1
|
Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N. Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4. J Microbiol Biotechnol 2024; 34:436-456. [PMID: 38044750 PMCID: PMC10940756 DOI: 10.4014/jmb.2306.06050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
Collapse
Affiliation(s)
- Suleiman D Allison
- Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Moddibo Adama University, Yola 640230, Nigeria
| | - Nur AdeelaYasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| |
Collapse
|
2
|
Lai R, Lin M, Yan Y, Jiang S, Zhou Z, Wang J. Comparative Genomic Analysis of a Thermophilic Protease-Producing Strain Geobacillus stearothermophilus H6. Genes (Basel) 2023; 14:466. [PMID: 36833392 PMCID: PMC9956924 DOI: 10.3390/genes14020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The genus Geobacillus comprises thermophilic gram-positive bacteria which are widely distributed, and their ability to withstand high temperatures makes them suitable for various applications in biotechnology and industrial production. Geobacillus stearothermophilus H6 is an extremely thermophilic Geobacillus strain isolated from hyperthermophilic compost at 80 °C. Through whole-genome sequencing and genome annotation analysis of the strain, the gene functions of G. stearothermophilus H6 were predicted and the thermophilic enzyme in the strain was mined. The G. stearothermophilus H6 draft genome consisted of 3,054,993 bp, with a genome GC content of 51.66%, and it was predicted to contain 3750 coding genes. The analysis showed that strain H6 contained a variety of enzyme-coding genes, including protease, glycoside hydrolase, xylanase, amylase and lipase genes. A skimmed milk plate experiment showed that G. stearothermophilus H6 could produce extracellular protease that functioned at 60 °C, and the genome predictions included 18 secreted proteases with signal peptides. By analyzing the sequence of the strain genome, a protease gene gs-sp1 was successfully screened. The gene sequence was analyzed and heterologously expressed, and the protease was successfully expressed in Escherichia coli. These results could provide a theoretical basis for the development and application of industrial strains.
Collapse
Affiliation(s)
- Ruilin Lai
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongliang Yan
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijie Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
| | - Zhengfu Zhou
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Zafar A, Rahman Z, Mubeen H, Makhdoom J, Tariq J, Mahjabeen, Ali Z, Hamid A, Shafique E, Aftab MN. Heterologous expression, molecular studies and biochemical characterization of a novel alkaline esterase gene from Bacillus thuringiensis for detergent industry. RSC Adv 2022; 12:34482-34495. [PMID: 36545586 PMCID: PMC9709933 DOI: 10.1039/d2ra06138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Present study was aimed to clone and express the esterase encoding gene from Bacillus thuringiensis in E. coli BL21. Purification of recombinant esterase enzyme was achieved up to 48.6 purification folds by ion exchange chromatography with specific activity of 126.36 U mg-1. Molecular weight of esterase enzyme was 29 kDa as measured by SDS-PAGE. Purified esterase enzyme showed stability up to 90% at 90 °C and remained stable in a wide pH range (8-11). Molecular docking strengthens the experimental results by showing the higher binding energy with p-NP-butyrate. Enzyme activity was found to be reduced by EDTA but enhanced in the presence of other metal ions. Enzyme activity was reduced with 1% SDS, PMSF, and urea but organic solvents did not show considerable impact on it even at higher concentrations. Purified recombinant esterase was also found to be compatible with commercial laundry detergents and showed very good stability (up to 90%). All these properties proved the esterase enzyme from B. thuringensis a significant addition in detergent industry.
