1
|
Yuan J, Meng H, Liu Y, Wang L, Zhu Q, Wang Z, Liu H, Zhang K, Zhao J, Li W, Wang Y. Bacillus amyloliquefaciens attenuates the intestinal permeability, oxidative stress and endoplasmic reticulum stress: transcriptome and microbiome analyses in weaned piglets. Front Microbiol 2024; 15:1362487. [PMID: 38808274 PMCID: PMC11131103 DOI: 10.3389/fmicb.2024.1362487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is related to oxidative stress (OS) and leads to intestinal injury. Bacillus amyloliquefaciens SC06 (SC06) can regulate OS, but its roles in intestinal ER stress remains unclear. Using a 2 × 2 factorial design, 32 weaned piglets were treated by two SC06 levels (0 or 1 × 108 CFU/g), either with or without diquat (DQ) injection. We found that SC06 increased growth performance, decreased ileal permeability, OS and ER stress in DQ-treated piglets. Transcriptome showed that differentially expressed genes (DEGs) induced by DQ were enriched in NF-κB signaling pathway. DEGs between DQ- and SC06 + DQ-treated piglets were enriched in glutathione metabolism pathway. Ileal microbiome revealed that the SC06 + DQ treatment decreased Clostridium and increased Actinobacillus. Correlations were found between microbiota and ER stress genes. In conclusion, dietary SC06 supplementation increased the performance, decreased the permeability, OS and ER stress in weaned piglets by regulating ileal genes and microbiota.
Collapse
Affiliation(s)
- Junmeng Yuan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Hongling Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yu Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Li Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Qizhen Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Zhengyu Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
2
|
Thomsen J, Abdulrazzaq NM, AlRand H. Epidemiology and antimicrobial resistance trends of Acinetobacter species in the United Arab Emirates: a retrospective analysis of 12 years of national AMR surveillance data. Front Public Health 2024; 11:1245131. [PMID: 38239785 PMCID: PMC10794577 DOI: 10.3389/fpubh.2023.1245131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/22/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction Acinetobacter spp., in particular A. baumannii, are opportunistic pathogens linked to nosocomial pneumonia (particularly ventilator-associated pneumonia), central-line catheter-associated blood stream infections, meningitis, urinary tract infections, surgical-site infections, and other types of wound infections. A. baumannii is able to acquire or upregulate various resistance determinants, making it frequently multidrug-resistant, and contributing to increased mortality and morbidity. Data on the epidemiology, levels, and trends of antimicrobial resistance of Acinetobacter spp. in clinical settings is scarce in the Gulf Cooperation Council (GCC) and Middle East and North Africa (MENA) regions. Methods A retrospective 12-year analysis of 17,564 non-duplicate diagnostic Acinetobacter spp. isolates from the United Arab Emirates (UAE) was conducted. Data was generated at 317 surveillance sites by routine patient care during 2010-2021, collected by trained personnel and reported by participating surveillance sites to the UAE National AMR Surveillance program. Data analysis was conducted with WHONET. Results Species belonging to the A. calcoaceticus-baumannii complex were mostly reported (86.7%). They were most commonly isolated from urine (32.9%), sputum (29.0%), and soft tissue (25.1%). Resistance trends to antibiotics from different classes during the surveillance period showed a decreasing trend. Specifically, there was a significant decrease in resistance to imipenem, meropenem, and amikacin. Resistance was lowest among Acinetobacter species to both colistin and tigecycline. The percentages of multidrug-resistant (MDR) and possibly extensively drug-resistant (XDR) isolates was reduced by almost half between the beginning of the study in 2010 and its culmination in 2021. Carbapenem-resistant Acinetobacter spp. (CRAB) was associated with a higher mortality (RR: 5.7), a higher admission to ICU (RR 3.3), and an increased length of stay (LOS; 13 excess inpatient days per CRAB case), as compared to Carbapenem-susceptible Acinetobacter spp. Conclusion Carbapenem-resistant Acinetobacter spp. are associated with poorer clinical outcomes, and higher associated costs, as compared to carbapenem-susceptible Acinetobacter spp. A decreasing trend of MDR Acinetobacter spp., as well as resistance to all antibiotic classes under surveillance was observed during 2010 to 2021. Further studies are needed to explore the reasons and underlying factors leading to this remarkable decrease of resistance over time.
