1
|
Sammer UF, Reiher K, Spiteller D, Wensing A, Völksch B. Assessment of the relevance of the antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine from Pantoea agglomerans biological control strains against bacterial plant pathogens. Microbiologyopen 2012; 1:438-49. [PMID: 23233458 PMCID: PMC3535389 DOI: 10.1002/mbo3.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/09/2012] [Accepted: 09/12/2012] [Indexed: 11/08/2022] Open
Abstract
The epiphyte Pantoea agglomerans 48b/90 (Pa48b) is a promising biocontrol strain against economically important bacterial pathogens such as Erwinia amylovora. Strain Pa48b produces the broad-spectrum antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine (APV) in a temperature-dependent manner. An APV-negative mutant still suppressed the E. amylovora population and fire blight disease symptoms in apple blossom experiments under greenhouse conditions, but was inferior to the Pa48b wild-type indicating the influence of APV in the antagonism. In plant experiments with the soybean pathogen Pseudomonas syringae pv. glycinea both, Pa48b and the APV-negative mutant, successfully suppressed the pathogen. Our results demonstrate that the P. agglomerans strain Pa48b is an efficient biocontrol organism against plant pathogens, and we prove its ability for fast colonization of plant surfaces over a wide temperature range.
Collapse
Affiliation(s)
- Ulrike F Sammer
- Institute for Microbiology, Microbial Communication, University of Jena, Neugasse 25, D-07743, Jena, Germany.
| | | | | | | | | |
Collapse
|
2
|
Blakney AJC, Patten CL. A plant growth-promoting pseudomonad is closely related to the Pseudomonas syringae complex of plant pathogens. FEMS Microbiol Ecol 2011; 77:546-57. [PMID: 21609343 DOI: 10.1111/j.1574-6941.2011.01136.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pseudomonas putida GR12-2 is well known as a plant growth-promoting rhizobacterium; however, phylogenetic analysis using the 16S rRNA gene and four housekeeping genes indicated that this strain forms a monophyletic group with the Pseudomonas syringae complex, which is composed of several species of plant pathogens. On the basis of these sequence analyses, we suggest that P. putida GR12-2 be redesignated as P. syringae GR12-2. To compare the ecological roles of P. syringae GR12-2 with its close relatives P. syringae pathovar (pv.) tomato DC3000 and P. syringae pv. syringae B728a, we investigated their ability to cause disease and promote plant growth. When introduced on tobacco or tomato leaves, P. syringae GR12-2 was unable to elicit a hypersensitive response or cause disease, which are characteristic responses of P. syringae DC3000 and B728a, nor were type III secretion system genes required for virulence detected in P. syringae GR12-2 by PCR or DNA hybridization. In contrast to P. syringae GR12-2, neither of the phytopathogens was able to promote root growth when inoculated onto canola seeds. Although commensals and nonpathogens have been reported among the strains of the P. syringae complex, P. syringae GR12-2 is a mutualist and a phytostimulator.
Collapse
Affiliation(s)
- Andrew J C Blakney
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | | |
Collapse
|
3
|
Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 2011; 77:3202-10. [PMID: 21421777 DOI: 10.1128/aem.00133-11] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Diverse bacterial taxa live in association with plants without causing deleterious effects. Previous analyses of phyllosphere communities revealed the predominance of few bacterial genera on healthy dicotyl plants, provoking the question of whether these commensals play a particular role in plant protection. Here, we tested two of them, Methylobacterium and Sphingomonas, with respect to their ability to diminish disease symptom formation and the proliferation of the foliar plant pathogen Pseudomonas syringae pv. tomato DC3000 on Arabidopsis thaliana. Plants were grown under gnotobiotic conditions in the absence or presence of the potential antagonists and then challenged with the pathogen. No effect of Methylobacterium strains on disease development was observed. However, members of the genus Sphingomonas showed a striking plant-protective effect by suppressing disease symptoms and diminishing pathogen growth. A survey of different Sphingomonas strains revealed that most plant isolates protected A. thaliana plants from developing severe disease symptoms. This was not true for Sphingomonas strains isolated from air, dust, or water, even when they reached cell densities in the phyllosphere comparable to those of the plant isolates. This suggests that plant protection is common among plant-colonizing Sphingomonas spp. but is not a general trait conserved within the genus Sphingomonas. The carbon source profiling of representative isolates revealed differences between protecting and nonprotecting strains, suggesting that substrate competition plays a role in plant protection by Sphingomonas. However, other mechanisms cannot be excluded at this time. In conclusion, the ability to protect plants as shown here in a model system may be an unexplored, common trait of indigenous Sphingomonas spp. and may be of relevance under natural conditions.