Collapse
Affiliation(s)
- Asma Zafar
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Ziaur Rahman
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Hira Mubeen
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | | | - Javeria Tariq
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Mahjabeen
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Zulqurnain Ali
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | - Attia Hamid
- Institute of Industrial Biotechnology, Govt. College UniversityLahorePakistan
| | - Eeza Shafique
- Faculty of Science and Technology, University of Central PunjabLahorePakistan+92-3006485797
| | | |
Collapse
|
4
|
Khaswal A, Chaturvedi N, Mishra SK, Kumar PR, Paul PK. Current status and applications of genus Geobacillus in the production of industrially important products-a review. Folia Microbiol (Praha) 2022; 67:389-404. [PMID: 35229277 DOI: 10.1007/s12223-022-00961-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/19/2022] [Indexed: 11/25/2022]
Abstract
The genus Geobacillus is one of the most important genera which mainly comprises gram-positive thermophilic bacterial strains including obligate aerobes, denitrifiers and facultative anaerobes having capability of endospore formation as well. The genus Geobacillus is widely distributed in nature and mostly abundant in extreme locations such as cool soils, hot springs, hydrothermal vents, marine trenches, hay composts and dairy plants. Due to plasticity towards environmental adaptation, the Geobacillus sp. shows remarkable genome diversification and acquired many beneficial properties, which facilitates their exploitation for many biotechnological applications. Many thermophiles are of biotechnological importance and having considerable interest in commercial applications for the production of industrially important products. Recently, due to catabolic versatility especially in the degradation of hemicellulose and starch containing agricultural waste and rapid growth rates, these microorganisms show potential for the production of biofuels, thermostable enzymes and bioremediation. This review mainly summarizes the status of Geobacillus sp. including its notable properties, biotechnological studies and its potential application in the production of industrially important products.
Collapse
Affiliation(s)
- Ashutosh Khaswal
- Department of Biotechnology, IMS Engineering College, Uttar Pradesh, Ghaziabad, India
| | - Neha Chaturvedi
- Department of Biotechnology, IMS Engineering College, Uttar Pradesh, Ghaziabad, India
| | - Santosh Kumar Mishra
- Department of Biotechnology, IMS Engineering College, Uttar Pradesh, Ghaziabad, India.
| | - Priya Ranjan Kumar
- Department of Biotechnology, IMS Engineering College, Uttar Pradesh, Ghaziabad, India
| | - Prabir Kumar Paul
- Department of Biotechnology, IMS Engineering College, Uttar Pradesh, Ghaziabad, India
| |
Collapse
|
5
|
Chang C, Gong S, Liu Z, Yan Q, Jiang Z. High level expression and biochemical characterization of an alkaline serine protease from Geobacillus stearothermophilus to prepare antihypertensive whey protein hydrolysate. BMC Biotechnol 2021; 21:21. [PMID: 33706728 PMCID: PMC7953746 DOI: 10.1186/s12896-021-00678-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteases are important for hydrolysis of proteins to generate peptides with many bioactivities. Thus, the development of novel proteases with high activities is meaningful to discover bioactive peptides. Because natural isolation from animal, plant and microbial sources is impractical to produce large quantities of proteases, gene cloning and expression of target protease are preferred. RESULTS In this study, an alkaline serine protease gene (GsProS8) from Geobacillus stearothermophilus was successfully cloned and expressed in Bacillus subtilis. The recombinant GsProS8 was produced with high protease activity of 3807 U/mL after high cell density fermentation. GsProS8 was then purified through ammonium sulfate precipitation and a two-step chromatographic method to obtain the homogeneous protease. The molecular mass of GsProS8 was estimated to be 27.2 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 28.3 kDa by gel filtration. The optimal activity of GsProS8 was found to be pH 8.5 and 50 °C, respectively. The protease exhibited a broad substrate specificity and different kinetic parameters to casein and whey protein. Furthermore, the hydrolysis of whey protein using GsProS8 resulted in a large amount of peptides with high angiotensin-I-converting enzyme (ACE) inhibitory activity (IC50 of 0.129 mg/mL). CONCLUSIONS GsProS8 could be a potential candidate for industrial applications, especially the preparation of antihypertensive peptides.
