1
|
Thom C, Smith CJ, Moore G, Weir P, Ijaz UZ. Microbiomes in drinking water treatment and distribution: A meta-analysis from source to tap. WATER RESEARCH 2022; 212:118106. [PMID: 35091225 DOI: 10.1016/j.watres.2022.118106] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
A meta-analysis of existing and available Illumina 16S rRNA datasets from drinking water source, treatment and drinking water distribution systems (DWDS) were collated to compare changes in abundance and diversity throughout. Samples from bulk water and biofilm were used to assess principles governing microbial community assembly and the value of amplicon sequencing to water utilities. Individual phyla relationships were explored to identify competitive or synergistic factors governing DWDS microbiomes. The relative importance of stochasticity in the assembly of the DWDS microbiome was considered to identify the significance of source and treatment in determining communities in DWDS. Treatment of water significantly reduces overall species abundance and richness, with chlorination of water providing the most impact to individual taxa relationships. The assembly of microbial communities in the bulk water of the source, primary treatment process and DWDS is governed by more stochastic processes, as is the DWDS biofilm. DWDS biofilm is significantly different from bulk water in terms of local contribution to beta diversity, type and abundance of taxa present. Water immediately post chlorination has a more deterministic microbial assembly, highlighting the significance of this process in changing the microbiome, although elevated levels of stochasticity in DWDS samples suggest that this may not be the case at customer taps. 16S rRNA sequencing is becoming more routine, and may have several uses for water utilities, including: detection and risk assessment of potential pathogens such as those within the genera of Legionella and Mycobacterium; assessing the risk of nitrification in DWDS; providing improved indicators of process performance and monitoring for significant changes in the microbial community to detect contamination. Combining this with quantitative methods like flow cytometry will allow a greater depth of understanding of the DWDS microbiome.
Collapse
Affiliation(s)
- Claire Thom
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK; Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK.
| | - Cindy J Smith
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK
| | - Graeme Moore
- Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK
| | - Paul Weir
- Scottish Water, 6 Castle Drive Dunfermline, KY11 8GG, UK
| | - Umer Z Ijaz
- Infrastructure and Environment Research Division, James Watt School of Engineering, University of Glasgow, UK
| |
Collapse
|
2
|
Kang D, Liu W, Kakahi FB, Delvigne F. Combined utilization of metabolic inhibitors to prevent synergistic multi-species biofilm formation. AMB Express 2022; 12:32. [PMID: 35244796 PMCID: PMC8897544 DOI: 10.1186/s13568-022-01363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
Biofilm is ubiquitous in industrial water systems, causing biofouling and leading to heat transfer efficiency decreases. In particular, multi-species living in biofilms could boost biomass production and enhance treatment resistance. In this study, a total of 37 bacterial strains were isolated from a cooling tower biofilm where acetic acid and propionic acid were detected as the main carbon sources. These isolates mainly belonged to Proteobacteria and Firmicutes, which occupied more than 80% of the total strains according to the 16S rRNA gene amplicon sequencing. Four species (Acinetobacter sp. CTS3, Corynebacterium sp. CTS5, Providencia sp. CTS12, and Pseudomonas sp. CTS17) were observed co-existing in the synthetic medium. Quantitative comparison of biofilm biomass from mono- and multi-species showed a synergistic effect towards biofilm formation among these four species. Three metabolic inhibitors (sulfathiazole, 3-bromopyruvic acid, and 3-nitropropionic acid) were employed to prevent biofilm formation based on their inhibitory effect on corresponding metabolic pathways. All of them displayed evident inhibition profiles to biofilm formation. Notably, combining these three inhibitors possessed a remarkable ability to block the multi-species biofilm development with lower concentrations, suggesting an enhanced effect appeared in simultaneous use. This study demonstrates that combined utilization of metabolic inhibitors is an alternative strategy to prevent multi-species biofilm formation. 37 bacterial strains were isolated and identified from a cooling tower biofilm. Synergistic effect of biofilm formation was observed among four species. Three metabolic inhibitors showed effective inhibition against biofilm formation. Targeting cellular metabolism is an effective way to inhibit biofilm formation.