Collapse
Affiliation(s)
- Jens Thomsen
- Abu Dhabi Public Health Center, Abu Dhabi, United Arab Emirates
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Hussain AlRand
- Public Health Sector, Ministry of Health and Prevention, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Aiyegoro OA, Moyane JN, Adegoke AA, Jideani AIO, Reddy P, Okoh AI. Virulence Signatures, Integrons, and Antibiotic Resistance Genes in Bacterial Strains Recovered from Selected Commercial Dairy Products and Fresh Raw Meat. Curr Microbiol 2023; 80:254. [PMID: 37355481 DOI: 10.1007/s00284-023-03371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Bacterial species responsible for food infections and intoxication are sometimes carried through the food production and processing. Very few published literatures exist on integrons among antibiotic-resistant staphylococcal strains from foods of animal origin in Gauteng Province, South Africa, hence this study. A total of 720 samples (360 meat and 360 dairies) from a community abattoir of a research farm in South Africa, using conventional bacteriological and molecular methods. Nine (9) bacterial strains, including Bacillus subtilis AYO-123, Acinetobacter baumannii AYO-241, Staphylococcus lentus AYO-352, among others were identified and submitted to GenBank. More bacterial strains were recovered from raw meat (90.5%) than dairy products (9.5%). Resistance was shown (0-100%) to Imipenem, Meropenem, Norfloxacin, Clindamycin, and 22 other antibiotics, without any carbapenem-resistant Acinetobacter baumannii and methicillin/vancomycin-resistant Staphylococcus species (MRSS/VRSS). Virulence genes for fibronectin-binding protein A (FnbA) were predominant (56.24%) followed by the circulating nucleic acids (cna) gene (43.75%). Others were staphylococcal enterotoxin A (sea, 41%), staphylococcal enterotoxin B (seb, 23.5%). Co-presence of sea and seb genes occurred in 11.76% of the isolates, but no coa genes was amplified. Antibiotic resistance genes (ARGs), tetK (70.58%), linA (29.4%), and ermA (11.76%) were detected, but none of the mecA and vat genes was amplified. Class 2 integron (50%) was more predominantly detected than integron 1 (25%), but no Class 3 integron was detected. Bacteria with both the detected virulence and antibiotic resistance genes are of potential risks to human health.
Collapse
Affiliation(s)
- Olayinka A Aiyegoro
- Collaborating Partner, Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria
- Research Unit for Environmental Sciences and Management, North West University, Potchefstroom, 2520, North West, South Africa
| | - Jeremia N Moyane
- School of Agriculture, Department of Food Science and Technology, University of Venda, Thohoyandou, 0950, South Africa
| | - Anthony A Adegoke
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria.
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology (DUT), Durban, 4001, KwaZulu-Natal, South Africa.