Collapse
Affiliation(s)
- Chang Chang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China
| | - Siyi Gong
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China
| | - Zhiping Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua Donglu, Beijing, 100083, China.
| |
Collapse
|
6
|
Baykara SG, Sürmeli Y, Şanlı-Mohamed G. Purification and Biochemical Characterization of a Novel Thermostable Serine Protease from Geobacillus sp. GS53. Appl Biochem Biotechnol 2021; 193:1574-1584. [PMID: 33507494 DOI: 10.1007/s12010-021-03512-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 11/24/2022]
Abstract
Proteases account for approximately 60% of the enzyme market in the world, and they are used in various industrial applications including the detergent industry. In this study, production and characterization of a novel serine protease of thermophilic Geobacillus sp. GS53 from Balçova geothermal region, İzmir, Turkey, were performed. The thermostable protease was purified through ammonium sulfate precipitation and anion-exchange chromatography. The results showed that the protease had 137.8 U mg-1 of specific activity and optimally worked at 55 oC and pH 8. It was also active in a broad pH (4-10) and temperature (25-75 °C) ranges. The protease was highly stable at 85 °C and demonstrated relative stability at pH 4, 7, and 10. Also, the enzyme had high stability against organic solvents and surfactants; enzyme relative activity did not decrease below 81% upon preincubation for 10 min. Ca2+, Cu2+, and Zn2+ ions slightly induced protease activity. The protease was highly specific to casein, skim milk, Hammerstein casein, and BSA substrates. These results revealed that the protease might have a potential effect in a variety of industrial fields, especially the detergent industry, because of its high thermostability and stability to surfactants.
Collapse
Affiliation(s)
- Seden Güracar Baykara
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430, İzmir, Turkey
| | - Yusuf Sürmeli
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430, İzmir, Turkey.,Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department of Biotechnology and Bioengineering, İzmir Institute of Technology, 35430, İzmir, Turkey. .,Department of Chemistry, İzmir Institute of Technology, 35430, İzmir, Turkey.
| |
Collapse
|
7
|
Identification of a Novel Thermostable Alkaline Protease from Bacillus megaterium-TK1 for the Detergent and Leather Industry. BIOLOGY 2020; 9:biology9120472. [PMID: 33339223 PMCID: PMC7765983 DOI: 10.3390/biology9120472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
Simple Summary In the current investigation, we describe the characteristic features of a novel Bacillus megaterium bacterium-derived protease with excellent thermostable enzyme activity under stringent alkaline conditions. The protease is highly compatible with various detergents and thus appears to be an eco-friendly additive for a variety of industrial applications. Abstract An increased need by the green industry for enzymes that can be exploited for eco-friendly industrial applications led us to isolate and identify a unique protease obtained from a proteolytic Bacillus megaterium-TK1 strain from a seawater source. The extracellular thermostable serine protease was processed by multiple chromatography steps. The isolated protease displayed a relative molecular weight (MW) of 33 kDa (confirmed by zymography), optimal enzyme performance at pH 8.0, and maximum enzyme performance at 70 °C with 100% substrate specificity towards casein. The proteolytic action was blocked by phenylmethylsulfonyl fluoride (PMSF), a serine hydrolase inactivator. Protease performance was augmented by several bivalent metal cations. The protease tolerance was studied under stringent conditions with different industrial dispersants and found to be stable with Surf Excel, Tide, or Rin detergents. Moreover, this protease could clean blood-stained fabrics and showed dehairing activity for cow skin with significantly reduced pollution loads. Our results suggest that this serine protease is a promising additive for various eco-friendly usages in both the detergent and leather industries.