Collapse
|
3
|
Anti-bacterial performance evaluation of hydrophobic poly (dimethylsiloxane)-ZnO coating using Pseudomonas aeruginosa. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01205-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Expression of a Shiga-Like Toxin during Plastic Colonization by Two Multidrug-Resistant Bacteria, Aeromonas hydrophila RIT668 and Citrobacter freundii RIT669, Isolated from Endangered Turtles ( Clemmys guttata). Microorganisms 2020; 8:microorganisms8081172. [PMID: 32752245 PMCID: PMC7465454 DOI: 10.3390/microorganisms8081172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Aeromonas hydrophila RIT668 and Citrobacter freundii RIT669 were isolated from endangered spotted turtles (Clemmys guttata). Whole-genome sequencing, annotation and phylogenetic analyses of the genomes revealed that the closest relative of RIT668 is A. hydrophila ATCC 7966 and Citrobacter portucalensis A60 for RIT669. Resistome analysis showed that A. hydrophila and C. freundii harbor six and 19 different antibiotic resistance genes, respectively. Both bacteria colonize polyethylene and polypropylene, which are common plastics, found in the environment and are used to fabricate medical devices. The expression of six biofilm-related genes—biofilm peroxide resistance protein (bsmA), biofilm formation regulatory protein subunit R (bssR), biofilm formation regulatory protein subunit S (bssS), biofilm formation regulator (hmsP), toxin-antitoxin biofilm protein (tabA) and transcriptional activator of curli operon (csgD)—and two virulence factors—Vi antigen-related gene (viaB) and Shiga-like toxin (slt-II)—was investigated by RT-PCR. A. hydrophila displayed a > 2-fold increase in slt-II expression in cells adhering to both polymers, C. freundii adhering on polyethylene displayed a > 2-fold, and on polypropylene a > 6-fold upregulation of slt-II. Thus, the two new isolates are potential pathogens owing to their drug resistance, surface colonization and upregulation of a slt-II-type diarrheal toxin on polymer surfaces.
Collapse
|
5
|
Engel AS, Kranz HT, Schneider M, Tietze JP, Piwowarcyk A, Kuzius T, Arnold W, Naumova EA. Biofilm formation on different dental restorative materials in the oral cavity. BMC Oral Health 2020; 20:162. [PMID: 32493365 PMCID: PMC7268681 DOI: 10.1186/s12903-020-01147-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/21/2020] [Indexed: 01/05/2023] Open
Abstract
Background Bacterial biofilms adhere to all tissues and surfaces in the oral cavity. Oral biofilms are responsible for the decay of human dental structures and the inflammatory degeneration of the alveolar bone. Moreover, oral biofilms on artificial materials influence the lifespan of dental prostheses and restoratives. Methods To investigate in vivo oral biofilm formation and growth, five different dental restorative materials were analyzed and compared to human enamel. The roughness of the materials and the human enamel control probe were measured at the start of the study. The dental restorative materials and the human enamel control probe were placed in dental splints and worn for 3 h, 24 h and 72 h. Results Scanning electron microscopy (SEM) revealed major differences between oral biofilm formation and growth on the materials compared to those on human enamel. Microbiological analyses showed that bacterial strains differed between the materials. Significant differences were observed in the roughness of the dental materials. Conclusions It can be concluded that material roughness affects biofilm formation on dental surfaces and restoratives, but other factors, such as surface charge, surface energy and material composition, may also have an influence.
