed when delivering live bacteria for vaccine or probiotic applications. Typically, the impact of stomach acidity on bacterial survival is evaluated in vitro, as there are no small animal models to evaluate these effects in vivo. To better understand the effect of this low pH barrier to live attenuated Salmonella vaccines, which are often very sensitive to low pH, we investigated the value of the histamine mouse model for this application. A low pH gastric compartment was transiently induced in mice by the injection of histamine. This resulted in a gastric compartment of approximately pH 1.5 that was capable of distinguishing between acid-sensitive and acid-resistant microbes. Survival of enteric microbes during gastric transit in this model directly correlated with their in vitro acid resistance. Because many Salmonella enterica serotype Typhi vaccine strains are sensitive to acid, we have been investigating systems to enhance the acid resistance of these bacteria. Using the histamine mouse model, we demonstrate that the in vivo survival of S. Typhi vaccine strains increased approximately 10-fold when they carried a sugar-inducible arginine decarboxylase system. We conclude that this model will be a useful for evaluating live bacterial preparations prior to clinical trials.
Collapse
|
19
|
Álvarez-Ordóñez A, Prieto M, Bernardo A, Hill C, López M. The Acid Tolerance Response of Salmonella spp.: An adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Birk T, Kristensen K, Harboe A, Hansen TB, Ingmer H, De Jonge R, Takumi K, Aabo S. Dietary proteins extend the survival of Salmonella Dublin in a gastric acid environment. J Food Prot 2012; 75:353-8. [PMID: 22289597 DOI: 10.4315/0362-028x.jfp-11-132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pH of the human stomach is dynamic and changes over time, depending on the composition of the food ingested and a number of host-related factors such as age. To evaluate the number of bacteria surviving the gastric acid barrier, we have developed a simple gastric acid model, in which we mimicked the dynamic pH changes in the human stomach. In the present study, model gastric fluid was set up to imitate pH dynamics in the stomachs of young and elderly people after ingestion of a standard meal. To model a serious foodborne pathogen, we followed the survival of Salmonella enterica serotype Dublin, and found that the addition of proteins such as pepsin, ovalbumin, and blended turkey meat to the simple gastric acid model significantly delayed pathogen inactivation compared with the control, for which no proteins were added. In contrast, no delay in inactivation was observed in the presence of bovine serum albumin, indicating that protection could be protein specific. The simple gastric acid model was validated against a more laborious and complex fermenter model, and similar survival of Salmonella Dublin was observed in both models. Our gastric acid model allowed us to evaluate the influence of food components on survival of pathogens under gastric conditions, and the model could contribute to a broader understanding of the impact of specific food components on the inactivation of pathogens during gastric passage.
Collapse
Affiliation(s)
- Tina Birk
- National Food Institute, Technical University of Denmark, Mørkhøj Bygade 19, 2860 Søborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lin MH, Lee SL, Chou CC. Acid Adaptation Affects the Viability ofListeria monocytogenesBCRC 14846 andSalmonellaTyphimurium BCRC 10747 Exposed to Disinfectants at 25°C and 40°C. Foodborne Pathog Dis 2011; 8:1077-81. [DOI: 10.1089/fpd.2011.0879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Meng-Hsuan Lin
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shiow-Ling Lee
- Department of Bioengineering, Tatung University, Taipei, Taiwan
| | - Cheng-Chun Chou
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
22
|
Senouci-Rezkallah K, Schmitt P, Jobin MP. Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain. Food Microbiol 2011; 28:364-72. [DOI: 10.1016/j.fm.2010.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 09/03/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
|
23
|
Carlin F, Brillard J, Broussolle V, Clavel T, Duport C, Jobin M, Guinebretière MH, Auger S, Sorokine A, Nguyen-Thé C. Adaptation of Bacillus cereus, an ubiquitous worldwide-distributed foodborne pathogen, to a changing environment. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
SINGH MANPREET, MULLINS HOLLYR, SIMPSON SHAWNAM, DICKSON JAMESS. EFFECT OF ACID ADAPTATION ON THERMAL TOLERANCE OFESCHERICHIA COLIO157:H7 ANDSALMONELLA ENTERICAIN MEAT SERUM. J Food Saf 2010. [DOI: 10.1111/j.1745-4565.2009.00193.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Chen JL, Chiang ML, Chou CC. Ethanol and NaCl Susceptibility and Protein Expression of Acid-AdaptedB. cereus1-4-1 as Well as Its Growth Patterns in the Presence of Various Carbon and Nitrogen Sources. Foodborne Pathog Dis 2009; 6:453-60. [DOI: 10.1089/fpd.2008.0231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jui-Lin Chen
