1
|
Yu W, Ou R, Hou Q, Li C, Yang X, Ma Y, Wu X, Chen W. Multiscale interstitial fluid computation modeling of cortical bone to characterize the hydromechanical stimulation of lacunar-canalicular network. Bone 2025; 193:117386. [PMID: 39746592 DOI: 10.1016/j.bone.2024.117386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Bone tissue is a biological composite material with a complex hierarchical structure that could continuously adjust its internal structure to adapt to the alterations in the external load environment. The fluid flow within bone is the main route of osteocyte metabolism, and the pore pressure as well as the fluid shear stress generated by it are important mechanical stimuli perceived by osteocytes. Owing to the irregular multiscale structure of bone tissue, the fluid stimulation that lacunar-canalicular network (LCN) in different regions of the tissue underwent remained unclear. In this study, we constructed a multiscale conduction model of fluid flow stimulus signals in bone tissue based on the poroelasticity theory. We analyzed the fluid flow behaviors at the macro-scale (whole bone tissue), macro-meso scale (periosteum, interstitial bone, osteon and endosteum), and micro-scale (lacunar-osteocyte-canalicular) levels. We explored how fluid stimulation at the tissue level correlated with that at the cellular level in cortical bone and characterized the distributions of the pore pressure, fluid velocity and fluid shear stress that the osteocytes experienced across the entire tissue structure. The results showed that the initial conditions of intramedullary pressure had a significant impact on the pore pressure of Haversian systems, but had a relatively small influence on the fluid velocity. The osteocyte which were located at different positions in the bone tissue received very distinct fluid stimuli. Osteocytes in the vicinity of the Haversian Canals experienced higher fluid shear stress stimulation. When the permeability of the LCN was within the range from 10-21 m2 to 10-18 m2, the distribution of pressure, fluid velocity and fluid shear stress within the osteon near the periosteum and endosteum was significantly different from that in other parts of the bone. However, when the permeability was less than 10-22 m2, such a difference did not exist. Particularly, the flow velocity at the lacunae was markedly higher than that in the canaliculi. Meanwhile, the pore pressure and fluid shear stress were conspicuously lower than those in the canaliculi. In this study, we considered the interconnections of different biofunctional units at different scales of bone tissue, construct a more complete multiscale model of bone tissue, and propose that osteocytes at different locations receive different fluid stimuli, which provides a reference for a deeper understanding of bone mechanotransduction.
Collapse
Affiliation(s)
- WeiLun Yu
- College of Biomedical Engineering, Jilin Medical University, Jilin, Jilin Province, China; Orthopedics, Shanxi Bethune Hospital, Taiyuan, Shanxi Province, China; College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - RenXia Ou
- College of Biomedical Engineering, Jilin Medical University, Jilin, Jilin Province, China
| | - Qi Hou
- College of Biomedical Engineering, Jilin Medical University, Jilin, Jilin Province, China
| | - ChunMing Li
- Orthopedics, Jilin Central Hospital, Jilin, Jilin Province, China
| | - XiaoHang Yang
- College of Biomedical Engineering, Jilin Medical University, Jilin, Jilin Province, China.