Collapse
Affiliation(s)
- Alexander-Simon Engel
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, Alfred Herrhausenstrasse 44, 58455, Witten, Germany
| | - Hagen Tizian Kranz
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, Alfred Herrhausenstrasse 44, 58455, Witten, Germany
| | - Marvin Schneider
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, Alfred Herrhausenstrasse 44, 58455, Witten, Germany
| | - Jan Peter Tietze
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, Alfred Herrhausenstrasse 44, 58455, Witten, Germany
| | - Andree Piwowarcyk
- Department of Prosthodontics and Dental Technology, Faculty of Health, Witten/Herdecke University, Alfred Herrhausenstrasse 44, 58455, Witten, Germany
| | - Thorsten Kuzius
- Institute for Hygiene, Faculty of Medicine, Westfälische Wilhelms-Universität Muenster, Robert Koch Strasse 41, 48149, Muenster, Germany
| | - Wolfgang Arnold
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, Alfred Herrhausenstrasse 44, 58455, Witten, Germany.
| | - Ella A Naumova
- Department of Biological and Material Sciences in Dentistry, Faculty of Health, Witten/Herdecke University, Alfred Herrhausenstrasse 44, 58455, Witten, Germany
| |
Collapse
|
6
|
Feng R, Zhao G, Yang Y, Xu M, Huang S, Sun G, Guo J, Li J. Enhanced biological removal of intermittent VOCs and deciphering the roles of sodium alginate and polyvinyl alcohol in biofilm formation. PLoS One 2019; 14:e0217401. [PMID: 31116790 PMCID: PMC6530866 DOI: 10.1371/journal.pone.0217401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/12/2019] [Indexed: 01/09/2023] Open
Abstract
Developing a robust biofilm is a prerequisite for a biotrickling filter to obtain the good performance in removing volatile organic compounds (VOCs). But the biofilm formation can be seriously disturbed under intermittent loading condition due to carbon starvation stress in idle time. In this study, a biotrickling filter, with its packing materials being modified by 3% sodium alginate and 5% polyvinyl alcohol (v/v = 1:3), was employed to treat intermittent VOCs. Results showed that the removal efficiencies of toluene, ethylbenzene, p-xylene, m-xylene, and o-xylene was significantly enhanced in the BTF compared to the control one. Under relatively lower inlet loading, nearly complete removal of the five pollutants was achieved. A quantitative analysis showed that the concentration of total organic compound (TOC) in the leachate maintained at a high level, and had a strongly positive correlation with the divergence of microbial communities. The capacity of biofilm formation in the BTF was approximately four-fold higher than the control BTF, while the quantity of EPS secreted was more than ten-fold. EPS comprised largely of protein, and to less extent, polysaccharide. The biofilm formed on the modified packing materials maintained higher levels of microbial diversity and stability, even when modifiers were complete depleted or the VOCs inlet loading was increased. This study highlights the importance of packing materials for reducing the gap in performance between laboratory and industrial applications of BTFs.
Collapse
Affiliation(s)
- Rongfang Feng
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Gang Zhao
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Yonggang Yang
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Meiying Xu
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Shaobin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, PR China
| | - Guoping Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Jun Guo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, PR China
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
| | - Jianjun Li
- Guangdong Institute of Microbiology, Guangzhou, PR China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, PR China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, PR China
- * E-mail:
| |
Collapse
|
7
|
Talagrand-Reboul E, Jumas-Bilak E, Lamy B. The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems. Front Microbiol 2017; 8:37. [PMID: 28163702 PMCID: PMC5247445 DOI: 10.3389/fmicb.2017.00037] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023] Open
Abstract
Bacteria of the genus Aeromonas display multicellular behaviors herein referred to as “social life”. Since the 1990s, interest has grown in cell-to-cell communication through quorum sensing signals and biofilm formation. As they are interconnected, these two self-organizing systems deserve to be considered together for a fresh perspective on the natural history and lifestyles of aeromonads. In this review, we focus on the multicellular behaviors of Aeromonas, i.e., its social life. First, we review and discuss the available knowledge at the molecular and cellular levels for biofilm and quorum sensing. We then discuss the complex, subtle, and nested interconnections between the two systems. Finally, we focus on the aeromonad multicellular coordinated behaviors involved in heterotrophy and virulence that represent technological opportunities and applied research challenges.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département de Bactériologie, Centre Hospitalier Universitaire (CHU) de NiceNice, France
