1
|
Mohanty SS, Kumar A. Response surface methodology mediated optimization of Indanthrene Blue RS by a novel isolated bacterial strain Bacillus flexus TS8. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:569-578. [PMID: 31556198 DOI: 10.1002/wer.1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
The enhanced decolorization and detoxification of Indanthrene Blue RS dye, under aerobic conditions, by a novel isolated anthraquinone-degrading bacterium, Bacillus flexus TS8, has been presented in this paper. The optimal decolorization conditions were determined by response surface methodology based on Box-Behnken design. The results indicated that the strain TS8 possessed the highest decolorization efficacy at pH 10.26, temperature 30.97 ºC and an inoculum size of 10.48% (v/v). It also revealed that about 98.01% of 100 mg/L of Indanthrene Blue RS could be decolorized within 24 hr under these optimized conditions. The subsequent degradation of the dye and the formation of metabolites were studied using analytical techniques such as UV-Vis spectroscopy, FTIR, and ESI/LC-MS analysis. The UV-Vis analysis of the colorless bacterial cells demonstrated that Bacillus sp. TS8 possessed this decolorizing activity through biodegradation. The degraded products obtained from ESI/LC-MS analysis were identified as 1-hydroxyanthracene-9, 10-dione (m/z-224), 1, 4-di-hydroxyanthracene-9, 10-dione (m/z-240), and phthalic acid (m/z-168). This study investigated the highest decolorization efficacy of strain TS8 to be utilized in the biological treatment of wastewaters containing anthraquinone dyes. PRACTITIONER POINTS: Enhanced decolorization of anthraquinone dye wastewater. Ninety-eight percentage of dye decolorization was obtained within 24 hr. Optimization of process parameters through the response surface methodology. ESI/LC-MS analysis identified phthalic acid as the end product of Indanthrene Blue RS degradation. Degradation pathway for Indanthrene Blue RS is outlined.
Collapse
Affiliation(s)
- Swati Sambita Mohanty
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Arvind Kumar
- Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
2
|
Godoy P, Reina R, Calderón A, Wittich RM, García-Romera I, Aranda E. Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20985-20996. [PMID: 27488713 DOI: 10.1007/s11356-016-7257-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to find polycyclic aromatic hydrocarbon (PAH)-degrading fungi adapted to polluted environments for further application in bioremediation processes. In this study, a total of 23 fungal species were isolated from a historically pyrogenic PAH-polluted soil in Spain and taxonomically identified. The dominant groups in these samples were the ones associated with fungi belonging to the Ascomycota phylum and two isolates belonging to the Mucoromycotina subphylum and Basiodiomycota phylum. We tested their ability to convert the three-ring PAH anthracene in a 42-day time course and analysed their ability to secrete extracellular oxidoreductase enzymes. Among the 23 fungal species screened, 12 were able to oxidize anthracene, leading to the formation of 9,10-anthraquinone as the main metabolite, a less toxic one than the parent compound. The complete removal of anthracene was achieved by three fungal species. In the case of Scopulariopsis brevicaulis, extracellular enzyme independent degradation of the initial 100 μM anthracene occurred, whilst in the case of the ligninolytic fungus Fomes (Basidiomycota), the same result was obtained with extracellular enzyme-dependent transformation. The yield of accumulated 9,10-anthraquinone was 80 and 91 %, respectively, and Fomes sp. could slowly deplete it from the growth medium when offered alone. These results are indicative for the effectiveness of these fungi for pollutant removal. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Patricia Godoy
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Rocío Reina
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Andrea Calderón
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Regina-Michaela Wittich
- Department of Environmental Protection, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Inmaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Elisabet Aranda
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Granada, Spain.