| | - YingHui Ma
- College of Biomedical Engineering, Jilin Medical University, Jilin, Jilin Province, China
| | - XiaoGang Wu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - WeiYi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Chan ME, Ashdown C, Strait L, Pasumarthy S, Hassan A, Crimarco S, Singh C, Patel VS, Pagnotti G, Khan O, Uzer G, Rubin CT. Low intensity mechanical signals promote proliferation in a cell-specific manner: Tailoring a non-drug strategy to enhance biomanufacturing yields. MECHANOBIOLOGY IN MEDICINE 2024; 2:100080. [PMID: 39717386 PMCID: PMC11666124 DOI: 10.1016/j.mbm.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Biomanufacturing relies on living cells to produce biotechnology-based therapeutics, tissue engineering constructs, vaccines, and a vast range of agricultural and industrial products. With the escalating demand for these bio-based products, any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline. While these goals are primarily achieved using biological or chemical strategies, harnessing cell mechanosensitivity represents a promising - albeit less studied - physical pathway to promote bioprocessing endpoints, yet identifying which mechanical parameters influence cell activities has remained elusive. We tested the hypothesis that mechanical signals, delivered non-invasively using low-intensity vibration (LIV; <1 g, 10-500 Hz), will enhance cell expansion, and determined that any unique signal configuration was not equally influential across a range of cell types. Varying frequency, intensity, duration, refractory period, and daily doses of LIV increased proliferation in Chinese Hamster Ovary (CHO)-adherent cells (+79% in 96 hr) using a particular set of LIV parameters (0.2 g, 500 Hz, 3 × 30 min/d, 2 hr refractory period), yet this same mechanical input suppressed proliferation in CHO-suspension cells (-13%). Another set of LIV parameters (30 Hz, 0.7 g, 2 × 60 min/d, 2 hr refractory period) however, were able to increase the proliferation of CHO-suspension cells by 210% and T-cells by 20.3%. Importantly, we also reported that T-cell response to LIV was in-part dependent upon AKT phosphorylation, as inhibiting AKT phosphorylation reduced the proliferative effect of LIV by over 60%, suggesting that suspension cells utilize mechanism(s) similar to adherent cells to sense specific LIV signals. Particle image velocimetry combined with finite element modeling showed high transmissibility of these signals across fluids (>90%), and LIV effectively scaled up to T75 flasks. Ultimately, when LIV is tailored to the target cell population, it's highly efficient transmission across media represents a means to non-invasively augment biomanufacturing endpoints for both adherent and suspended cells, and holds immediate applications, ranging from small-scale, patient-specific personalized medicine to large-scale commercial biocentric production challenges.
Collapse
Affiliation(s)
- M. Ete Chan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Christopher Ashdown
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
- Medical Scientist Training Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lia Strait
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Sishir Pasumarthy
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Abdullah Hassan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Steven Crimarco
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Chanpreet Singh
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Vihitaben S. Patel
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
| | - Gabriel Pagnotti
- Department of Endocrine Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Omor Khan
- Department of Mechanical and Biomedical Engineering, College of Engineering, Boise State University, Boise, ID, 83725-205, USA
| | - Gunes Uzer
- Department of Mechanical and Biomedical Engineering, College of Engineering, Boise State University, Boise, ID, 83725-205, USA
| | - Clinton T. Rubin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA
- Center for Biotechnology, New York State Center for Advanced Technology in Medical Biotechnology, Stony Brook University, Stony Brook, NY, 11794-5281, USA
| |
Collapse
|
3
|
Fernandes Da Costa C, Attik N, Gauthier R. Influence of intramedullary pressure on Lacuno-Canalicular fluid flow: A systematic review. Acta Biomater 2024; 178:41-49. [PMID: 38484832 DOI: 10.1016/j.actbio.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
While most of current models investigating bone remodelling are based on matrix deformation, intramedullary pressure also plays a role. Bone remodelling is orchestrated by the Lacuno-Canalicular Network (LCN) fluid-flow. The aim of this review was hence to assess the influence of intramedullary pressure on the fluid circulation within the LCN. Three databases (Science Direct, Web of Science, and PubMed) were used. The first phase of the search returned 731 articles, of which 9 respected the inclusion/exclusion criteria and were included. These studies confirm the association between intramedullary pressure and fluid dynamics in the LCN. Among the included studies, 7 experimental studies using animal models and 2 numerical models were found. The studies were then ranked according to the nature of the applied loading, either axial compression or direct cyclic intramedullary pressure. The current review revealed that there is an influence of intramedullary pressure on LCN fluid dynamics and that this influence depends on the magnitude and the frequency of the applied pressure. Two studies confirmed that the influence was effective even without bone matrix deformation. While intramedullary pressure is closely associated with LCN fluid, there is a severe lack of studies on this topic. STATEMENT OF SIGNIFICANCE: Since the 1990's, numerical models developed to investigate fluid flow in bone submicrometric porous network are based on the flow induced by matrix deformation. Bone fluid flow is known to be involved in cells stimulation and hence directly influences bone remodeling. Different studies have shown that intramedullary pressure is also associated with bone mechanosensitive adaptation. This pressure is developed in bone due to blood circulation and is increased during loading or muscle stimulation. The current article reviews the studies investigating the influence of this pressure on bone porous fluid flow. They show that fluid flow is involved by this pressure even without bone matrix deformation. The current review article highlights the severe lack of studies about this mechanism.