| | - Afam I O Jideani
- School of Agriculture, Department of Food Science and Technology, University of Venda, Thohoyandou, 0950, South Africa
- Postharvest-Handling Group, ISEKI-Food Association, Vienna, Austria
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology (DUT), Durban, 4001, KwaZulu-Natal, South Africa
| | - Anthony I Okoh
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- SAMRC Microbial Water Quality Monitoring Centre, University of For Hare, Alice, South Africa
| |
Collapse
|
4
|
Ekundayo TC, Adewoyin MA, Ijabadeniyi OA, Igbinosa EO, Okoh AI. Machine learning-guided determination of Acinetobacter density in waterbodies receiving municipal and hospital wastewater effluents. Sci Rep 2023; 13:7749. [PMID: 37173379 PMCID: PMC10177717 DOI: 10.1038/s41598-023-34963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
A smart artificial intelligent system (SAIS) for Acinetobacter density (AD) enumeration in waterbodies represents an invaluable strategy for avoidance of repetitive, laborious, and time-consuming routines associated with its determination. This study aimed to predict AD in waterbodies using machine learning (ML). AD and physicochemical variables (PVs) data from three rivers monitored via standard protocols in a year-long study were fitted to 18 ML algorithms. The models' performance was assayed using regression metrics. The average pH, EC, TDS, salinity, temperature, TSS, TBS, DO, BOD, and AD was 7.76 ± 0.02, 218.66 ± 4.76 µS/cm, 110.53 ± 2.36 mg/L, 0.10 ± 0.00 PSU, 17.29 ± 0.21 °C, 80.17 ± 5.09 mg/L, 87.51 ± 5.41 NTU, 8.82 ± 0.04 mg/L, 4.00 ± 0.10 mg/L, and 3.19 ± 0.03 log CFU/100 mL respectively. While the contributions of PVs differed in values, AD predicted value by XGB [3.1792 (1.1040-4.5828)] and Cubist [3.1736 (1.1012-4.5300)] outshined other algorithms. Also, XGB (MSE = 0.0059, RMSE = 0.0770; R2 = 0.9912; MAD = 0.0440) and Cubist (MSE = 0.0117, RMSE = 0.1081, R2 = 0.9827; MAD = 0.0437) ranked first and second respectively, in predicting AD. Temperature was the most important feature in predicting AD and ranked first by 10/18 ML-algorithms accounting for 43.00-83.30% mean dropout RMSE loss after 1000 permutations. The two models' partial dependence and residual diagnostics sensitivity revealed their efficient AD prognosticating accuracies in waterbodies. In conclusion, a fully developed XGB/Cubist/XGB-Cubist ensemble/web SAIS app for AD monitoring in waterbodies could be deployed to shorten turnaround time in deciding microbiological quality of waterbodies for irrigation and other purposes.
Collapse
Affiliation(s)
- Temitope C Ekundayo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, 4001, Durban, South Africa.
- Department of Microbiology, University of Medical Sciences Ondo, Ondo, Nigeria.
| | - Mary A Adewoyin
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
- Department of Biological Sciences, Faculty of Natural, Applied and Health Sciences, Anchor University, Ayobo Road, Ipaja, P. M. B. 001, Lagos, Nigeria
| | - Oluwatosin A Ijabadeniyi
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Steve Biko Rd, Musgrave, Berea, 4001, Durban, South Africa
| | - Etinosa O Igbinosa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Private Mail Bag 1154, Benin City, 300283, Nigeria
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Liu CH, Chuang YL, Gurunathan R, Hsieh CY, Dahms HU. Riverine antibacterial resistance gradient determined by environmental factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53685-53701. [PMID: 36864342 DOI: 10.1007/s11356-023-25529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2023] [Indexed: 06/19/2023]
Abstract
Polluted waterbodies such as rivers provide a pathway or reservoir for bacterial resistance. We studied water quality and bacterial antibacterial resistance along the subtropical Qishan River in Taiwan as a case study of environmental resistance spread in a pristine rural area. Human settlement densities increased generally from pristine mountain sites to the more polluted lowlands. Accordingly, as a working hypothesis, we expected the antibacterial resistance level to increase downstream. We collected sediment samples from 8 stations along the Qishan river and where the Qishan river reaches the Kaoping river. The samples were processed in the lab for bacteriological and physicochemical analysis. Antibacterial resistance was tested with common antibacterial. A comparison was made among the sites where isolates began to occur at the upstream (sites 1-6) with the downstream, including site 7 (Qishan town), site 8 (wastewater treatment plant), and site 9 (Kaoping river). The results of multivariate analysis for bacteriological and physicochemical parameters showed increasing water pollution levels downstream of the Qishan river. Bacterial isolates including Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Enterobacter sp., Acinetobacter sp., Staphylococcus spp., and Bacillus spp. were analyzed and tested in the study. Their percentage of occurrence varied at each site. The resistance level was determined from the growth inhibition zone diameter (disk diffusion) and the minimum inhibitory concentration (micro-dilution). The results indicated that antibacterial resistance was related to certain environmental factors. Besides, the usage pattern of different classes of antibacterial in different sections could alter trends of their resistance. Bacteria were found with increased resistance to antibacterial used in agriculture through the downstream sites. The WWTP discharging wastewater was demonstrated to be a hotspot of resistance in aquatic environments. In conclusion, bacterial resistance against antibacterial from the Qishan river has become a potential public health threat. This study could assist authorities by providing a reference for risk assessment and management of water quality in Kaohsiung city and southern Taiwan.