Collapse
|
8
|
Mechri S, Bouacem K, Zaraî Jaouadi N, Rekik H, Ben Elhoul M, Omrane Benmrad M, Hacene H, Bejar S, Bouanane-Darenfed A, Jaouadi B. Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive. Extremophiles 2019; 23:687-706. [PMID: 31407121 DOI: 10.1007/s00792-019-01123-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022]
Abstract
A thermostable extracellular alkaline protease (called SAPA) was produced (4600 U/mL) by Anoxybacillus kamchatkensis M1V, purified to homogeneity, and biochemically characterized. SAPA is a monomer with a molecular mass of 28 kDa estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Native-PAGE, casein-zymography, and size exclusion using high performance liquid chromatography (HPLC). The sequence of its NH2-terminal amino-acid residues showed high homology with those of Bacillus proteases. The SAPA irreversible inhibition by diiodopropyl fluorophosphates (DFP) and phenylmethanesulfonyl fluoride (PMSF) confirmed its belonging to the serine proteases family. Optimal activity of SAPA was at pH 11 and 70 °C. The sapA gene was cloned and expressed in the extracellular fraction of E. coli. The highest sequence identity value (95%) of SAPA was obtained with peptidase S8 from Bacillus subtilis WT 168, but with 16 amino-acids of difference. The biochemical characteristics of the purified recombinant extracellular enzyme (called rSAPA) were analogous to those of native SAPA. Interestingly, rSAPA exhibit a degree of hydrolysis that were 1.24 and 2.6 than SAPB from Bacillus pumilus CBS and subtilisin A from Bacillus licheniformis, respectively. Furthermore, rSAPA showed a high detergent compatibility and an outstanding stain removal capacity compared to commercial enzymes: savinase™ 16L, type EX and alcalase™ Ultra 2.5 L.
Collapse
Affiliation(s)
- Sondes Mechri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Khelifa Bouacem
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.,Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), El Alia, P.O. Box 32, 16111, Bab Ezzouar, Algiers, Algeria
| | - Nadia Zaraî Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.,Biotech ECOZYM Start-Up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Hatem Rekik
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.,Biotech ECOZYM Start-Up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Mouna Ben Elhoul
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.,Biotech ECOZYM Start-Up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Maroua Omrane Benmrad
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Hocine Hacene
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), El Alia, P.O. Box 32, 16111, Bab Ezzouar, Algiers, Algeria
| | - Samir Bejar
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.,Biotech ECOZYM Start-Up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), El Alia, P.O. Box 32, 16111, Bab Ezzouar, Algiers, Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia. .,Biotech ECOZYM Start-Up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
9
|
Suberu Y, Akande I, Samuel T, Lawal A, Olaniran A. Cloning, expression, purification and characterisation of serine alkaline protease from Bacillus subtilis RD7. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Moharana TR, Pal B, Rao NM. X-ray structure and characterization of a thermostable lipase from Geobacillus thermoleovorans. Biochem Biophys Res Commun 2018; 508:145-151. [PMID: 30471860 DOI: 10.1016/j.bbrc.2018.11.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 12/28/2022]
Abstract
Thermo-alkalophilic bacterium, Geobacillus thermoleovorans secrets many enzymes including a 43 kDa extracellular lipase. Significant thermostability, organic solvent stability and wide substrate preferences for hydrolysis drew our attention to solve its structure by crystallography. The structure was solved by molecular replacement method and refined up to 2.14 Å resolution. Structure of the lipase showed an alpha-beta fold with 19 α-helices and 10 β-sheets. The active site remains covered by a lid. One calcium and one zinc atom was found in the crystal. The structure showed a major difference (rmsd 5.6 Å) from its closest homolog in the amino acid region 191 to 203. Thermal unfolding of the lipase showed that the lipase is highly stable with Tm of 76 °C. 13C NMR spectra of products upon triglyceride hydrolysate revealed that the lipase hydrolyses at both sn-1 and sn-2 positions with equal efficiency.
