1
|
Wang Y, Li Z, Jin W, Mao S. Isolation and Characterization of Ruminal Yeast Strain with Probiotic Potential and Its Effects on Growth Performance, Nutrients Digestibility, Rumen Fermentation and Microbiota of Hu Sheep. J Fungi (Basel) 2022; 8:jof8121260. [PMID: 36547593 PMCID: PMC9781649 DOI: 10.3390/jof8121260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Yeast strains are widely used in ruminant production. However, knowledge about the effects of rumen native yeasts on ruminants is limited. Therefore, this study aimed to obtain a rumen native yeast isolate and investigate its effects on growth performance, nutrient digestibility, rumen fermentation and microbiota in Hu sheep. Yeasts were isolated by picking up colonies from agar plates, and identified by sequencing the ITS sequences. One isolate belonging to Pichia kudriavzevii had the highest optical density among these isolates obtained. This isolate was prepared to perform an animal feeding trial. A randomized block design was used for the animal trial. Sixteen Hu sheep were randomly assigned to the control (CON, fed basal diet, n = 8) and treatment group (LPK, fed basal diet plus P. kudriavzevii, CFU = 8 × 109 head/d, n = 8). Sheep were housed individually and treated for 4 weeks. Compared to CON, LPK increased final body weight, nutrient digestibility and rumen acetate concentration and acetate-to-propionate ratio in sheep. The results of Illumina MiSeq PE 300 sequencing showed that LPK increased the relative abundance of lipolytic bacteria (Anaerovibrio spp. and Pseudomonas spp.) and probiotic bacteria (Faecalibacterium spp. and Bifidobacterium spp.). For rumen eukaryotes, LPK increased the genera associated with fiber degradation, including protozoan Polyplastron and fungus Pichia. Our results discovered that rumen native yeast isolate P. kudriavzevii might promote the digestion of fibers and lipids by modulating specific microbial populations with enhancing acetate-type fermentation.
Collapse
Affiliation(s)
- Yao Wang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihao Li
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Jin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Twigg MS, Baccile N, Banat IM, Déziel E, Marchant R, Roelants S, Van Bogaert INA. Microbial biosurfactant research: time to improve the rigour in the reporting of synthesis, functional characterization and process development. Microb Biotechnol 2021; 14:147-170. [PMID: 33249753 PMCID: PMC7888453 DOI: 10.1111/1751-7915.13704] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 01/01/2023] Open
Abstract
The demand for microbially produced surface-active compounds for use in industrial processes and products is increasing. As such, there has been a comparable increase in the number of publications relating to the characterization of novel surface-active compounds: novel producers of already characterized surface-active compounds and production processes for the generation of these compounds. Leading researchers in the field have identified that many of these studies utilize techniques are not precise and accurate enough, so some published conclusions might not be justified. Such studies lacking robust experimental evidence generated by validated techniques and standard operating procedures are detrimental to the field of microbially produced surface-active compound research. In this publication, we have critically reviewed a wide range of techniques utilized in the characterization of surface-active compounds from microbial sources: identification of surface-active compound producing microorganisms and functional testing of resultant surface-active compounds. We have also reviewed the experimental evidence required for process development to take these compounds out of the laboratory and into industrial application. We devised this review as a guide to both researchers and the peer-reviewed process to improve the stringency of future studies and publications within this field of science.
Collapse
Affiliation(s)
- Matthew Simon Twigg
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Niki Baccile
- Centre National de la Recherche ScientifiqueLaboratoire de Chimie de la Matière Condensée de ParisSorbonne UniversitéLCMCPParisF‐75005France
| | - Ibrahim M. Banat
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Eric Déziel
- Centre Armand‐Frappier Santé BiotechnologieInstitut National de la Recherche Scientifique (INRS)531, Boul. Des PrairiesLavalQCH7V 1B7Canada
| | - Roger Marchant
- School of Biomedical SciencesUlster UniversityColeraine, Co. LondonderryBT52 1SAUK
| | - Sophie Roelants
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Bio Base Europe Pilot PlantRodenhuizenkaai 1Ghent9042Belgium
| | - Inge N. A. Van Bogaert
- Centre for Synthetic BiologyDepartment of BiotechnologyGhent UniversityCoupure Links 653Ghent9000Belgium
| |
Collapse
|
3
|
Huang G, Zhang Y, Xu Q, Zheng N, Zhao S, Liu K, Qu X, Yu J, Wang J. DHA content in milk and biohydrogenation pathway in rumen: a review. PeerJ 2020; 8:e10230. [PMID: 33391862 PMCID: PMC7761261 DOI: 10.7717/peerj.10230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an essential human nutrient that may promote neural health and development. DHA occurs naturally in milk in concentrations that are influenced by many factors, including the dietary intake of the cow and the rumen microbiome. We reviewed the literature of milk DHA content and the biohydrogenation pathway in rumen of dairy cows aim to enhance the DHA content. DHA in milk is mainly derived from two sources: α-linolenic acid (ALA) occurring in the liver and consumed as part of the diet, and overall dietary intake. Rumen biohydrogenation, the lymphatic system, and blood circulation influence the movement of dietary intake of DHA into the milk supply. Rumen biohydrogenation reduces DHA in ruminal environmental and limits DHA incorporation into milk. The fat-1 gene may increase DHA uptake into the body but this lacks experimental confirmation. Additional studies are needed to define the mechanisms by which different dietary sources of DHA are associated with variations of DHA in milk, the pathway of DHA biohydrogenation in the rumen, and the function of the fat-1 gene on DHA supply in dairy cows.