- Department of Microbiology, Institute of Water Research, University of Granada, Calle Ramón y Cajal 4, E-18071, Granada, Spain.
| |
Collapse
|
3
|
Enhancement the Enzymatic Activity of Phenol-Degrading Microbes Immobilized on Agricultural Residues during the Biodegradation of Phenol in Petrochemical Wastewater. ACTA ACUST UNITED AC 2015. [DOI: 10.4028/www.scientific.net/amm.737.549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we illustrated enhanced biodegradation enzyme activity and the strains growth using the plants residues as carriers during the biodegradation of phenol in petrochemical wastewater. The three phenol-degrading strains named as A1, A2 and A3 were selected for an immobilized microorganism technique. A1, A2 and A3 were identified asPenicilliumoxalicum,Aspergillussp. andSphingobacteriumsp. using detailed morphological, biochemical and molecular characterization. The growth and degradation rate of phenol in wastewater by strains A1, A2 and A3 pre-grown in the agricultural residues (peanut shell) were higher than the free strains. Compared with the free strains,the enzyme activity of strains A1,A2 and A3, using the residues for pre-grown, increased 29.01 U/L, 30.30 U/L and 38.07 U/L, respectively. Hence, the immobilized microorganism technique is conducive to the phenol degradation.
Collapse
|
4
|
Krauss GJ, Solé M, Krauss G, Schlosser D, Wesenberg D, Bärlocher F. Fungi in freshwaters: ecology, physiology and biochemical potential. FEMS Microbiol Rev 2011; 35:620-51. [DOI: 10.1111/j.1574-6976.2011.00266.x] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
5
|
Chen J, Bai J. Chemiluminescence flow sensor with immobilized reagent for the determination of pyrogallol based on potassium hexacyanoferrate(III) oxidation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 71:989-992. [PMID: 18373950 DOI: 10.1016/j.saa.2008.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/10/2008] [Accepted: 02/13/2008] [Indexed: 05/26/2023]
Abstract
A novel chemiluminescence (CL) flow-through sensor for the determination of pyrogallol has been developed. The method is based on the reaction between pyrogallol and potassium hexacyanoferrate(III) in sodium hydroxide solution. Potassium hexacyanoferrate(III) involved in the CL reaction was electrostatically immobilized on anion-exchange resin packed in a column. Pyrogallol was sensed by the CL reaction between pyrogallol and potassium hexacyanoferrate(III) which was eluted from the ion-exchange column through sodium phosphate injection. The CL emission allows quantitation of pyrogallol concentration in the range 0.01-3.8 microg/mL with a detection limit (3 sigma) of 0.003 microg/mL and a sample throughput of 118 h(-1). The relative standard deviation (n=7) was 2.2% for 0.2 microg/mL of pyrogallol. The influence of foreign compounds was tested.
Collapse
Affiliation(s)
- Jianchun Chen
- Physical Education and Human Kinesiology Department, University of Science and Technology of Qingdao, Zhengzhou Road 53, Qingdao 266042, China
| | | |
Collapse
|
6
|
Ferreira MIM, Marchesi JR, Janssen DB. Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Microbiol Biotechnol 2008; 78:709-17. [PMID: 18228015 PMCID: PMC2266783 DOI: 10.1007/s00253-008-1343-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/26/2007] [Accepted: 12/30/2007] [Indexed: 11/25/2022]
Abstract
A Gram-positive bacterial strain capable of aerobic biodegradation of 4-fluorophenol (4-FP) as the sole source of carbon and energy was isolated by selective enrichment from soil samples collected near an industrial site. The organism, designated strain IF1, was identified as a member of the genus Arthrobacter on the basis of 16S ribosomal RNA gene sequence analysis. Arthrobacter strain IF1 was able to mineralize 4-FP up to concentrations of 5 mM in batch culture. Stoichiometric release of fluoride ions was observed, suggesting that there is no formation of halogenated dead-end products during 4-FP metabolism. The degradative pathway of 4-FP was investigated using enzyme assays and identification of intermediates by gas chromatography (GC), GC-mass spectrometry (MS), high-performance liquid chromatography, and liquid chromatography-MS. Cell-free extracts of 4-FP-grown cells contained no activity for catechol 1,2-dioxygenase or catechol 2,3-dioxygenase, which indicates that the pathway does not proceed through a catechol intermediate. Cells grown on 4-FP oxidized 4-FP, hydroquinone, and hydroxyquinol but not 4-fluorocatechol. During 4-FP metabolism, hydroquinone accumulated as a product. Hydroquinone could be converted to hydroxyquinol, which was further transformed into maleylacetic acid and beta-ketoadipic acid. These results indicate that the biodegradation of 4-FP starts with a 4-FP monooxygenase reaction that yields benzoquinone, which is reduced to hydroquinone and further metabolized via the beta-ketoadipic acid pathway.