Collapse
Affiliation(s)
- Cheng-Han Liu
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
- University Social Responsibility Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
| | - Yi-Lynne Chuang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
| | - Revathi Gurunathan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China
| | - Chi-Ying Hsieh
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, Republic of China.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China.
- University Social Responsibility Team, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan, Republic of China.
- Department of Marine Biotechnology and Resources, College of Marine Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, Republic of China.
| |
Collapse
|
6
|
Microbial Diversity of the Chinese Tiger Frog (Hoplobatrachus rugulosus) on Healthy versus Ulcerated Skin. Animals (Basel) 2022; 12:ani12101241. [PMID: 35625087 PMCID: PMC9137582 DOI: 10.3390/ani12101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary As amphibians’ skin is highly sensitive to the environment, skin defects such as ulceration may pose a particular threat to them. Our study has found a stark difference in the microbial communities between healthy and ulcerated Hoplobatrachus rugulosus skin. The proportion and type of bacteria differed between the two groups, and we suggest that ulceration on the skin may lead to changes in skin microbial communities. The functional pathways of skin microbes may be influenced by ulceration on the skin surface of H. rugulosus. We also found that Vogesella is more abundant in healthy H. rugulosus, which may be a potential probiotic candidate for the reduction or removal of pathogens. Abstract The Chinese tiger frog (Hoplobatrachus rugulosus) is extensively farmed in southern China. Due to cramped living conditions, skin diseases are prevalent among unhealthy tiger frogs which thereby affects their welfare. In this study, the differences in microbiota present on healthy versus ulcerated H. rugulosus skin were examined using 16S rRNA sequences. Proteobacteria were the dominant phylum on H. rugulosus skin, but their abundance was greater on the healthy skin than on the ulcerated skin. Rhodocyclaceae and Comamonadaceae were the most dominant families on the healthy skin, whereas Moraxellaceae was the most dominant family on the ulcerated skin. The abundance of these three families was different between the groups. Acidovorax was the most dominant genus on the healthy skin, whereas Acinetobacter was the most dominant genus on the ulcerated skin, and its abundance was greater on the ulcerated skin than on the healthy skin. Moreover, the genes related to the Kyoto Encyclopedia of Genes and Genomes pathways of levels 2–3, especially those genes that are involved in cell motility, flagellar assembly, and bacterial chemotaxis in the skin microbiota, were found to be greater on the healthy skin than on the ulcerated skin, indicating that the function of skin microbiota was affected by ulceration. Overall, the composition, abundance, and function of skin microbial communities differed between the healthy and ulcerated H. rugulosus skin. Our results may assist in developing measures to combat diseases in H. rugulosus.