Collapse
|
4
|
Wensing A, Braun SD, Büttner P, Expert D, Völksch B, Ullrich MS, Weingart H. Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Appl Environ Microbiol 2010; 76:2704-11. [PMID: 20208028 PMCID: PMC2863448 DOI: 10.1128/aem.02979-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 02/22/2010] [Indexed: 01/03/2023] Open
Abstract
The use of naturally occurring microbial antagonists to suppress plant diseases offers a favorable alternative to classical methods of plant protection. The soybean epiphyte Pseudomonas syringae pv. syringae strain 22d/93 shows great potential for controlling P. syringae pv. glycinea, the causal agent of bacterial blight of soybean. Its activity against P. syringae pv. glycinea is highly reproducible even in field trials, and the suppression mechanisms involved are of special interest. In this work we demonstrated that P. syringae pv. syringae 22d/93 produced a significantly larger amount of siderophores than the pathogen P. syringae pv. glycinea produced. While P. syringae pv. syringae 22d/93 and P. syringae pv. glycinea produce the same siderophores, achromobactin and pyoverdin, the regulation of siderophore biosynthesis in the former organism is very different from that in the latter organism. The epiphytic fitness of P. syringae pv. syringae 22d/93 mutants defective in siderophore biosynthesis was determined following spray inoculation of soybean leaves. The population size of the siderophore-negative mutant P. syringae pv. syringae strain 22d/93DeltaSid was 2 orders of magnitude lower than that of the wild type 10 days after inoculation. The growth deficiency was compensated for when wound inoculation was used, indicating the availability of iron in the presence of small lesions on the leaves. Our results suggest that siderophore production has an indirect effect on the biocontrol activity of P. syringae pv. syringae 22d/93. Although siderophore-defective mutants of P. syringae pv. syringae 22d/93 still suppressed development of bacterial blight caused by P. syringae pv. glycinea, siderophore production enhanced the epiphytic fitness and thus the competitiveness of the antagonist.
Collapse
Affiliation(s)
- Annette Wensing
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Sascha D. Braun
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Petra Büttner
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Dominique Expert
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Beate Völksch
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Matthias S. Ullrich
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| | - Helge Weingart
- School of Engineering and Science, Jacobs University Bremen, 28759 Bremen, Germany, Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany, CNRS and Laboratoire Interactions Plantes Pathogènes, UMR 217, 75005 Paris, France
| |
Collapse
|
5
|
Braun SD, Hofmann J, Wensing A, Ullrich MS, Weingart H, Völksch B, Spiteller D. Identification of the biosynthetic gene cluster for 3-methylarginine, a toxin produced by Pseudomonas syringae pv. syringae 22d/93. Appl Environ Microbiol 2010; 76:2500-8. [PMID: 20190091 PMCID: PMC2849186 DOI: 10.1128/aem.00666-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Accepted: 02/16/2010] [Indexed: 11/20/2022] Open
Abstract
The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces the rare amino acid 3-methylarginine (MeArg), which is highly active against the closely related soybean pathogen Pseudomonas syringae pv. glycinea. Since these pathogens compete for the same habitat, Pss22d is a promising candidate for biocontrol of P. syringae pv. glycinea. The MeArg biosynthesis gene cluster codes for the S-adenosylmethionine (SAM)-dependent methyltransferase MrsA, the putative aminotransferase MrsB, and the amino acid exporter MrsC. Transfer of the whole gene cluster into Escherichia coli resulted in heterologous production of MeArg. The methyltransferase MrsA was overexpressed in E. coli as a His-tagged protein and functionally characterized (K(m), 7 mM; k(cat), 85 min(-1)). The highly selective methyltransferase MrsA transfers the methyl group from SAM into 5-guanidino-2-oxo-pentanoic acid to yield 5-guanidino-3-methyl-2-oxo-pentanoic acid, which then only needs to be transaminated to result in the antibiotic MeArg.