Collapse
Affiliation(s)
- Cassandra Fernandes Da Costa
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69372 CEDEX 08, France; CNRS, INSA Lyon, MATEIS, UMR5510, Université de Lyon, Université Claude Bernard Lyon 1, 7 avenue Jean Capelle, Villeurbanne CEDEX 69621, France
| | - Nina Attik
- UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69372 CEDEX 08, France; Faculté d'Odontologie, Université de Lyon, Université Claude Bernard Lyon 1, Lyon 69372 CEDEX 08, France.
| | - Remy Gauthier
- CNRS, INSA Lyon, MATEIS, UMR5510, Université de Lyon, Université Claude Bernard Lyon 1, 7 avenue Jean Capelle, Villeurbanne CEDEX 69621, France.
| |
Collapse
|
4
|
Zhao S, Chen Z, Li T, Sun Q, Leng H, Huo B. Numerical simulations of fluid flow in trabecular-lacunar cavities under cyclic loading. Comput Biol Med 2023; 163:107144. [PMID: 37315384 DOI: 10.1016/j.compbiomed.2023.107144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Under external loading, the fluid shear stress (FSS) in the porous structures of bones, such as trabecular or lacunar-canalicular cavity, can influence the biological response of bone cells. However, few studies have considered both cavities. The present study investigated the characteristics of fluid flow at different scales in cancellous bone in rat femurs, as well as the effects of osteoporosis and loading frequency. METHODS Sprague Dawley rats (3 months old) were divided into normal and osteoporotic groups. A multiscale 3D fluid-solid coupling finite element model considering trabecular system and lacunar-canalicular system was established. Cyclic displacement loadings with frequencies of 1, 2, and 4 Hz were applied. FINDINGS Results showed that the wall FSS around the adhesion complexes of osteocyte on the canaliculi was higher than that on the osteocyte body. Under the same loading conditions, the wall FSS of the osteoporotic group was smaller than that of the normal group. The fluid velocity and FSS in trabecular pores exhibited a linear relationship with loading frequency. Similarly, the FSS around osteocytes also showed the loading frequency-dependent phenomenon. INTERPRETATION The high cadence in movement can effectively increase the FSS level on osteocytes for osteoporotic bone, i.e., expand the space within the bone with physiological load. This study might help in understanding the process of bone remodeling under cyclic loading and provide the fundamental data for the development of strategies for osteoporosis treatment.
Collapse
Affiliation(s)
- Sen Zhao
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Zebin Chen
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Taiyang Li
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Qing Sun
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, PR China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, PR China; Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing, 100091, PR China.