Collapse
|
7
|
Abdelhafiz Y, Fernandes JMO, Stefani E, Albanese D, Donati C, Kiron V. Power Play of Commensal Bacteria in the Buccal Cavity of Female Nile Tilapia. Front Microbiol 2021; 12:773351. [PMID: 34867911 PMCID: PMC8636895 DOI: 10.3389/fmicb.2021.773351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 01/29/2023] Open
Abstract
Fish are widely exposed to higher microbial loads compared to land and air animals. It is known that the microbiome plays an essential role in the health and development of the host. The oral microbiome is vital in females of different organisms, including the maternal mouthbrooding species such as Nile tilapia (Oreochromis niloticus). The present study reports for the first time the microbial composition in the buccal cavity of female and male Nile tilapia reared in a recirculating aquaculture system. Mucus samples were collected from the buccal cavity of 58 adult fish (∼1 kg), and 16S rRNA gene amplicon sequencing was used to profile the microbial communities in females and males. The analysis revealed that opportunistic pathogens such as Streptococcus sp. were less abundant in the female buccal cavity. The power play of certain bacteria such as Acinetobacter, Acidobacteria (GP4 and GP6), and Saccharibacteria that have known metabolic advantages was evident in females compared to males. Association networks inferred from relative abundances showed few microbe–microbe interactions of opportunistic pathogens in female fish. The findings of opportunistic bacteria and their interactions with other microbes will be valuable for improving Nile tilapia rearing practices. The presence of bacteria with specific functions in the buccal cavity of female fish points to their ability to create a protective microbial ecosystem for the offspring.
Collapse
Affiliation(s)
- Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Erika Stefani
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Davide Albanese
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudio Donati
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
8
|
The Great ESKAPE: Exploring the Crossroads of Bile and Antibiotic Resistance in Bacterial Pathogens. Infect Immun 2020; 88:IAI.00865-19. [PMID: 32661122 DOI: 10.1128/iai.00865-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Throughout the course of infection, many pathogens encounter bactericidal conditions that threaten the viability of the bacteria and impede the establishment of infection. Bile is one of the most innately bactericidal compounds present in humans, functioning to reduce the bacterial burden in the gastrointestinal tract while also aiding in digestion. It is becoming increasingly apparent that pathogens successfully resist the bactericidal conditions of bile, including bacteria that do not normally cause gastrointestinal infections. This review highlights the ability of Enterococcus, Staphylococcus, Klebsiella, Acinetobacter, Pseudomonas, Enterobacter (ESKAPE), and other enteric pathogens to resist bile and how these interactions can impact the sensitivity of bacteria to various antimicrobial agents. Given that pathogen exposure to bile is an essential component to gastrointestinal transit that cannot be avoided, understanding how bile resistance mechanisms align with antimicrobial resistance is vital to our ability to develop new, successful therapeutics in an age of widespread and increasing antimicrobial resistance.
Collapse
|
9
|
Shah DH, Board MM, Crespo R, Guard J, Paul NC, Faux C. The occurrence of Salmonella, extended-spectrum β-lactamase producing Escherichia coli and carbapenem resistant non-fermenting Gram-negative bacteria in a backyard poultry flock environment. Zoonoses Public Health 2020; 67:742-753. [PMID: 32710700 DOI: 10.1111/zph.12756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/30/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Increase in the number of small-scale backyard poultry flocks in the USA has substantially increased human-to-live poultry contact, leading to increased public health risks of the transmission of multi-drug resistant (MDR) zoonotic and food-borne bacteria. The objective of this study was to detect the occurrence of Salmonella and MDR Gram-negative bacteria (GNB) in the backyard poultry flock environment. A total of 34 backyard poultry flocks in Washington State (WA) were sampled. From each flock, one composite coop sample and three drag swabs from nest floor, waterer-feeder, and a random site with visible faecal smearing, respectively, were collected. The samples were processed for isolation of Salmonella and other fermenting and non-fermenting GNB under ceftiofur selection. Each isolate was identified to species level using MALDI-TOFF and tested for resistance against 16 antibiotics belonging to eight antibiotic classes. Salmonella serovar 1,4,[5],12:i:- was isolated from one (3%) out of 34 flocks. Additionally, a total of 133 ceftiofur resistant (CefR ) GNB including Escherichia coli (53), Acinetobacter spp. (45), Pseudomonas spp. (22), Achromobacter spp. (8), Bordetella trematum (1), Hafnia alvei (1), Ochrobactrum intermedium (1), Raoultella ornithinolytica (1), and Stenotrophomonas maltophilia (1) were isolated. Of these, 110 (82%) isolates displayed MDR. Each flock was found positive for the presence of one or more CefR GNB. Several MDR E. coli (n = 15) were identified as extended-spectrum β-lactamase (ESBL) positive. Carbapenem resistance was detected in non-fermenting GNB including Acinetobacter spp. (n = 20), Pseudomonas spp. (n = 11) and Stenotrophomonas maltophila (n = 1). ESBL positive E. coli and carbapenem resistant non-fermenting GNB are widespread in the backyard poultry flock environment in WA State. These GNB are known to cause opportunistic infections, especially in immunocompromised hosts. Better understanding of the ecology and epidemiology of these GNB in the backyard poultry flock settings is needed to identify potential risks of transmission to people in proximity.