Collapse
Affiliation(s)
- S. D. Braun
- Institute of Microbiology, Microbial Phytopathology, University of Jena, Neugasse 25, 07743 Jena, Germany, Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, 28759 Bremen, Germany, Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - J. Hofmann
- Institute of Microbiology, Microbial Phytopathology, University of Jena, Neugasse 25, 07743 Jena, Germany, Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, 28759 Bremen, Germany, Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - A. Wensing
- Institute of Microbiology, Microbial Phytopathology, University of Jena, Neugasse 25, 07743 Jena, Germany, Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, 28759 Bremen, Germany, Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - M. S. Ullrich
- Institute of Microbiology, Microbial Phytopathology, University of Jena, Neugasse 25, 07743 Jena, Germany, Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, 28759 Bremen, Germany, Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - H. Weingart
- Institute of Microbiology, Microbial Phytopathology, University of Jena, Neugasse 25, 07743 Jena, Germany, Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, 28759 Bremen, Germany, Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - B. Völksch
- Institute of Microbiology, Microbial Phytopathology, University of Jena, Neugasse 25, 07743 Jena, Germany, Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, 28759 Bremen, Germany, Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - D. Spiteller
- Institute of Microbiology, Microbial Phytopathology, University of Jena, Neugasse 25, 07743 Jena, Germany, Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, 28759 Bremen, Germany, Max Planck Institute for Chemical Ecology, Bioorganic Chemistry, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| |
Collapse
|
6
|
Sammer UF, Völksch B, Möllmann U, Schmidtke M, Spiteller P, Spiteller M, Spiteller D. 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine, an effective peptide antibiotic from the epiphyte Pantoea agglomerans 48b/90. Appl Environ Microbiol 2009; 75:7710-7. [PMID: 19820144 PMCID: PMC2794118 DOI: 10.1128/aem.01244-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Accepted: 10/02/2009] [Indexed: 11/20/2022] Open
Abstract
The epiphyte Pantoea agglomerans 48b/90, which has been isolated from soybean leaves, belongs to the Enterobacteriaceae, as does the plant pathogen Erwinia amylovora, which causes fire blight on rosaceous plants such as apples and leads to severe economic losses. Since P. agglomerans efficiently antagonizes phytopathogenic bacteria, the P. agglomerans strain C9-1 is used as a biocontrol agent (BlightBan C9-1). Here we describe the bioassay-guided isolation of a peptide antibiotic that is highly active against the plant pathogen E. amylovora and pathovars of Pseudomonas syringae, and we elucidate its structure. Bioassay-guided fractionation using anion-exchange chromatography followed by hydrophobic interaction liquid chromatography yielded the bioactive, highly polar antibiotic. The compound was identified as 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine by using high-resolution electrospray ionization mass spectrometry and nuclear magnetic resonance techniques. This peptide was found to be produced by three of the nine P. agglomerans strains analyzed. Notably, the biocontrol strain P. agglomerans C9-1 also produces 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine. Previously, 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine has been characterized only from Serratia plymuthica. 2-Amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine has been shown to inhibit the growth of the human pathogen Candida albicans efficiently, but its involvement in the defense of epiphytes against phytopathogenic bacteria has not been investigated so far.