| |
Collapse
|
5
|
Chan ME, Strait L, Ashdown C, Pasumarthy S, Hassan A, Crimarco S, Singh C, Patel VS, Pagnotti G, Khan O, Uzer G, Rubin CT. Low intensity mechanical signals promote proliferation in a cell-specific manner: Tailoring a non-drug strategy to enhance biomanufacturing yields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547864. [PMID: 37461507 PMCID: PMC10350023 DOI: 10.1101/2023.07.05.547864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Biomanufacturing relies on living cells to produce biotechnology-based therapeutics, tissue engineering constructs, vaccines, and a vast range of agricultural and industrial products. With the escalating demand for these bio-based products, any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline. While these goals are primarily achieved using biological or chemical strategies, harnessing cell mechanosensitivity represents a promising - albeit less studied - physical pathway to promote bioprocessing endpoints, yet identifying which mechanical parameters influence cell activities has remained elusive. We tested the hypothesis that mechanical signals, delivered non-invasively using low-intensity vibration (LIV; <1g, 10-500Hz), will enhance cell expansion, and determined that any unique signal configuration was not equally influential across a range of cell types. Varying frequency, intensity, duration, refractory period, and daily doses of LIV increased proliferation in CHO-adherent cells (+79% in 96h) using a particular set of LIV parameters (0.2g, 500Hz, 3x30 min/d, 2h refractory period), yet this same mechanical input suppressed proliferation in CHO-suspension cells (-13%). Exposing these same CHO-suspension cells to distinct LIV parameters (30Hz, 0.7g, 2x60 min/d, 2h refractory period) increased proliferation by 210%. Particle image velocimetry combined with finite element modeling showed high transmissibility of these signals across fluids (>90%), and LIV effectively scaled up to T75 flasks. Ultimately, when LIV is tailored to the target cell population, its highly efficient transmission across media represents a means to non-invasively augment biomanufacturing endpoints for both adherent and suspended cells, and holds immediate applications, ranging from small-scale, patient-specific personalized medicine to large-scale commercial bio-centric production challenges.
Collapse
|
6
|
Falcinelli C, Valente F, Vasta M, Traini T. Finite element analysis in implant dentistry: State of the art and future directions. Dent Mater 2023:S0109-5641(23)00092-1. [PMID: 37080880 DOI: 10.1016/j.dental.2023.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE To discuss the state of the art of Finite Element (FE) modeling in implant dentistry, to highlight the principal features and the current limitations, and giving recommendations to pave the way for future studies. METHODS The articles' search was performed through PubMed, Web of Science, Scopus, Science Direct, and Google Scholar using specific keywords. The articles were selected based on the inclusion and exclusion criteria, after title, abstract and full-text evaluation. A total of 147 studies were included in this review. RESULTS To date, the FE analysis of the bone-dental implant system has been investigated by analyzing several types of implants; modeling only a portion of bone considered as isotropic material, despite its anisotropic behavior; assuming in most cases complete osseointegration; considering compressive or oblique forces acting on the implant; neglecting muscle forces and the bone remodeling process. Finally, there is no standardized approach for FE modeling in the dentistry field. SIGNIFICANCE FE modeling is an effective computational tool to investigate the long-term stability of implants. The ultimate aim is to transfer such technology into clinical practice to help dentists in the diagnostic and therapeutic phases. To do this, future research should deeply investigate the loading influence on the bone-implant complex at a microscale level. This is a key factor still not adequately studied. Thus, a multiscale model could be useful, allowing to account for this information through multiple length scales. It could help to obtain information about the relationship among implant design, distribution of bone stress, and bone growth. Finally, the adoption of a standardized approach will be necessary, in order to make FE modeling highly predictive of the implant's long-term stability.
Collapse
Affiliation(s)
- Cristina Falcinelli
- Department of Engineering and Geology, University "G. d'Annunzio" of Chieti-Pescara, Viale Pindaro 42, Pescara 65127, Italy.