Collapse
Affiliation(s)
- Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Melissa M Board
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Rocio Crespo
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Jean Guard
- US National Poultry Research Center, United States Department of Agriculture, Athens, GA, USA
| | - Narayan C Paul
- Texas A & M Veterinary Medical Diagnostic Laboratory, College Station, TX, USA
| | - Cynthia Faux
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| |
Collapse
|
10
|
Adegoke AA, Amoah ID, Stenström TA, Verbyla ME, Mihelcic JR. Epidemiological Evidence and Health Risks Associated With Agricultural Reuse of Partially Treated and Untreated Wastewater: A Review. Front Public Health 2018; 6:337. [PMID: 30574474 PMCID: PMC6292135 DOI: 10.3389/fpubh.2018.00337] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/01/2018] [Indexed: 01/25/2023] Open
Abstract
The use of partially treated and untreated wastewater for irrigation is beneficial in agriculture but may be associated with human health risks. Reports from different locations globally have linked microbial outbreaks with agricultural reuse of wastewater. This article reviews the epidemiological evidence and health risks associated with this practice, aiming toward evidence-based conclusions. Exposure pathways that were addressed in this review included those relevant to agricultural workers and their families, consumers of crops, and residents close to areas irrigated with wastewater (partially treated or untreated). A meta-analysis gave an overall odds ratio of 1.65 (95% CI: 1.31, 2.06) for diarrheal disease and 5.49 (95% CI: 2.49, 12.10) for helminth infections for exposed agricultural workers and family members. The risks were higher among children and immunocompromised individuals than in immunocompetent adults. Predominantly skin and intestinal infections were prevalent among individuals infected mainly via occupational exposure and ingestion. Food-borne outbreaks as a result of crops (fruits and vegetables) irrigated with partially or untreated wastewater have been widely reported. Contamination of crops with enteric viruses, fecal coliforms, and bacterial pathogens, parasites including soil-transmitted helminthes (STHs), as well as occurrence of antibiotic residues and antibiotic resistance genes (ARGs) have also been evidenced. The antibiotic residues and ARGs may get internalized in crops along with pathogens and may select for antibiotic resistance, exert ecotoxicity, and lead to bioaccumulation in aquatic organisms with high risk quotient (RQ). Appropriate mitigation lies in adhering to existing guidelines such as the World Health Organization wastewater reuse guidelines and to Sanitation Safety Plans (SSPs). Additionally, improvement in hygiene practices will also provide measures against adverse health impacts.
