1
|
Dramé I, Rossez Y, Krzewinski F, Charbonnel N, Ollivier-Nakusi L, Briandet R, Dague E, Forestier C, Balestrino D. FabR, a regulator of membrane lipid homeostasis, is involved in Klebsiella pneumoniae biofilm robustness. mBio 2024; 15:e0131724. [PMID: 39240091 PMCID: PMC11481535 DOI: 10.1128/mbio.01317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Biofilm is a dynamic structure from which individual bacteria and micro-aggregates are released to subsequently colonize new niches by either detachment or dispersal. Screening of a transposon mutant library identified genes associated with the alteration of Klebsiella pneumoniae biofilm including fabR, which encodes a transcriptional regulator involved in membrane lipid homeostasis. An isogenic ∆fabR mutant formed more biofilm than the wild-type (WT) strain and its trans-complemented strain. The thick and round aggregates observed with ∆fabR were resistant to extensive washes, unlike those of the WT strain. Confocal microscopy and BioFlux microfluidic observations showed that fabR deletion was associated with biofilm robustness and impaired erosion over time. The genes fabB and yqfA associated with fatty acid metabolism were significantly overexpressed in the ∆fabR strain, in both planktonic and biofilm conditions. Two monounsaturated fatty acids, palmitoleic acid (C16:1) and oleic acid (C18:1), were found in higher proportion in biofilm cells than in planktonic forms, whereas heptadecenoic acid (C17:1) and octadecanoic acid, 11-methoxy (C18:0-OCH3) were found in higher proportion in the planktonic lifestyle. The fabR mutation induced variations in the fatty acid composition, with no clear differences in the amounts of saturated fatty acids (SFA) and unsaturated fatty acids for the planktonic lifestyle but lower SFA in the biofilm form. Atomic force microscopy showed that deletion of fabR is associated with decreased K. pneumoniae cell rigidity in the biofilm lifestyle, as well as a softer, more elastic biofilm with increased cell cohesion compared to the wild-type strain.IMPORTANCEKlebsiella pneumoniae is an opportunistic pathogen responsible for a wide range of nosocomial infections. The success of this pathogen is due to its high resistance to antibiotics and its ability to form biofilms. The molecular mechanisms involved in biofilm formation have been largely described but the dispersal process that releases individual and aggregate cells from mature biofilm is less well documented while it is associated with the colonization of new environments and thus new threats. Using a multidisciplinary approach, we show that modifications of bacterial membrane fatty acid composition lead to variations in the biofilm robustness, and subsequent bacterial detachment and biofilm erosion over time. These results enhance our understanding of the genetic requirements for biofilm formation in K. pneumoniae that affect the time course of biofilm development and the embrittlement step preceding its dispersal that will make it possible to control K. pneumoniae infections.
Collapse
Affiliation(s)
- Ibrahima Dramé
- Université Clermont Auvergne, CNRS, LMGE, Clermont–Ferrand, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Frederic Krzewinski
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Etienne Dague
- LAAS-CNRS, CNRS, Univeristé de Toulouse, Toulouse, France
| | | | | |
Collapse
|
2
|
Elpers L, Deiwick J, Hensel M. Effect of Environmental Temperatures on Proteome Composition of Salmonella enterica Serovar Typhimurium. Mol Cell Proteomics 2022; 21:100265. [PMID: 35788066 PMCID: PMC9396072 DOI: 10.1016/j.mcpro.2022.100265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (STM) is a major cause of gastroenteritis and transmitted by consumption of contaminated food. STM is associated to food originating from animals (pork, chicken, eggs) or plants (vegetables, fruits, nuts, and herbs). Infection of warm-blooded mammalian hosts by STM and the underlying complex regulatory network of virulence gene expression depend on various environmental conditions encountered in hosts. However, less is known about the proteome and possible regulatory networks for gene expression of STM outside the preferred host. Nutritional limitations and changes in temperature are the most obvious stresses outside the native host. Thus, we analyzed the proteome profile of STM grown in rich medium (LB medium) or minimal medium (PCN medium) at temperatures ranging from 8 °C to 37 °C. LB medium mimics the nutritional rich environment inside the host, whereas minimal PCN medium represents nutritional limitations outside the host, found during growth of fresh produce (field conditions). Further, the range of temperatures analyzed reflects conditions within natural hosts (37 °C), room temperature (20 °C), during growth under agricultural conditions (16 °C and 12 °C), and during food storage (8 °C). Implications of altered nutrient availability and growth temperature on STM proteomes were analyzed by HPLC/MS-MS and label-free quantification. Our study provides first insights into the complex adaptation of STM to various environmental temperatures, which allows STM not only to infect mammalian hosts but also to enter new infection routes that have been poorly studied so far. With the present dataset, global virulence factors, their impact on infection routes, and potential anti-infective strategies can now be investigated in detail. Especially, we were able to demonstrate functional flagella at 12 °C growth temperature for STM with an altered motility behavior.