Collapse
Affiliation(s)
| | - Biswajit Pal
- CSIR- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | | |
Collapse
|
11
|
Johnson J, Yang YH, Lee DG, Yoon JJ, Choi KY. Expression, purification and characterization of halophilic protease Pph_Pro1 cloned from Pseudoalteromonas phenolica. Protein Expr Purif 2018; 152:46-55. [PMID: 30055246 DOI: 10.1016/j.pep.2018.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/07/2018] [Accepted: 07/24/2018] [Indexed: 01/29/2023]
Abstract
In this study, protease Pph_Pro1 from Pseudoalteromonas phenolica, possessing extracellular proteolytic activity and salt tolerance, was investigated for cloning, expression, and purification purposes. Through optimization, it was determined that optimum soluble recombinant expression was achieved when Pph_Pro1 was co-expressed with the pTf16 vector chaperone in LB medium supplemented with CaCl2. Pph_Pro1 was purified using osmotic shock and immobilized metal-affinity chromatography (IMAC). Isolated Pph_Pro1 activity was measured as 0.44 U/mg using casein as a substrate. Interestingly, Pph_Pro1 displayed halophilic, alkaliphilic, and unexpected thermostable properties. Furthermore, it was resistant to several hydrophilic and hydrophobic organic solvents. Substrate specificity and kinetic values such as Km and Vmax were determined with casein, bovine serum albumin (BSA), and algal waste protein as substrates, indicating that the Pph_Pro1 protease enzyme had a greater affinity for casein. Based on the remarkable characteristics of this Pph_Pro1 protease enzyme, it can potentially be utilized in many biotechnological industries.
Collapse
Affiliation(s)
- Jervian Johnson
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea
| | - Yung-Hun Yang
- Department of Microbial Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Doo-Geun Lee
- Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology (KITECH), Chonan-si, Chungcheongnam-do, 31056, Republic of Korea
| | - Jeong-Jun Yoon
- Intelligent Sustainable Materials R&D Group, Korea Institute of Industrial Technology (KITECH), Chonan-si, Chungcheongnam-do, 31056, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, Gyeonggi-do, South Korea.
| |
Collapse
|
12
|
Iqbal A, Hakim A, Hossain MS, Rahman MR, Islam K, Azim MF, Ahmed J, Assaduzzaman M, Hoq MM, Azad AK. Partial purification and characterization of serine protease produced through fermentation of organic municipal solid wastes by Serratia marcescens A3 and Pseudomonas putida A2. J Genet Eng Biotechnol 2018; 16:29-37. [PMID: 30647701 PMCID: PMC6296650 DOI: 10.1016/j.jgeb.2017.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/07/2017] [Accepted: 10/14/2017] [Indexed: 10/31/2022]
Abstract
Proteolytic bacteria isolated from municipal solid wastes (MSW) were identified as Serratia marcescens A3 and Pseudomonas putida A2 based on 16S rDNA sequencing. Protease produced through fermentation of organic MSW by these bacteria under some optimized physicochemical parameters was partially purified and characterized. The estimated molecular mass of the partially purified protease from S. marcescens and P. putida was approximately 25 and 38 kDa, respectively. Protease from both sources showed low Km 0.3 and 0.5 mg ml-1 and high Vmax 333 and 500 µmole min-1 at 40 °C, and thermodynamics analysis suggested formation of ordered enzyme-substrate (E-S) complexes. The activation energy (Ea) and temperature quotient (Q10) of protease from S. marcescens and P. putida were 16.2 and 19.9 kJ/mol, and 1.4 and 1.3 at temperature range from 20 to 40 °C, respectively. Protease of the both bacterial isolates was serine and cysteine type. The protease retained approximately 97% of activity in the presence of sodium dodecyl sulphate. It was observed that the purified protease of S. marcescens could remove blood stains from white cotton cloth and degrade chicken flesh remarkably. Our study revealed that organic MSW can be used as raw materials for bacterial protease production and the protease produced by S. marcescens A3 might be potential for applications.