Collapse
Affiliation(s)
- Anthony A. Adegoke
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
- Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Nigeria
| | - Isaac D. Amoah
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Thor A. Stenström
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Matthew E. Verbyla
- Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA, United States
| | - James R. Mihelcic
- Department of Civil & Environmental Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
11
|
Adegoke AA, Faleye AC, Singh G, Stenström TA. Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules 2016; 22:E29. [PMID: 28035988 PMCID: PMC6155606 DOI: 10.3390/molecules22010029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/11/2016] [Accepted: 12/22/2016] [Indexed: 02/06/2023] Open
Abstract
The increasing threat to global health posed by antibiotic resistance remains of serious concern. Human health remains at higher risk due to several reported therapeutic failures to many life threatening drug resistant microbial infections. The resultant effects have been prolonged hospital stay, higher cost of alternative therapy, increased mortality, etc. This opinionated review considers the two main concerns in integrated human health risk assessment (i.e., residual antibiotics and antibiotic resistant genes) in various compartments of human environment, as well as clinical dynamics associated with the development and transfer of antibiotic resistance (AR). Contributions of quorum sensing, biofilms, enzyme production, and small colony variants in bacteria, among other factors in soil, water, animal farm and clinical settings were also considered. Every potential factor in environmental and clinical settings that brings about AR needs to be identified for the summative effects in overall resistance. There is a need to embrace coordinated multi-locational approaches and interrelationships to track the emergence of resistance in different niches in soil and water versus the hospital environment. The further integration with advocacy, legislation, enforcement, technological innovations and further research input and recourse to WHO guidelines on antibiotic policy would be advantageous towards addressing the emergence of antibiotic resistant superbugs.
Collapse
Affiliation(s)
- Anthony Ayodeji Adegoke
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
- Department of Microbiology, University of Uyo, 520211 Uyo, Akwa Ibom State, Nigeria.
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, Eastern Cape, South Africa.
| | - Adekunle Christopher Faleye
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Gulshan Singh
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Thor Axel Stenström
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| |
Collapse
|
12
|
De Vos D, Pirnay JP, Bilocq F, Jennes S, Verbeken G, Rose T, Keersebilck E, Bosmans P, Pieters T, Hing M, Heuninckx W, De Pauw F, Soentjens P, Merabishvili M, Deschaght P, Vaneechoutte M, Bogaerts P, Glupczynski Y, Pot B, van der Reijden TJ, Dijkshoorn L. Molecular Epidemiology and Clinical Impact of Acinetobacter calcoaceticus-baumannii Complex in a Belgian Burn Wound Center. PLoS One 2016; 11:e0156237. [PMID: 27223476 PMCID: PMC4880317 DOI: 10.1371/journal.pone.0156237] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 05/11/2016] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistant Acinetobacter baumannii and its closely related species A. pittii and A. nosocomialis, all members of the Acinetobacter calcoaceticus-baumannii (Acb) complex, are a major cause of hospital acquired infection. In the burn wound center of the Queen Astrid military hospital in Brussels, 48 patients were colonized or infected with Acb complex over a 52-month period. We report the molecular epidemiology of these organisms, their clinical impact and infection control measures taken. A representative set of 157 Acb complex isolates was analyzed using repetitive sequence-based PCR (rep-PCR) (DiversiLab) and a multiplex PCR targeting OXA-51-like and OXA-23-like genes. We identified 31 rep-PCR genotypes (strains). Representatives of each rep-type were identified to species by rpoB sequence analysis: 13 types to A. baumannii, 10 to A. pittii, and 3 to A. nosocomialis. It was assumed that isolates that belonged to the same rep-type also belonged to the same species. Thus, 83.4% of all isolates were identified to A. baumannii, 9.6% to A. pittii and 4.5% to A. nosocomialis. We observed 12 extensively drug resistant Acb strains (10 A. baumannii and 2 A. nosocomialis), all carbapenem-non-susceptible/colistin-susceptible and imported into the burn wound center through patients injured in North Africa. The two most prevalent rep-types 12 and 13 harbored an OXA-23-like gene. Multilocus sequence typing allocated them to clonal complex 1 corresponding to EU (international) clone I. Both strains caused consecutive outbreaks, interspersed with periods of apparent eradication. Patients infected with carbapenem resistant A. baumannii were successfully treated with colistin/rifampicin. Extensive infection control measures were required to eradicate the organisms. Acinetobacter infection and colonization was not associated with increased attributable mortality.