Collapse
Affiliation(s)
- Laura Elpers
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Jörg Deiwick
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany; CellNanOs - Center of Cellular Nanoanalytics Osnabrück, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
3
|
González-López I, Medrano-Félix JA, Castro-del Campo N, López-Cuevas O, González-Gómez JP, Valdez-Torres JB, Aguirre-Sánchez JR, Martínez-Urtaza J, Gómez-Gil B, Lee BG, Quiñones B, Chaidez C. Prevalence and Genomic Diversity of Salmonella enterica Recovered from River Water in a Major Agricultural Region in Northwestern Mexico. Microorganisms 2022; 10:microorganisms10061214. [PMID: 35744732 PMCID: PMC9228531 DOI: 10.3390/microorganisms10061214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/18/2022] Open
Abstract
Salmonella enterica is a leading cause of human gastrointestinal disease worldwide. Given that Salmonella is persistent in aquatic environments, this study examined the prevalence, levels and genotypic diversity of Salmonella isolates recovered from major rivers in an important agricultural region in northwestern Mexico. During a 13-month period, a total of 143 river water samples were collected and subjected to size-exclusion ultrafiltration, followed by enrichment, and selective media for Salmonella isolation and quantitation. The recovered Salmonella isolates were examined by next-generation sequencing for genome characterization. Salmonella prevalence in river water was lower in the winter months (0.65 MPN/100 mL) and significantly higher in the summer months (13.98 MPN/100 mL), and a Poisson regression model indicated a negative effect of pH and salinity and a positive effect of river water temperature (p = 0.00) on Salmonella levels. Molecular subtyping revealed Oranienburg, Anatum and Saintpaul were the most predominant Salmonella serovars. Single nucleotide polymorphism (SNP)-based phylogeny revealed that the detected 27 distinct serovars from river water clustered in two major clades. Multiple nonsynonymous SNPs were detected in stiA, sivH, and ratA, genes required for Salmonella fitness and survival, and these findings identified relevant markers to potentially develop improved methods for characterizing this pathogen.
Collapse
Affiliation(s)
- Irvin González-López
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - José Andrés Medrano-Félix
- Investigadoras e Investigadores por México, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico;
| | - Nohelia Castro-del Campo
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - Osvaldo López-Cuevas
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - Jean Pierre González-Gómez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - José Benigno Valdez-Torres
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - José Roberto Aguirre-Sánchez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
| | - Jaime Martínez-Urtaza
- Department of Genetics and Microbiology, Universitat Autờnoma de Barcelona, 08193 Bellaterra, Spain;
| | - Bruno Gómez-Gil
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Mazatlán, Acuicultura y Manejo Ambiental, Mazatlán 82100, Sinaloa, Mexico;
| | - Bertram G. Lee
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA 94710, USA; (B.G.L.); (B.Q.)
| | - Beatriz Quiñones
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Research Unit, Albany, CA 94710, USA; (B.G.L.); (B.Q.)
| | - Cristóbal Chaidez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Coordinación Regional Culiacán, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán 80110, Sinaloa, Mexico; (I.G.-L.); (N.C.-d.C.); (O.L.-C.); (J.P.G.-G.); (J.B.V.-T.); (J.R.A.-S.)