| |
Collapse
|
8
|
Dos Santos VL, Veiga AA, Mendonça RS, Alves AL, Pagnin S, Santiago VMJ. Reuse of refinery's tertiary-treated wastewater in cooling towers: microbiological monitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2945-2955. [PMID: 25226836 DOI: 10.1007/s11356-014-3555-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The study was planned to quantify the distribution of bacteria between bulk water and biofilm formed on different materials in an industrial scale cooling tower system of an oil refinery operating with clarified and chlorinated freshwater (CCW) or chlorinated tertiary effluent (TRW) as makeup water. The sessile and planktonic heterotrophic bacteria and Pseudomonas aeruginosa densities were significantly higher in the cooling tower supplied with clarified and chlorinated freshwater (CTCW) (p < 0.05). In the two towers, the biofilm density was higher on the surface of glass slides and stainless steel coupons than on the surface of carbon steel coupons. The average corrosion rates of carbon steel coupons (0.4-0.8 millimeters per year (mpy)) and densities of sessile (12-1.47 × 10(3) colony-forming unit (CFU) cm(-1)) and planktonic (0-2.36 × 10(3) CFU mL(-1)) microbiota remained below of the maximum values of reference used by water treatment companies as indicative of efficient microbial control. These data indicate that the strategies of the water treatment station (WTS) (free chlorine) and industrial wastewater treatment station (IWTS) followed by reverse electrodialysis system (RES) (free chlorine plus chloramine) were effective for the microbiological control of the two makeup water sources.
Collapse
Affiliation(s)
- Vera Lúcia Dos Santos
- Microbiology Department, Biological Sciences Institute, Universidade Federal de Minas Gerais, C.P. 486, Belo Horizonte, MG, 31270-901, Brazil,
| | | | | | | | | | | |
Collapse
|
9
|
Douterelo I, Sharpe R, Boxall J. Bacterial community dynamics during the early stages of biofilm formation in a chlorinated experimental drinking water distribution system: implications for drinking water discolouration. J Appl Microbiol 2014; 117:286-301. [PMID: 24712449 PMCID: PMC4282425 DOI: 10.1111/jam.12516] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/19/2014] [Accepted: 04/01/2014] [Indexed: 12/01/2022]
Abstract
Aims To characterize bacterial communities during the early stages of biofilm formation and their role in water discolouration in a fully representative, chlorinated, experimental drinking water distribution systems (DWDS). Methods and Results Biofilm development was monitored in an experimental DWDS over 28 days; subsequently the system was disturbed by raising hydraulic conditions to simulate pipe burst, cleaning or other system conditions. Biofilm cell cover was monitored by fluorescent microscopy and a fingerprinting technique used to assess changes in bacterial community. Selected samples were analysed by cloning and sequencing of the 16S rRNA gene. Fingerprinting analysis revealed significant changes in the bacterial community structure over time (P < 0·05). Cell coverage increased over time accompanied by an increase in bacterial richness and diversity. Conclusions Shifts in the bacterial community structure were observed along with an increase in cell coverage, bacterial richness and diversity. Species related to Pseudomonas spp. and Janthinobacterium spp. dominated the process of initial attachment. Based on fingerprinting results, the hydraulic regimes did not affect the bacteriological composition of biofilms, but they did influence their mechanical stability. Significance and Importance of the Study This study gives a better insight into the early stages of biofilm formation in DWDS and will contribute to the improvement of management strategies to control the formation of biofilms and the risk of discolouration.
Collapse
Affiliation(s)
- I Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
10
|
Spatial and temporal analysis of estuarine bacterioneuston and bacterioplankton using culture-dependent and culture-independent methodologies. Antonie van Leeuwenhoek 2012; 101:819-35. [DOI: 10.1007/s10482-012-9697-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
|