Collapse
Affiliation(s)
- Daniel De Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
- * E-mail:
| | - Florence Bilocq
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Serge Jennes
- Burn Wound Center, Queen Astrid Military Hospital, Brussels, Belgium
| | - Gilbert Verbeken
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Thomas Rose
- Burn Wound Center, Queen Astrid Military Hospital, Brussels, Belgium
| | | | - Petra Bosmans
- Hospital Hygiene and Infection Control Team, Queen Astrid Military Hospital, Brussels, Belgium
| | - Thierry Pieters
- Hospital Hygiene and Infection Control Team, Queen Astrid Military Hospital, Brussels, Belgium
| | - Mony Hing
- Clinical Laboratory, Queen Astrid Military Hospital, Brussels, Belgium
| | - Walter Heuninckx
- Clinical Laboratory, Queen Astrid Military Hospital, Brussels, Belgium
| | - Frank De Pauw
- Medical Communication and Information Systems, ACOS WB/Health Division, Queen Astrid Military Hospital, Brussels, Belgium
| | - Patrick Soentjens
- Burn Wound Center, Queen Astrid Military Hospital, Brussels, Belgium
| | - Maia Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
- Laboratory Bacteriology Research, University of Ghent, Ghent, Belgium
| | - Pieter Deschaght
- Laboratory Bacteriology Research, University of Ghent, Ghent, Belgium
| | | | - Pierre Bogaerts
- Laboratoire de Bactériologie, CHU Mont-Godinne, Université Catholique de Louvain, Yvoir, Belgium
| | - Youri Glupczynski
- Laboratoire de Bactériologie, CHU Mont-Godinne, Université Catholique de Louvain, Yvoir, Belgium
| | - Bruno Pot
- Applied Maths, Sint-Martens-Latem, Belgium
| | - Tanny J. van der Reijden
- Department of Infectious Diseases C5-P, Leiden University Medical Center, Leiden, The Netherlands
| | - Lenie Dijkshoorn
- Department of Infectious Diseases C5-P, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Al Atrouni A, Joly-Guillou ML, Hamze M, Kempf M. Reservoirs of Non-baumannii Acinetobacter Species. Front Microbiol 2016; 7:49. [PMID: 26870013 PMCID: PMC4740782 DOI: 10.3389/fmicb.2016.00049] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/12/2016] [Indexed: 11/29/2022] Open
Abstract
Acinetobacter spp. are ubiquitous gram negative and non-fermenting coccobacilli that have the ability to occupy several ecological niches including environment, animals and human. Among the different species, Acinetobacter baumannii has evolved as global pathogen causing wide range of infection. Since the implementation of molecular techniques, the habitat and the role of non-baumannii Acinetobacter in human infection have been elucidated. In addition, several new species have been described. In the present review, we summarize the recent data about the natural reservoir of non-baumannii Acinetobacter including the novel species that have been described for the first time from environmental sources and reported during the last years.
Collapse
Affiliation(s)
- Ahmad Al Atrouni
- Laboratoire Microbiologie Santé et Environnement, Centre AZM pour la Recherche en Biotechnologie et ses Applications, Ecole Doctorale des Sciences et de Technologie, Université LibanaiseTripoli, Liban
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 Centre National de la Recherche Scientifique, University of AngersAngers, Lebanon
| | - Marie-Laure Joly-Guillou
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 Centre National de la Recherche Scientifique, University of AngersAngers, Lebanon
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement, Centre AZM pour la Recherche en Biotechnologie et ses Applications, Ecole Doctorale des Sciences et de Technologie, Université LibanaiseTripoli, Liban
- Faculté de Santé Publique, Université LibanaiseTripoli, Lebanon
| | - Marie Kempf
- ATOMycA, Inserm Atip-Avenir Team, CRCNA, Inserm U892, 6299 Centre National de la Recherche Scientifique, University of AngersAngers, Lebanon
- Laboratoire de Bactériologie, Institut de Biologie en Santé – Centre Hospitalier UniversitaireAngers, France
| |
Collapse
|