- Correspondence: ; Tel.: +52-(667)-480-6950
| |
Collapse
|
4
|
Roy PK, Ha AJW, Mizan MFR, Hossain MI, Ashrafudoulla M, Toushik SH, Nahar S, Kim YK, Ha SD. Effects of environmental conditions (temperature, pH, and glucose) on biofilm formation of Salmonella enterica serotype Kentucky and virulence gene expression. Poult Sci 2021; 100:101209. [PMID: 34089933 PMCID: PMC8182266 DOI: 10.1016/j.psj.2021.101209] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022] Open
Abstract
Salmonella is a foodborne pathogen and an emerging zoonotic bacterial threat in the food industry. The aim of this study was to evaluate the biofilm formation by a cocktail culture of 3 wild isolates of Salmonella enterica serotype Kentucky on plastic (PLA), silicon rubber (SR), and chicken skin surfaces under various temperatures (4, 10, 25, 37, and 42°C) and pH values (4.0, 5.0, 6.0, 7.0, and 8.0). Then, at the optimum temperature and pH, the effects of supplementation with glucose (0, 0.025, 0.05, and 0.4% w/v) on biofilm formation were assessed on each of the surfaces. The results indicated that higher temperatures (25 to 42°C) and pH values (7.0 and 8.0) led to more robust biofilm formation than lower temperatures (4 and 10°C) and lower pH levels (4.0 to 6.0). Moreover, biofilm formation was induced by 0.025% glucose during incubation at the optimum temperature (37°C) and pH (7.0) but inhibited by 0.4% glucose. Consistent with this finding, virulence related gene (rpoS, rpoH, hilA, and avrA) expression was increased at 0.025% glucose and significantly reduced at 0.4% glucose. This results also confirmed by field emission scanning electron microscope, confocal laser scanning microscopy, and autoinducer-2 determination. This study concluded that optimum environmental conditions (temperature 37°C, pH 7.0, and 0.25% glucose) exhibited strong biofilm formation on food and food contract surfaces as well as increased the virulence gene expression levels, indicating that these environmental conditions might be threating conditions for food safety.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Angela Ji-Won Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Md Furkanur Rahaman Mizan
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Md Iqbal Hossain
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Md Ashrafudoulla
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Sazzad Hossen Toushik
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Shamsun Nahar
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Yu Kyung Kim
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea
| | - Sang-Do Ha
- Advanced Food Safety Research Group, Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 456-756, Republic of Korea.
| |
Collapse
|
5
|
Zhang H, Xu J, Chen Q, Wang H, Kong B. Physiological, Morphological and Antioxidant Responses of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 Isolated from Harbin Dry Sausages to Oxidative Stress. Foods 2021; 10:foods10061203. [PMID: 34073637 PMCID: PMC8229211 DOI: 10.3390/foods10061203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 02/01/2023] Open
Abstract
As functional starter cultures and potential probiotics, the ability of lactic acid bacteria to resist oxidative stress is essential to maintain viability and functional properties. This study investigates the effects of H2O2 at different concentrations (0, 1, 2, and 3 mM) on the physiological, morphological, and antioxidant properties of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 isolated from Harbin dry sausages. The increase in H2O2 concentration induced a significant increase in reactive oxygen species and a decrease in intracellular ATP levels (p < 0.05). Based on scanning electron microscopy, transmission electron microscopy, and electric conductivity analysis, H2O2 stress caused cell deformation, the destruction of cell membrane integrity, partial loss of the cytoplasm, and an increase in the cell conductivity of both strains. H2O2 stress with 1 mM or 2 mM concentrations could effectively improve the scavenging rates of free radicals, the activities of superoxide dismutase and glutathione peroxide, and the total antioxidant capacity of both strains (p < 0.05). In conclusion, an appropriate oxidative stress contributed to the activation of the antioxidant defense system of both strains, conferred strains a better effect in inhibiting the oxidation of fermented foods, and improved the health of the host.
Collapse
Affiliation(s)
| | | | | | | | - Baohua Kong
- Correspondence: ; Tel.: +86-4515-519-1794; Fax: +86-4515-519-0577
| |
Collapse
|
6
|
|
7
|
Acedos MG, Santos VE, Garcia-Ochoa F. Resting cells isobutanol production by Shimwellia blattae (p424IbPSO): Influence of growth culture conditions. Biotechnol Prog 2018; 34:1073-1080. [PMID: 30281946 DOI: 10.1002/btpr.2705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/31/2018] [Accepted: 08/08/2018] [Indexed: 01/19/2023]
Abstract
Isobutanol is a promising gasoline additive and could even be a potential substitute used directly as combustible. In this work, the production of isobutanol from glucose by Shimwellia blattae (p424IbPSO) in resting cell cultures is studied. This production has two stages, involving a resting cell phase that has not been studied before. The cell growth was carried out under different operating conditions: temperature and medium composition (YE, ammonium, and IPTG concentrations), looking for the highest isobutanol production. Moreover, the cells were collected at three different growth times checking their isobutanol production capacity. The best operating conditions have been determined as: 30°C of temperature, a medium containing 1.5 g L-1 YE and 1.4 g L-1 of ammonium as nitrogen sources, adding 0.5 mM IPTG as inducer. The cells collected at early growth times are significantly more active. The use of S. blattae (p424IbPSO) in resting cells is a good strategy for the production of isobutanol from glucose yielding better results than in batch growth cultures, a yield of 60% attainment of theoretical maximum yield is obtained under optimal conditions. In addition, it has been demonstrated that if the cells are cultured at higher temperatures and with high IPTG concentrations, inclusion bodies are formed in the cytoplasm inhibiting the isobutanol production in the resting cell stage.