Collapse
Affiliation(s)
- Ulrike F. Sammer
- Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institut, D-07745 Jena, Institut für Virologie und antivirale Therapie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Institut für Organische Chemie und Biochemie II, Technische Universität München, D-85747 Garching, Institut für Umweltforschung, Technische Universität Dortmund, D-44221 Dortmund, Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Beate Völksch
- Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institut, D-07745 Jena, Institut für Virologie und antivirale Therapie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Institut für Organische Chemie und Biochemie II, Technische Universität München, D-85747 Garching, Institut für Umweltforschung, Technische Universität Dortmund, D-44221 Dortmund, Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ute Möllmann
- Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institut, D-07745 Jena, Institut für Virologie und antivirale Therapie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Institut für Organische Chemie und Biochemie II, Technische Universität München, D-85747 Garching, Institut für Umweltforschung, Technische Universität Dortmund, D-44221 Dortmund, Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Michaela Schmidtke
- Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institut, D-07745 Jena, Institut für Virologie und antivirale Therapie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Institut für Organische Chemie und Biochemie II, Technische Universität München, D-85747 Garching, Institut für Umweltforschung, Technische Universität Dortmund, D-44221 Dortmund, Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Peter Spiteller
- Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institut, D-07745 Jena, Institut für Virologie und antivirale Therapie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Institut für Organische Chemie und Biochemie II, Technische Universität München, D-85747 Garching, Institut für Umweltforschung, Technische Universität Dortmund, D-44221 Dortmund, Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Michael Spiteller
- Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institut, D-07745 Jena, Institut für Virologie und antivirale Therapie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Institut für Organische Chemie und Biochemie II, Technische Universität München, D-85747 Garching, Institut für Umweltforschung, Technische Universität Dortmund, D-44221 Dortmund, Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Dieter Spiteller
- Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institut, D-07745 Jena, Institut für Virologie und antivirale Therapie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Institut für Organische Chemie und Biochemie II, Technische Universität München, D-85747 Garching, Institut für Umweltforschung, Technische Universität Dortmund, D-44221 Dortmund, Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|
7
|
Braun SD, Völksch B, Nüske J, Spiteller D. 3-Methylarginine from Pseudomonas syringae pv. syringae 22d/93 suppresses the bacterial blight caused by its close relative Pseudomonas syringae pv. glycinea. Chembiochem 2008; 9:1913-20. [PMID: 18655083 DOI: 10.1002/cbic.200800080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Indexed: 11/10/2022]
Abstract
The epiphyte Pseudomonas syringae pv. syringae 22d/93 (Pss22d) produces a toxin that strongly inhibits the growth of its relative, the plant pathogen P. syringae pv. glycinea. The inhibition can be overcome by supplementing the growth medium with the essential amino acid, L-arginine; this suggests that the toxin acts as an inhibitor of the arginine biosynthesis. The highly polar toxin was purified by bioassay-guided fractionation using ion-exchange chromatography and subsequent RP-HPLC fractionation. The structure of the natural product was identified by HR-ESI-MS, HR-ESI-MS/MS, and NMR spectroscopy experiments as 3-methylarginine. This amino acid has previously only been known in nature as a constituent of the peptide lavendomycin from Streptomyces lavendulae. Results of experiments in which labeled methionine was fed to Pss22d indicated that the key step in the biosynthesis of 3-methylarginine is the introduction of the methyl group by a S-adenosylmethionine (SAM)-dependent methyltransferase. Transposon mutagenesis of Pss22d allowed the responsible SAM-dependent methyltransferase of the 3-methylarginine biosynthesis to be identified.