Collapse
Affiliation(s)
- Asif Iqbal
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md. Saddam Hossain
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mohammad Rejaur Rahman
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kamrul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md. Faisal Azim
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md. Assaduzzaman
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Mozammel Hoq
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
13
|
Jia X, Ye X, Chen J, Lin X, Vasseur L, You M. Purification and biochemical characterization of a cyclodextrin glycosyltransferase fromGeobacillus thermoglucosidansCHB1. STARCH-STARKE 2017. [DOI: 10.1002/star.201700016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xianbo Jia
- Institute of Applied Ecology; Fujian Agriculture and Forestry University; Fuzhou P. R. China
- Faculty of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou P. R. China
| | - Xuejun Ye
- Institute of Soil and Fertilizer; Fujian Academy of Agricultural Sciences; Fuzhou P. R. China
| | - Jichen Chen
- Institute of Soil and Fertilizer; Fujian Academy of Agricultural Sciences; Fuzhou P. R. China
| | - Xinjian Lin
- Institute of Soil and Fertilizer; Fujian Academy of Agricultural Sciences; Fuzhou P. R. China
| | - Liette Vasseur
- Institute of Applied Ecology; Fujian Agriculture and Forestry University; Fuzhou P. R. China
- Department of Biological Sciences; Brock University; Ontario Canada
| | - Minsheng You
- Institute of Applied Ecology; Fujian Agriculture and Forestry University; Fuzhou P. R. China
| |
Collapse
|
14
|
da Silva RR. Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications. Appl Biochem Biotechnol 2017; 183:1-19. [DOI: 10.1007/s12010-017-2427-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
|
15
|
Embaby AM, Saeed H, Hussein A. SHG10 keratinolytic alkaline protease fromBacillus licheniformisSHG10 DSM 28096: Robust stability and unusual non-cumbersome purification. J Basic Microbiol 2016; 56:1317-1330. [DOI: 10.1002/jobm.201600073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/29/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Amira M. Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research; Alexandria University; Egypt
- Department of Chemistry and Biochemistry; Texas Tech University; Lubbock Texas USA
| |
Collapse
|
16
|
Esakkiraj P, Meleppat B, Lakra AK, Ayyanna R, Arul V. Cloning, expression, characterization and application of protease produced by Bacillus cereus PMW8. RSC Adv 2016. [DOI: 10.1039/c5ra27671c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protease enzyme of Bacillus cereus PMW8 possessing antibiofilm activity was cloned and expressed in E.coli BL21(DE3) PLysS.
Collapse
Affiliation(s)
- Palanichamy Esakkiraj
- Department of Biotechnology
- School of Life Sciences
- Pondicherry University
- Puducherry
- India
| | - Balraj Meleppat
- Department of Biotechnology
- School of Life Sciences
- Pondicherry University
- Puducherry
- India
| | - Avinash Kant Lakra
- Department of Biotechnology
- School of Life Sciences
- Pondicherry University
- Puducherry
- India
| | - Repally Ayyanna
- Department of Biotechnology
- School of Life Sciences
- Pondicherry University
- Puducherry
- India
| | - Venkatesan Arul
- Department of Biotechnology
- School of Life Sciences
- Pondicherry University
- Puducherry
- India
| |
Collapse
|
17
|
Extremophilic Proteases: Developments of Their Special Functions, Potential Resources and Biotechnological Applications. BIOTECHNOLOGY OF EXTREMOPHILES: 2016. [DOI: 10.1007/978-3-319-13521-2_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Abstract
The genus Geobacillus comprises a group of Gram-positive thermophilic bacteria, including obligate aerobes, denitrifiers, and facultative anaerobes that can grow over a range of 45-75°C. Originally classified as group five Bacillus spp., strains of Bacillus stearothermophilus came to prominence as contaminants of canned food and soon became the organism of choice for comparative studies of metabolism and enzymology between mesophiles and thermophiles. More recently, their catabolic versatility, particularly in the degradation of hemicellulose and starch, and rapid growth rates have raised their profile as organisms with potential for second-generation (lignocellulosic) biorefineries for biofuel or chemical production. The continued development of genetic tools to facilitate both fundamental investigation and metabolic engineering is now helping to realize this potential, for both metabolite production and optimized catabolism. In addition, this catabolic versatility provides a range of useful thermostable enzymes for industrial application. A number of genome-sequencing projects have been completed or are underway allowing comparative studies. These reveal a significant amount of genome rearrangement within the genus, the presence of large genomic islands encompassing all the hemicellulose utilization genes and a genomic island incorporating a set of long chain alkane monooxygenase genes. With G+C contents of 45-55%, thermostability appears to derive in part from the ability to synthesize protamine and spermine, which can condense DNA and raise its Tm.
Collapse
|