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ming-Lun Chiang
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Tourism and Hospitality Management, Kainan University, Taoyuan, Taiwan
| | - Cheng-Chun Chou
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Chen JL, Chiang ML, Chou CC. The Effect of Acid Adaptation on the Susceptibility ofBacillus cereusto the Stresses of Temperature and H2O2as Well as Enterotoxin Production. Foodborne Pathog Dis 2009; 6:71-9. [DOI: 10.1089/fpd.2008.0158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jui-Lin Chen
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ming-Lun Chiang
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Tourism and Hospitality Management, Kainan University, Taoyuan, Taiwan
| | - Cheng-Chun Chou
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Singh M, Simpson SM, Mullins HR, Dickson JS. Thermal Tolerance of Acid-Adapted and Non-adaptedEscherichia coliO157:H7 andSalmonellain Ground Beef During Storage. Foodborne Pathog Dis 2006; 3:439-46. [PMID: 17199526 DOI: 10.1089/fpd.2006.3.439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thermal tolerance of acid-adapted Escherichia coli O157:H7 or Salmonella in ground beef was evaluated during storage at 4 degrees C or -20 degrees C. Both pathogens were adapted to acidic conditions (pH approximately 4.6) by growing in tryptic soy broth supplemented with 1% glucose. A five-strain cocktail of E. coli O157:H7 or Salmonella was grown separately in TSB (pH approximately 6.6) and TSB + 1% glucose for 24 h at 37 degrees C to provide cells with or without acid adaptation. Irradiated ground beef was inoculated with either acid-adapted or non-adapted E. coli O157:H7 or Salmonella; the samples stored at 4 degrees C were subjected to heat treatment at 62 degrees C or 65 degrees C on days 1, 7, 14, 21, and 28, and the samples stored at -20 degrees C were subjected to heat treatment at 62 degrees C or 65 degrees C on days 1, 30, 60, 90, and 120. Decimal reduction time (D values) of the pathogens was determined as an indicator of thermal tolerance. Significantly higher D(62) values were observed on days 21 and 28 for non-adapted E. coli O157:H7 stored at 4 degrees C and on days 90 and 120 for non-adapted E. coli O157:H7 stored at -20 degrees C (P < 0.05). Higher D(62) values were observed on days 21 and 28 among non-adapted Salmonella strains stored at 4 degrees C and on day 28 for acid-adapted strains of Salmonella stored at 4 degrees C (P < 0.05). Higher D(62) values for acid-adapted strains of Salmonella stored at -20 degrees C were observed on days 30, 60, and 90 (P < 0.05), when while no differences were observed in the D(65) values of acid-adapted and non-adapted strains of E. coli O157:H7 and Salmonella throughout storage at both temperatures (P > 0.05). This suggests that acid adaptation of foodborne pathogens provides a certain level of protection against heat treatment at lower cooking temperatures, while at higher temperatures there were no observed differences between the sensitivity of acid-adapted and non-adapted strains in an actual food system over an extended period of refrigerated and frozen storage.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
28
|
Thomassin S, Jobin MP, Schmitt P. The acid tolerance response of Bacillus cereus ATCC14579 is dependent on culture pH, growth rate and intracellular pH. Arch Microbiol 2006; 186:229-39. [PMID: 16906407 DOI: 10.1007/s00203-006-0137-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 06/06/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
The food pathogen Bacillus cereus is likely to encounter acidic environments (i) in food when organic acids are added for preservation purposes, and (ii) during the stomachal transit of aliments. In order to characterise the acid stress response of B. cereus ATCC14579, cells were grown in chemostat at different pH values (pH(o) from 9.0 to 5.5) and different growth rates (micro from 0.1 to 0.8 h(-1)), and were submitted to acid shock at pH 4.0. Cells grown at low pH(o) were adapted to acid media and induced a significant acid tolerance response (ATR). The ATR induced was modulated by both pH(o) and micro, and the micro effect was more marked at pH(o) 5.5. Intracellular pH (pH(i)) was affected by both pH(o) and micro. At a pH(o) above 6, the pH(i) decreased with the decrease of pH(o) and the increase of micro. At pH(o) 5.5, pH(i) was higher compared to pH(o) 6.0, suggesting that mechanisms of pH(i) homeostasis were induced. The acid survival of B. cereus required protein neo-synthesis and the capacity of cells to maintain their pH(i) and DeltapH (pH(i) - pH(o)). Haemolysin BL and non-haemolytic enterotoxin production were both influenced by pH(o) and micro.