Collapse
Affiliation(s)
- Maria Isabel M. Ferreira
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, NL-9747 AG Groningen, The Netherlands
| | - Julian R. Marchesi
- Department of Microbiology/Alimentary Pharmabiotic Centre, University College Cork, College Road, Cork, Ireland
| | - Dick B. Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, NL-9747 AG Groningen, The Netherlands
| |
Collapse
|
7
|
Corvini PFX, Schäffer A, Schlosser D. Microbial degradation of nonylphenol and other alkylphenols—our evolving view. Appl Microbiol Biotechnol 2006; 72:223-43. [PMID: 16826376 DOI: 10.1007/s00253-006-0476-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/11/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Because the endocrine disrupting effects of nonylphenol (NP) and octylphenol became evident, the degradation of long-chain alkylphenols (AP) by microorganisms was intensively studied. Most NP-degrading bacteria belong to the sphingomonads and closely related genera, while NP metabolism is not restricted to defined fungal taxa. Growth on NP and its mineralization was demonstrated for bacterial isolates, whereas ultimate degradation by fungi still remains unclear. While both bacterial and fungal degradation of short-chain AP, such as cresols, and the bacterial degradation of long-chain branched AP involves aromatic ring hydroxylation, alkyl chain oxidation and the formation of phenolic polymers seem to be preferential elimination pathways of long-chain branched AP in fungi, whereby both intracellular and extracellular oxidative enzymes may be involved. The degradation of NP by sphingomonads does not proceed via the common degradation mechanisms reported for short-chain AP, rather, via an unusual ipso-substitution mechanism. This fact underlies the peculiarity of long-chain AP such as NP isomers, which possess highly branched alkyl groups mostly containing a quaternary alpha-carbon. In addition to physicochemical parameters influencing degradation rates, this structural characteristic confers to branched isomers of NP a biodegradability different to that of the widely used linear isomer of NP. Potential biotechnological applications for the removal of AP from contaminated media and the difficulties of analysis and application inherent to the hydrophobic NP, in particular, are also discussed. The combination of bacteria and fungi, attacking NP at both the phenolic and alkylic moiety, represents a promising perspective.
Collapse
Affiliation(s)
- P F X Corvini
- Department of Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
| | | | | |
Collapse
|
8
|
Martins MAM, Lima N, Silvestre AJD, Queiroz MJ. Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes. CHEMOSPHERE 2003; 52:967-973. [PMID: 12781230 DOI: 10.1016/s0045-6535(03)00286-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A screening using several fungi (Phanerochaete chrysosporium, Pleurotus ostreatus, Trametes versicolor and Aureobasidium pullulans) was performed on the degradation of syringol derivatives of azo dyes possessing either carboxylic or sulphonic groups, under optimized conditions previously established by us. T. versicolor showed the best biodegradation performance and its potential was confirmed by the degradation of differently substituted fungal bioaccessible dyes. Enzymatic assays (lignin peroxidase, manganese peroxidase, laccase, proteases and glyoxal oxidase) and GC-MS analysis were performed upon the assay obtained using the most degraded dye. The identification of hydroxylated metabolites allowed us to propose a possible metabolic pathway. Biodegradation assays using mixtures of these bioaccessible dyes were performed to evaluate the possibility of a fungal wastewater treatment for textile industries.