Collapse
Affiliation(s)
- Guoxin Huang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
- Northeast Agricultural University, College of Animal Sciences and Technology, Harbin, China
| | - Yangdong Zhang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Qingbiao Xu
- Huazhong Agricultural University, College of Animal Sciences and Technology, Wuhan, China
| | - Nan Zheng
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Shengguo Zhao
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Kaizhen Liu
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| | - Xueyin Qu
- Tianjin Mengde Groups Co., Ltd, Tianjin, China
| | - Jing Yu
- Tianjin Mengde Groups Co., Ltd, Tianjin, China
| | - Jiaqi Wang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, China
| |
Collapse
|
4
|
Jeck V, Froning M, Tiso T, Blank LM, Hayen H. Double bond localization in unsaturated rhamnolipid precursors 3-(3-hydroxyalkanoyloxy)alkanoic acids by liquid chromatography-mass spectrometry applying online Paternò-Büchi reaction. Anal Bioanal Chem 2020; 412:5601-5613. [PMID: 32627084 PMCID: PMC7413879 DOI: 10.1007/s00216-020-02776-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022]
Abstract
Lipids are biomolecules with a broad variety of chemical structures, which renders them essential not only for various biological functions but also interestingly for biotechnological applications. Rhamnolipids are microbial glycolipids with surface-active properties and are widely used biosurfactants. They are composed of one or two L-rhamnoses and up to three hydroxy fatty acids. Their biosynthetic precursors are 3-hydroxy(alkanoyloxy)alkanoic acids (HAAs). The latter are also present in cell supernatants as complex mixtures and are extensively studied for their potential to replace synthetically derived surfactants. The carbon chain lengths of HAAs determine their physical properties, such as their abilities to foam and emulsify, and their critical micelle concentration. Despite growing biotechnological interest, methods for structural elucidation are limited and often rely on hydrolysis and analysis of free hydroxy fatty acids losing the connectivity information. Therefore, a high-performance liquid chromatography-mass spectrometry method was developed for comprehensive structural characterization of intact HAAs. Information is provided on chain length and number of double bonds in each hydroxy fatty acid and their linkage by tandem mass spectrometry (MS/MS). Post-column photochemical derivatization by online Paternὸ-Büchi reaction and MS/MS fragmentation experiments generated diagnostic fragments allowing structural characterization down to the double bond position level. Furthermore, the presented experiments demonstrate a powerful approach for structure elucidation of complex lipids by tailored fragmentation.
Collapse
Affiliation(s)
- Viola Jeck
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
- Lower Saxony State Office for Consumer Protection and Food Safety - LAVES, Martin-Niemöller-Str. 2, 26133, Oldenburg, Germany
| | - Matti Froning
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, 48149, Münster, Germany.
| |
Collapse
|
5
|
Haloi S, Sarmah S, Gogoi SB, Medhi T. Characterization of Pseudomonas sp. TMB2 produced rhamnolipids for ex-situ microbial enhanced oil recovery. 3 Biotech 2020; 10:120. [PMID: 32117681 PMCID: PMC7024075 DOI: 10.1007/s13205-020-2094-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 01/23/2020] [Indexed: 10/25/2022] Open
Abstract
The present study describes the ex-situ production of a biosurfactant by Pseudomonas sp. TMB2 for its potential application in enhancing oil recovery. The physicochemical parameters such as temperature and pH were optimized as 30 °C and 7.2, respectively, for their maximum laboratory scale production in mineral salt medium containing glucose and sodium nitrate as best carbon and nitrogen sources. The surface activity of the resulting culture broth was declined from 71.9 to 33.4 mN/m having the highest emulsification activity against kerosene oil. The extracted biosurfactant was characterized chemically as glycolipid by Fourier-transform infrared spectroscopy and 1H and 13C nuclear magnetic resonance spectroscopy analyses. The presence of mono-rhamnolipids (Rha-C8:2, Rha-C10, Rha-C10-C10, and Rha-C10-C12:1) and di-rhamnolipids (Rha-Rha-C12-C10, Rha-Rha-C10-C10, and Rha-Rha-C10-C12:1) congeners were determined by liquid chromatography-mass spectroscopy analysis. The thermostability and degradation pattern of the candidate biosurfactant were tested by thermogravimetry assay and differential scanning calorimetry studies for its suitability in ex-situ oil recovery technology. The rhamnolipid based slug, prepared in 4000 ppm brine solution reduced the interfacial tension between liquid paraffin oil and aqueous solution to 0.8 mN/m from 39.1 mN/m at critical micelle concentration of 120 mg/L. The flooding test was performed using conventional core plugs belonging to oil producing horizons of Upper Assam Basin and recovered 16.7% of original oil in place after secondary brine flooding with microscopic displacement efficiency of 27.11%.