| | - Francesco Valente
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy; Electron Microscopy Laboratory, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| | - Marcello Vasta
- Department of Engineering and Geology, University "G. d'Annunzio" of Chieti-Pescara, Viale Pindaro 42, Pescara 65127, Italy
| | - Tonino Traini
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy; Electron Microscopy Laboratory, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, Chieti 66100, Italy
| |
Collapse
|
7
|
Littman J, Aaron RK. Stimulation of Chondrogenesis in a Developmental Model of Endochondral Bone Formation by Pulsed Electromagnetic Fields. Int J Mol Sci 2023; 24:3275. [PMID: 36834690 PMCID: PMC9967535 DOI: 10.3390/ijms24043275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Notable characteristics of the skeleton are its responsiveness to physical stimuli and its ability to remodel secondary to changing biophysical environments and thereby fulfill its physiological roles of stability and movement. Bone and cartilage cells have many mechanisms to sense physical cues and activate a variety of genes to synthesize structural molecules to remodel their extracellular matrix and soluble molecules for paracrine signaling. This review describes the response of a developmental model of endochondral bone formation which is translationally relevant to embryogenesis, growth, and repair to an externally applied pulsed electromagnetic field (PEMF). The use of a PEMF allows for the exploration of morphogenesis in the absence of distracting stimuli such as mechanical load and fluid flow. The response of the system is described in terms of the cell differentiation and extracellular matrix synthesis in chondrogenesis. Emphasis is placed upon dosimetry of the applied physical stimulus and some of the mechanisms of tissue response through a developmental process of maturation. PEMFs are used clinically for bone repair and have other potential clinical applications. These features of tissue response and signal dosimetry can be extrapolated to the design of clinically optimal stimulation.
Collapse
Affiliation(s)
| | - Roy K. Aaron
- Department of Orthopedic Surgery, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
8
|
Minematsu A, Nishii Y. Effects of whole body vibration on bone properties in growing rats. Int Biomech 2022; 9:19-26. [DOI: 10.1080/23335432.2022.2142666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Akira Minematsu
- Department of Physical Therapy, Faculty of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, 635-0832, Japan
| | - Yasue Nishii
- Department of Physical Therapy, Faculty of Health Science, Kio University, 4-2-2 Umaminaka, Koryo-cho, Kitakatsuragi-gun, 635-0832, Japan
| |
Collapse
|
9
|
Rubin J, Styner M. The skeleton in a physical world. Exp Biol Med (Maywood) 2022; 247:2213-2222. [PMID: 35983849 PMCID: PMC9899984 DOI: 10.1177/15353702221113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
All organisms exist within a physical space and respond to physical forces as part of daily life. In higher organisms, the skeleton is critical for locomotion in the physical environment, providing a carapace upon which the animal can move to accomplish functions necessary for living. As such, the skeleton has responded evolutionarily, and does in real-time, to physical stresses placed on it to ensure that its structure supports its function in the sea, in the air, and on dry land. In this article, we consider how those cells responsible for remodeling skeletal structure respond to mechanical force including load magnitude, frequency, and cyclicity, and how force rearranges cellular structure in turn. The effects of these forces to balance the mesenchymal stem cell supply of bone-forming osteoblasts and energy storing adipocytes are addressed. That this phenotypic switching is achieved at the level of both gene transactivation and alteration of structural epigenetic controls of gene expression is considered. Finally, as clinicians, we consider this information as it applies to a prescriptive for intelligent exercise.
Collapse
|
10
|
Nix Z, Kota D, Ratnayake I, Wang C, Smith S, Wood S. Spectral characterization of cell surface motion for mechanistic investigations of cellular mechanobiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:3-15. [PMID: 36108781 DOI: 10.1016/j.pbiomolbio.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Understanding the specific mechanisms responsible for anabolic and catabolic responses to static or dynamic force are largely poorly understood. Because of this, most research groups studying mechanotransduction due to dynamic forces employ an empirical approach in deciding what frequencies to apply during experiments. While this has been shown to elucidate valuable information regarding how cells respond under controlled provocation, it is often difficult or impossible to determine a true optimal frequency for force application, as many intracellular complexes are involved in receiving, propagating, and responding to a given stimulus. Here we present a novel adaptation of an analytical technique from the fields of civil and mechanical engineering that may open the door to direct measurement of mechanobiological cellular frequencies which could be used to target specific cell signaling pathways leveraging synergy between outside-in and inside-out mechanotransduction approaches. This information could be useful in identifying how specific proteins are involved in the homeostatic balance, or disruption thereof, of cells and tissue, furthering the understanding of the pathogenesis and progression of many diseases across a wide variety of cell types, which may one day lead to the development of novel mechanobiological therapies for clinical use.