Collapse
Affiliation(s)
- Miguel G Acedos
- Dept. of Chemical and Materials Engineering, Universidad Complutense, Madrid, 28040, Spain
| | - Victoria E Santos
- Dept. of Chemical and Materials Engineering, Universidad Complutense, Madrid, 28040, Spain
| | - Felix Garcia-Ochoa
- Dept. of Chemical and Materials Engineering, Universidad Complutense, Madrid, 28040, Spain
| |
Collapse
|
8
|
Machida S, Bakku RK, Suzuki I. Expression of Genes for a Flavin Adenine Dinucleotide-Binding Oxidoreductase and a Methyltransferase from Mycobacterium chlorophenolicum Is Necessary for Biosynthesis of 10-Methyl Stearic Acid from Oleic Acid in Escherichia coli. Front Microbiol 2017; 8:2061. [PMID: 29109716 PMCID: PMC5660069 DOI: 10.3389/fmicb.2017.02061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/09/2017] [Indexed: 11/15/2022] Open
Abstract
In living organisms, modified fatty acids are crucial for the functions of the cellular membranes and storage lipids where the fatty acids are esterified. Some bacteria produce a typical methyl-branched fatty acid, i.e., 10-methyl stearic acid (19:0Me10). The biosynthetic pathway of 19:0Me10 in vivo has not been demonstrated clearly yet. It had been speculated that 19:0Me10 is synthesized from oleic acid (18:1Δ9) by S-adenosyl-L-methionine-dependent methyltransfer and NADPH-dependent reduction via a methylenated intermediate, 10-methyelene octadecanoic acid. Although the recombinant methyltransferases UmaA and UfaA1 from Mycobacterium tuberculosis H37Rv synthesize 19:0Me10 from 18:1Δ9 and NADPH in vitro, these methyltransferases do not possess any domains functioning in the redox reaction. These findings may contradict the two-step biosynthetic pathway. We focused on novel S-adenosyl-L-methionine-dependent methyltransferases from Mycobacterium chlorophenolicum that are involved in 19:0Me10 synthesis and selected two candidate proteins, WP_048471942 and WP_048472121, by a comparative genomic analysis. However, the heterologous expression of these candidate genes in Escherichia coli cells did not produce 19:0Me10. We found that one of the candidate genes, WP_048472121, was collocated with another gene, WP_048472120, that encodes a protein containing a domain associated with flavin adenine dinucleotide-binding oxidoreductase activity. The co-expression of these proteins (hereafter called BfaA and BfaB, respectively) led to the biosynthesis of 19:0Me10 in E. coli cells via the methylenated intermediate.
Collapse
Affiliation(s)
- Shuntaro Machida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ranjith K Bakku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Dawoud TM, Davis ML, Park SH, Kim SA, Kwon YM, Jarvis N, O’Bryan CA, Shi Z, Crandall PG, Ricke SC. The Potential Link between Thermal Resistance and Virulence in Salmonella: A Review. Front Vet Sci 2017; 4:93. [PMID: 28660201 PMCID: PMC5469892 DOI: 10.3389/fvets.2017.00093] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
In some animals, the typical body temperature can be higher than humans, for example, 42°C in poultry and 40°C in rabbits which can be a potential thermal stress challenge for pathogens. Even in animals with lower body temperatures, when infection occurs, the immune system may increase body temperature to reduce the chance of survival for pathogens. However, some pathogens can still easily overcome higher body temperatures and/or rise in body temperatures through expression of stress response mechanisms. Salmonella is the causative agent of one of the most prevalent foodborne illnesses, salmonellosis, and can readily survive over a wide range of temperatures due to the efficient expression of the heat (thermal) stress response. Therefore, thermal resistance mechanisms can provide cross protection against other stresses including the non-specific host defenses found within the human body thus increasing pathogenic potential. Understanding the molecular mechanisms associated with thermal responses in Salmonella is crucial in designing and developing more effective or new treatments for reducing and eliminating infection caused by Salmonella that have survived heat stress. In this review, Salmonella thermal resistance is assessed followed by an overview of the thermal stress responses with a focus on gene regulation by sigma factors, heat shock proteins, along with the corresponding thermosensors and their association with virulence expression including a focus on a potential link between heat resistance and potential for infection.