Collapse
Affiliation(s)
- M Adosinda M Martins
- Institute of Biotechnology and Fine Chemistry (IBQF), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | | | | |
Collapse
|
9
|
|
10
|
Marr J, Kremer S, Sterner O, Anke H. Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117. Biodegradation 1996; 7:165-71. [PMID: 8882808 DOI: 10.1007/bf00114628] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The metabolism of monohalophenols by Penicillium simplicissimum SK9117, isolated from a sewage plant was investigated. In submerged cultures, 3-, 4-chlorophenol, and 4-bromophenol were metabolized in the presence of phenol. 3-Chlorophenol was transformed to chlorohydroquinone, 4-chlorocatechol, 4-chloro-1,2,3-trihydroxybenzene, and 5-chloro-1,2,3-trihydroxybenzene. With 4-chlorophenol only 4-chlorocatechol was observed as transient product. A release of chloride ions was not observed. Whereas monobromo-, and monochlorophenols could not support growth as sole carbon and energy source, growth and release of fluoride ions were observed with monofluorophenols as substrates. In presence of phenol, the degradation of all monofluorophenols was enhanced. Substrate and cosubstrate disappeared simultaneously. 3-Fluorophenol and 4-fluorophenol were completely mineralized as shown by the equimolar release of fluoride ions.
Collapse
Affiliation(s)
- J Marr
- Department of Biotechnology, University of Kaiserslautern, Germany
| | | | | | | |
Collapse
|
11
|
Hofrichter M, Bublitz F, Fritsche W. Cometabolic degradation of o-cresol and 2,6-dimethylphenol by Penicillium frequentans Bi 7/2. J Basic Microbiol 1995; 35:303-13. [PMID: 8568641 DOI: 10.1002/jobm.3620350505] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
o-Cresol induced glucose-grown resting mycelia of Penicillium frequentans Bi 7/2 (ATCC-number: 96048) immediately oxidized o-cresol and other phenols. After precultivation on glucose and phenol degradation started after a lag-phase of 24 hours. Metabolites of o-cresol metabolism were methylhydroquinone, methyl-p-benzoquinone, 2-methyl-5-hydroxyhydroquinone and 2-methyl-5-hydroxy-p-benzoquinone. The initial reaction is probably catalyzed by a NADPH dependent hydroxylase which is specific for o-cresol. The metabolism of 2,6-dimethylphenol (2,6-xylenol) occurred via 2,6-dimethylhydroquinone, 2,6-dimethyl-p-benzoquinone, 2,6-dimethyl-3-hydroxyhydroquinone, 2,6-dimethyl-3-hydroxy-p-benzoquinone and 3-methyl-2-hydroxybenzoic acid.
Collapse
Affiliation(s)
- M Hofrichter
- Friedrich-Schiller-Universität Jena, Institut für Mikrobiologie, Germany
| | | | | |
Collapse
|
12
|
Hofrichter M, Bublitz F, Fritsche W. Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2. J Basic Microbiol 1994; 34:163-72. [PMID: 8071803 DOI: 10.1002/jobm.3620340306] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Resting phenol-grown mycelia of the fungus Penicillium frequentans strain Bi 7/2 were shown to be capable of metabolizing various monohalogenated phenols as well as 3,4-dichlorophenol. 2,4.dichlorophenol could be metabolized in the presence of phenol as cosubstrate. In the first degradation step the halogenated phenols were oxidized to the corresponding halocatechols. Halocatechols substituted in para-position (4-halocatechols) were further degraded under formation of 4-carboxymethylenbut-2-en-4-olide. A partial dehalogenation took place splitting the ring system. 3-Halocatechols were cleaved to 2-halomuconic acids as dead end metabolites without a dehalogenation step. Dichlorophenols were only transformed to the corresponding catechols. In addition 3,5-dichloro-catechol was O-methylated to give two isomers of dichloroguiacol. The halogenated catechols with the exception of 4-fluorocatechol partly polymerized oxidatively in the culture fluid to form insoluble dark-brown products. The degradation of halophenols are due to the action of unspecific intracellular enzymes responsible for phenol catabolism (phenol hydroxylase, catechol-1,2-dioxygenase, muconate cycloisomerase I).
Collapse
Affiliation(s)
- M Hofrichter
- Friedrich-Schiller-Universität Jena, Institut für Mikrobiologie, Germany
| | | | | |
Collapse
|