Collapse
Affiliation(s)
- Sascha D Braun
- Institut für Mikrobiologie, Mikrobielle Phytopathologie, Friedrich-Schiller-Universität Jena, Neugasse 25, 07743 Jena, Germany
| | | | | | | |
Collapse
|
8
|
|
9
|
Wilson M, Campbell HL, Ji P, Jones JB, Cuppels DA. Biological control of bacterial speck of tomato under field conditions at several locations in north america. PHYTOPATHOLOGY 2002; 92:1284-1292. [PMID: 18943882 DOI: 10.1094/phyto.2002.92.12.1284] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, continues to be a problem for tomato growers worldwide. A collection of nonpathogenic bacteria from tomato leaves plus P. syringae strains TLP2 and Cit7, P. fluorescens strain A506, and P. syringae pv. tomato DC3000 hrp mutants were examined in a greenhouse bioassay for the ability to reduce foliar bacterial speck disease severity. While several of these strains significantly reduced disease severity, P. syringae Cit7 was the most effective, providing a mean level of disease reduction of 78% under greenhouse conditions. The P. syringae pv. tomato DC3000 hrpA, hrpH, and hrpS mutants also significantly reduced speck severity under greenhouse conditions. The strains with the greatest efficacy under greenhouse conditions were tested for the ability to reduce bacterial speck under field conditions at locations in Alabama, Florida, and Ontario, Canada. P. syringae Cit7 was the most effective strain, providing a mean level of disease reduction of 28% over 10 different field experiments. P. fluorescens A506, which is commercially available as Blight-Ban A506, provided a mean level of disease reduction of 18% over nine different field experiments. While neither P. syringae Cit7 nor P. fluorescens A506 can be integrated with copper bactericides due to their copper sensitivity, there exist some potential for integrating these biological control agents with "plant activators", including Actigard. Of the P. syringae pv. tomato DC3000 hrp mutants tested, only the hrpS mutant reduced speck severity significantly under field conditions.
Collapse
|
10
|
Bashan Y, De-Bashan LE. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 2002; 68:2637-43. [PMID: 12039714 PMCID: PMC123946 DOI: 10.1128/aem.68.6.2637-2643.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2001] [Accepted: 02/27/2002] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas syringae pv. tomato, the causal agent of bacterial speck of tomato, and the plant growth-promoting bacterium Azospirillum brasilense were inoculated onto tomato plants, either alone, as a mixed culture, or consecutively. The population dynamics in the rhizosphere and foliage, the development of bacterial speck disease, and their effects on plant growth were monitored. When inoculated onto separate plants, the A. brasilense population in the rhizosphere of tomato plants was 2 orders of magnitude greater than the population of P. syringae pv. tomato (10(7) versus 10(5) CFU/g [dry weight] of root). Under mist chamber conditions, the leaf population of P. syringae pv. tomato was 1 order of magnitude greater than that of A. brasilense (10(7) versus 10(6) CFU/g [dry weight] of leaf). Inoculation of seeds with a mixed culture of the two bacterial strains resulted in a reduction of the pathogen population in the rhizosphere, an increase in the A. brasilense population, the prevention of bacterial speck disease development, and improved plant growth. Inoculation of leaves with the mixed bacterial culture under mist conditions significantly reduced the P. syringae pv. tomato population and significantly decreased disease severity. Challenge with P. syringae pv. tomato after A. brasilense was established in the leaves further reduced both the population of P. syringae pv. tomato and disease severity and significantly enhanced plant development. Both bacteria maintained a large population in the rhizosphere for 45 days when each was inoculated separately onto tomato seeds (10(5) to 10(6) CFU/g [dry weight] of root). However, P. syringae pv. tomato did not survive in the rhizosphere in the presence of A. brasilense. Foliar inoculation of A. brasilense after P. syringae pv. tomato was established on the leaves did not alleviate bacterial speck disease, and A. brasilense did not survive well in the phyllosphere under these conditions, even in a mist chamber. Several applications of a low concentration of buffered malic acid significantly enhanced the leaf population of A. brasilense (>10(8) CFU/g [dry weight] of leaf), decreased the population of P. syringae pv. tomato to almost undetectable levels, almost eliminated disease development, and improved plant growth to the level of uninoculated healthy control plants. Based on our results, we propose that A. brasilense be used in prevention programs to combat the foliar bacterial speck disease caused by P. syringae pv. tomato.