Collapse
Affiliation(s)
- Turki M. Dawoud
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Morgan L. Davis
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Si Hong Park
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Sun Ae Kim
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Nathan Jarvis
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Corliss A. O’Bryan
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Zhaohao Shi
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Philip G. Crandall
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
- Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
- Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
10
|
Influence of static magnetic field exposure on fatty acid composition in Salmonella Hadar. Microb Pathog 2017; 108:13-20. [PMID: 28455137 DOI: 10.1016/j.micpath.2017.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 11/20/2022]
Abstract
We have been interested, in this work, to investigate the effect of the exposure to static magnetic field at 200 mT (SMF) on the fatty acid (FA) composition of Salmonella enterica subsp Enterica serovar Hadar isolate 287: effects on the proportion of saturated and unsaturated fatty acids (SFAs, UFAs), cyclopropane fatty acids (CFAs) and hydroxy fatty acids after exposure to the static magnetic field at 200 mT (SMF). Analysis with Gas Chromatography-Mass Spectrometry (GC-MS) of total lipid showed that the proportion of the most fatty acids was clearly affected. The comparison of UFAs/SFAs ratio in exposed bacteria and controls showed a diminution after 3 and 6 h of exposure. This ration reached a balance after 9 h of treatment with SMF. So we can conclude that S. Hadar tries to adapt to magnetic stress by changing the proportions of SFAs and UFAs over time to maintain an equilibrium after 9 h of exposure, thus to maintain the inner membranes fluidity. Also, a decrease in the proportion of hydroxy FAs was observed after 6 h but an increase of this proportion after 9 h of exposure. Concerning CFAs, its proportion raised after 6 h of exposure to the SMF but it decreased after 9 h of exposure. These results are strongly correlated with those of cfa (cyclopropane fatty acid synthase) gene expression which showed a decrease of its expression after 9 h of exposure.
Collapse
|
11
|
FabR regulates Salmonella biofilm formation via its direct target FabB. BMC Genomics 2016; 17:253. [PMID: 27004424 PMCID: PMC4804515 DOI: 10.1186/s12864-016-2387-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 01/08/2016] [Indexed: 12/02/2022] Open
Abstract
Background Biofilm formation is an important survival strategy of Salmonella in all environments. By mutant screening, we showed a knock-out mutant of fabR, encoding a repressor of unsaturated fatty acid biosynthesis (UFA), to have impaired biofilm formation. In order to unravel how this regulator impinges on Salmonella biofilm formation, we aimed at elucidating the S. Typhimurium FabR regulon. Hereto, we applied a combinatorial high-throughput approach, combining ChIP-chip with transcriptomics. Results All the previously identified E. coli FabR transcriptional target genes (fabA, fabB and yqfA) were shown to be direct S. Typhimurium FabR targets as well. As we found a fabB overexpressing strain to partly mimic the biofilm defect of the fabR mutant, the effect of FabR on biofilms can be attributed at least partly to FabB, which plays a key role in UFA biosynthesis. Additionally, ChIP-chip identified a number of novel direct FabR targets (the intergenic regions between hpaR/hpaG and ddg/ydfZ) and yet putative direct targets (i.a. genes involved in tRNA metabolism, ribosome synthesis and translation). Next to UFA biosynthesis, a number of these direct targets and other indirect targets identified by transcriptomics (e.g. ribosomal genes, ompA, ompC, ompX, osmB, osmC, sseI), could possibly contribute to the effect of FabR on biofilm formation. Conclusion Overall, our results point at the importance of FabR and UFA biosynthesis in Salmonella biofilm formation and their role as potential targets for biofilm inhibitory strategies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2387-x) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Al-Beloshei NE, Al-Awadhi H, Al-Khalaf RA, Afzal M. A comparative study of fatty acid profile and formation of biofilm inGeobacillus gargensisexposed to variable abiotic stress. Can J Microbiol 2015; 61:48-59. [DOI: 10.1139/cjm-2014-0615] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding bacterial fatty acid (FA) profile has a great taxonomic significance as well as clinical importance for diagnosis issues. Both the composition and nature of membrane FAs change under different nutritional, biotic and (or) abiotic stresses, and environmental stress. Bacteria produce both odd-carbon as well as branched-chain fatty acids (BCFAs). This study was designed to examine the effect of abiotic pressure, including salinity, temperature, pH, and oxinic stress on the growth, development, and FA profile in thermophilic Geobacillus gargensis. Under these stresses, 3 parametric ratios, 2-methyl fatty acids/3-methyl fatty acids (iso-/anteiso-FAs), BCFAs/straight-chain saturated fatty acids (SCSFA), and SCSFAs/straight-chain unsaturated fatty acids (SCUFA), in addition to total lipids affected by variable stresses were measured. Our results indicate that the ratio of total iso-/anteiso-FAs increased at the acidic pH range of 4.1–5.2 and decreased with increasing pH. The reverse was true for salt stress when iso-/anteiso-FAs ratio increased with salt concentration. The BCFAs/SCSFAs and SCSFAs/SCUFAs ratios increased at neutral and alkaline pH and high salt concentration, reduced incubation time, and comparatively high temperature (55–65 °C) of the growth medium. The bacterial total lipid percentage deceased with increasing salt concentration, incubation period, but it increased with temperature. The formation of extracellular polymeric substances was observed under all stress conditions and with the addition of sodium dodecyl sulfate (2 and 5 mmol/L) to the growth medium. The membrane phospholipid composition of the bacterium was analyzed by thin-layer chromatography.