Collapse
Affiliation(s)
- Séverine Thomassin
- IUT Génie Biologique, Univ Avignon, UMR 408, Sécurité et Qualité des Produits d'Origine Végétale, Avignon, 84029, France
| | | | | |
Collapse
|
29
|
Murphy C, Carroll C, Jordan KN. Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J Appl Microbiol 2006; 100:623-32. [PMID: 16553716 DOI: 10.1111/j.1365-2672.2006.02903.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Campylobacter spp. continue to be the greatest cause of bacterial gastrointestinal infections in humans worldwide. They encounter many stresses in the host intestinal tract, on foods and in the environment. However, in common with other enteric bacteria, they have developed survival mechanisms to overcome these stresses. Many of the survival mechanisms used by Campylobacter spp. differ from those used by other bacteria, such as Escherichia coli and Salmonella spp. This review summarizes the mechanisms by which Campylobacter spp. adapt to stress conditions and thereby increase their ability to survive on food and in the environment.
Collapse
Affiliation(s)
- C Murphy
- Teagasc, Moorepark Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | |
Collapse
|
30
|
Arvizu-Medrano SM, Escartín EF. Effect of acid shock with hydrochloric, citric, and lactic acids on the survival and growth of Salmonella typhi and Salmonella typhimurium in acidified media. J Food Prot 2005; 68:2047-53. [PMID: 16245706 DOI: 10.4315/0362-028x-68.10.2047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of acid shock with hydrochloric, citric, or lactic acid on the survival and growth of Salmonella Typhi and Salmonella Typhimurium in acidified broth was evaluated. Salmonella serovars were acid shocked (1 h at 35 degrees C) in Trypticase soy broth acidified with hydrochloric, citric, or lactic acid at pH 5.5. Unshocked cells were exposed to the same media that had been neutralized before use to pH 7.0. Shocked and unshocked cells were inoculated into broth acidified with hydrochloric acid (pH 3.0), citric acid (pH 3.0), or lactic acid (pH 3.8), and growth and survival ability were evaluated. The acid shock conferred protection to Salmonella against the lethal effects of low pH and organic acids. The adaptive response was not specific to the anion used for adaptation. The biggest difference in reduction of survival between shocked and unshocked strains (approximately 2 log CFU/ml) was observed when the microorganisms were shocked with lactic acid and then challenged with citric acid. Salmonella Typhi was more tolerant of citric acid than was Salmonella Typhimurium, but Salmonella Typhimurium had higher acid tolerance in response to acid shock than did Salmonella Typhi. The acid shock decreased the extension of the lag phase and enhanced the physiological state values of Salmonella Typhi and Salmonella Typhimurium when the pH of growth was 4.5. This increased ability to tolerate acidity may have an important impact on food safety, especially in the case of Salmonella Typhi, given the very low infectious dose of this pathogen.
Collapse
Affiliation(s)
- Sofía M Arvizu-Medrano
- Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, México
| | | |
Collapse
|