Collapse
Affiliation(s)
- Saurav Haloi
- Applied Biochemistry Lab, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Shilpi Sarmah
- Department of Petroleum Technology, Dibrugarh University, Dibrugarh, India
| | - Subrata B. Gogoi
- Department of Petroleum Technology, Dibrugarh University, Dibrugarh, India
| | - Tapas Medhi
- Applied Biochemistry Lab, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
6
|
Kayanadath S, Nathan VK, Ammini P. Anti-Biofilm Activity of Biosurfactant Derived from Halomonas sp., a Lipolytic Marine Bacterium from the Bay of Bengal. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719050072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Zdarta A, Smułek W, Trzcińska A, Cybulski Z, Kaczorek E. Properties and potential application of efficient biosurfactant produced by Pseudomonas sp. KZ1 strain. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:110-117. [PMID: 30614383 DOI: 10.1080/10934529.2018.1530537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/29/2018] [Accepted: 09/15/2018] [Indexed: 06/09/2023]
Abstract
Increasing use of biosurfactants has stimulated the search for new and efficient biosurfactant-producing bacterial strains, preferably nonpathogenic ones. The aim of the present study was to characterize a new isolated Pseudomonas sp. KZ1 strain and its exocellular surface active compounds. After examining several mineral media of different compositions, the bioreactor-scale production of biosurfactants under optimum conditions was tested. Then, the composition of the isolated biosurfactants was investigated by Fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry analysis and their surface active properties were characterized by adsorption parameters. The results indicated that the Pseudomonas sp. KZ1 biosurfactant had the critical micelle concentration of 0.12 g L-1 and decreased the surface tension decreased to 31.7 mN m-1. Moreover, the biosurfactant increased the rate of biodegradation of diesel oil by the strains: Pseudomonas sp. KZ1, Pseudomonas sp. OS4 and Achromobacter sp. KW1. The obtained biosurfactant showing attractive properties is a promising and much 'greener' alternative in the application for surfactant-enhanced biodegradation of hydrocarbons.
Collapse
Affiliation(s)
- Agata Zdarta
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Wojciech Smułek
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Anna Trzcińska
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| | - Zefiryn Cybulski
- b Department of Microbiology , Greater Poland Cancer Centre , Poznan , Poland
| | - Ewa Kaczorek
- a Institute of Chemical Technology and Engineering , Poznan University of Technology , Poznan , Poland
| |
Collapse
|
8
|
Tiwary M, Dubey AK. Characterization of Biosurfactant Produced by a Novel Strain ofPseudomonas aeruginosa, Isolate ADMT1. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Meenakshi Tiwary
- Division of Biological Sciences and Engineering; Netaji Subhas Institute of Technology-Delhi University, Sector-3, Dwarka; New Delhi 110078 India
| | - Ashok K. Dubey
- Division of Biological Sciences and Engineering; Netaji Subhas Institute of Technology-Delhi University, Sector-3, Dwarka; New Delhi 110078 India
| |
Collapse
|
9
|
Irorere VU, Tripathi L, Marchant R, McClean S, Banat IM. Microbial rhamnolipid production: a critical re-evaluation of published data and suggested future publication criteria. Appl Microbiol Biotechnol 2017; 101:3941-3951. [PMID: 28386631 PMCID: PMC5403872 DOI: 10.1007/s00253-017-8262-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/13/2023]
Abstract
High production cost and potential pathogenicity of Pseudomonas aeruginosa, commonly used for rhamnolipid synthesis, have led to extensive research for safer producing strains and cost-effective production methods. This has resulted in numerous research publications claiming new non-pathogenic producing strains and novel production techniques many of which are unfortunately without proper characterisation of product and/or producing strain/s. Genes responsible for rhamnolipid production have only been confirmed in P. aeruginosa, Burkholderia thailandensis and Burkholderia pseudomallei. Comparing yields in different publications is also generally unreliable especially when different methodologies were used for rhamnolipid quantification. After reviewing the literature in this area, we strongly feel that numerous research outputs have insufficient evidence to support claims of rhamnolipid-producing strains and/or yields. We therefore recommend that standards should be set for reporting new rhamnolipid-producing strains and production yields. These should include (1) molecular and bioinformatic tools to fully characterise new microbial isolates and confirm the presence of the rhamnolipid rhl genes for all bacterial strains, (2) using gravimetric methods to quantify crude yields and (3) use of a calibrated method (high-performance liquid chromatography or ultra-performance liquid chromatography) for absolute quantitative yield determination.
Collapse
Affiliation(s)
- Victor U. Irorere
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA UK
| | - Lakshmi Tripathi
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA UK
| | - Roger Marchant
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA UK
| | - Stephen McClean
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA UK
| | - Ibrahim M. Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, Ulster University, Coleraine, Co. Londonderry BT52 1SA UK
| |
Collapse
|