Collapse
Affiliation(s)
- Yoav Bashan
- Environmental Microbiology, The Center for Biological Research of the Northwest, La Paz, Mexico
| | | |
Collapse
|
11
|
Kim WS, Jock S, Paulin JP, Rhim SL, Geider K. Molecular Detection and Differentiation of Erwinia pyrifoliae and Host Range Analysis of the Asian Pear Pathogen. PLANT DISEASE 2001; 85:1183-1188. [PMID: 30823165 DOI: 10.1094/pdis.2001.85.11.1183] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The recently described pathogen Erwinia pyrifoliae, isolated from Nashi pear fruit trees in Korea, resembles the fire blight pathogen Erwinia amylovora in some of its properties. The two pathogens were classified into different species by DNA hybridization kinetics and microbiological criteria. From the nucleotide sequences of the 16S rRNA and the internal transcribed spacer (ITS) region as well as extracellular polysaccharide (EPS)-encoding genes, polymerase chain reaction (PCR) primers were designed that specifically detect E. pyrifoliae but not the fire blight pathogen Erwinia amylovora, and these primers were also applied to identify E. pyrifoliae in necrotic plant material. The genomes of several strains were digested with the restriction enzyme SpeI, and the DNA fragments were analyzed by pulsed-field gel electrophoresis (PFGE). Three groups of patterns could be distinguished for the isolated E. pyrifoliae strains, all different from various E. amylovora strains, which produce a relatively homogeneous PFGE pattern after SpeI digests. Typical fire blight host plants were assayed in a growth chamber or an experimental field for their susceptibility to E. pyrifoliae. A strong preference was found for pear varieties, whereas apple, cotoneaster, hawthorn, or raspberry rarely produced necrotic symptoms. E. pyrifoliae was readily detected in samples from pear orchards in South Korea during 1995 to 1998; however, the Asian pear pathogen was not recovered in necrotic plant tissue from 1999 and 2000.
Collapse
Affiliation(s)
- Won Sik Kim
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| | - Susanne Jock
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| | - Jean-Pierre Paulin
- UMR Pathologie Végétale INRA, INH, Université d'Angers, 42, rue Georges Morel, B.P. 57, 49071 Beaucouze, France
| | - Seong-Lyul Rhim
- Department of Genetical Engineering, College of Natural Science, Hallym University, 1 Okcheon-Dong, Chuncheon-Si, Kangwon-Do, 200-702, South Korea
| | - Klaus Geider
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| |
Collapse
|
12
|
Völksch B, May R. Biological Control of Pseudomonas syringae pv. glycinea by Epiphytic Bacteria under Field Conditions. MICROBIAL ECOLOGY 2001; 41:132-139. [PMID: 12032618 DOI: 10.1007/s002480000078] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2000] [Accepted: 09/27/2000] [Indexed: 05/23/2023]
Abstract
The efficacy of a bacterial strain as a biocontrol agent in the field may be related to the ecological similarity between the biocontrol agent and the target pathogen. Therefore, a number of different Pseudomonas syringae strains were evaluated for their antagonistic activities in vitro (agar-diffusion assay) and in planta (greenhouse assay) against the target pathogen, Pseudomonas syringae pv. glycinea. Six strains of five different pathovars were found to be antagonistic in vitro as well as in planta. The epiphytic fitness of the antagonistic Pseudomonas syringae strain 22d/93 and its two antibiotic-resistant mutants were examined on soybean plants in the fields. After adaptation the parental strain and its mutants had the ability to establish and maintain large epiphytic populations (about 106 cfu/g FW) over the whole growing season after a single spray inoculation. The epiphytic behaviors of the mutants and the parent were not significantly different. The introduced bacteria did not influence the total bacterial population size. When the antagonist was coinoculated with the pathogen, the development of the pathogen was significantly reduced during the whole growing season. When the antagonistic strain was inoculated 4 weeks in advance of the pathogen, this antagonistic effect could be markedly enhanced. The final population size of the pathogen reached just 104 cfu/g FW and was significantly reduced to 0.12% compared to the pathogen alone. This study demonstrates that biological control of foliar pathogens through colonization of the host plants with near isogenic or ecologically similar antagonistical strains seems to be a realistic goal.
Collapse
Affiliation(s)
- B. Völksch
- Institute of Microbiology, Biological-Pharmaceutical Faculty, Friedrich-Schiller-University Jena, D-07745 Jena, Germany
| | | |
Collapse
|
13
|
Heuer H, Smalla K. Bacterial phyllosphere communities of Solanum tuberosum L. and T4-lysozyme-producing transgenic variants. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00590.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|