Collapse
Affiliation(s)
| | - Husain Al-Awadhi
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| | - Rania A. Al-Khalaf
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| | - Mohammad Afzal
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait
| |
Collapse
|
13
|
Park SH, Aydin M, Khatiwara A, Dolan MC, Gilmore DF, Bouldin JL, Ahn S, Ricke SC. Current and emerging technologies for rapid detection and characterization of Salmonella in poultry and poultry products. Food Microbiol 2014; 38:250-62. [DOI: 10.1016/j.fm.2013.10.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 07/28/2013] [Accepted: 10/04/2013] [Indexed: 12/19/2022]
|
14
|
Growth temperature alters Salmonella Enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression. Int J Food Microbiol 2014; 172:102-9. [DOI: 10.1016/j.ijfoodmicro.2013.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/20/2013] [Accepted: 12/04/2013] [Indexed: 11/22/2022]
|
15
|
An on-target desalting and concentration sample preparation protocol for MALDI-MS and MS/MS analysis. Methods Mol Biol 2012; 909:17-28. [PMID: 22903706 DOI: 10.1007/978-1-61779-959-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
2DE coupled with MALDI-MS is one of the most widely used and powerful analytic technologies in proteomics study. The MALDI sample preparation method has been developed and optimized towards the combination of simplicity, sample-cleaning, and sample concentration since its introduction. Here we present a protocol of the so-called Sample loading, Matrix loading, and on-target Wash (SMW) method which fulfills the three criteria by taking advantage of the AnchorChip™ targets. Our method is extremely simple and no pre-desalting or concentration is needed when dealing with samples prepared from 2DE. The protocol is amendable for automation and would pave the road for high-throughput MALDI-MS or MS/MS-based proteomics studies with guaranteed sensitivity and high identification rate. The method has been successfully applied to mouse liver proteome study and so far has been employed in other proteome studies by world-wide researchers.
Collapse
|
16
|
Baez A, Cho KM, Liao JC. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol 2011; 90:1681-90. [PMID: 21547458 PMCID: PMC3094657 DOI: 10.1007/s00253-011-3173-y] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 11/27/2022]
Abstract
Promising approaches to produce higher alcohols, e.g., isobutanol, using Escherichia coli have been developed with successful results. Here, we translated the isobutanol process from shake flasks to a 1-L bioreactor in order to characterize three E. coli strains. With in situ isobutanol removal from the bioreactor using gas stripping, the engineered E. coli strain (JCL260) produced more than 50 g/L in 72 h. In addition, the isobutanol production by the parental strain (JCL16) and the high isobutanol-tolerant mutant (SA481) were compared with JCL260. Interestingly, we found that the isobutanol-tolerant strain in fact produced worse than either JCL16 or JCL260. This result suggests that in situ product removal can properly overcome isobutanol toxicity in E. coli cultures. The isobutanol productivity was approximately twofold and the titer was 9% higher than n-butanol produced by Clostridium in a similar integrated system.
Collapse
Affiliation(s)
- Antonino Baez
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Kwang-Myung Cho
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095 USA
| | - James C. Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095 USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, 5531 Boelter Hall, 420 Westwood Plaza, Los Angeles, CA 90095 USA
| |
Collapse
|