Collapse
Affiliation(s)
- Zachary Nix
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Divya Kota
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Ishara Ratnayake
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Congzhou Wang
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Steve Smith
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA
| | - Scott Wood
- Department of Nanoscience & Biomedical Engineering, BioSystems Networks / Translational Research (BioSNTR), South Dakota School of Mines and Technology, USA.
| |
Collapse
|
11
|
Ballinger TJ, Thompson WR, Guise TA. The bone-muscle connection in breast cancer: implications and therapeutic strategies to preserve musculoskeletal health. Breast Cancer Res 2022; 24:84. [PMID: 36419084 PMCID: PMC9686026 DOI: 10.1186/s13058-022-01576-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022] Open
Abstract
Breast cancer and its therapies frequently result in significant musculoskeletal morbidity. Skeletal complications include bone metastases, pain, bone loss, osteoporosis, and fracture. In addition, muscle loss or weakness occurring in both the metastatic and curative setting is becoming increasingly recognized as systemic complications of disease and treatment, impacting quality of life, responsiveness to therapy, and survival. While the anatomical relationship between bone and muscle is well established, emerging research has led to new insights into the biochemical and molecular crosstalk between the skeletal and muscular systems. Here, we review the importance of both skeletal and muscular health in breast cancer, the significance of crosstalk between bone and muscle, and the influence of mechanical signals on this relationship. Therapeutic exploitation of signaling between bone and muscle has great potential to prevent the full spectrum of musculoskeletal complications across the continuum of breast cancer.
Collapse
Affiliation(s)
- Tarah J Ballinger
- Department of Medicine, Indiana University School of Medicine, 535 Barnhill Dr. RT 473, Indianapolis, IN, 46202, USA.
| | - William R Thompson
- Department of Medicine, Indiana University School of Medicine, 535 Barnhill Dr. RT 473, Indianapolis, IN, 46202, USA
| | - Theresa A Guise
- Department of Endocrine Neoplasia and Hormonal Disorders, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
An in silico model for woven bone adaptation to heavy loading conditions in murine tibia. Biomech Model Mechanobiol 2022; 21:1425-1440. [PMID: 35796844 DOI: 10.1007/s10237-022-01599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Existing in silico models for lamellar bone adaptation to mechanical loading are unsuitable for predicting woven bone growth. This anomaly is due to the difference in mechanobiology of the woven bone with respect to that of the lamellar bone. The present study is aimed at developing an in silico bone-adaptation model for woven bone at cellular and tissue levels. The diffusion of Ca2+ ions reaching lining cells from the osteocytic network and the bone cortex in response to a mechanical loading on the cortical bone has been considered as a stimulus. The diffusion of ions within osteocytic network has been computed with a lacunar-canalicular network (LCN) in which bone cells are uniformly arranged. Strain energy density is assumed to regulate ion flow within the network when the induced normal strain is above a threshold level. If the induced strain exceeds another higher threshold level, then the strain with a power constant is additionally assumed to regulate the stimulus. The intracellular flow of Ca2+ ions within the LCN has been simulated using Fick's laws of diffusion, using a finite element method. The ion diffusion from bone cortex to vesicles has been formulated as a normal strain with a power constant. The stimuli reaching the surface cells are assumed to form the new bone. The mathematical model closely predicts woven bone growth in mouse and rat tibia for various in vivo loading conditions. This model is the first to predict woven bone growth at tissue and cellular levels in response to heavy mechanical loading.
Collapse
|
13
|
Abstract
This Perspectives provides a back-to-basics rationale for the ideal exercise prescription for osteoporosis. The relevance of fundamental principles of mechanical loading and bone adaptation determined from early animal studies is revisited. The application to human trials is presented, including recent advances. A model of broadscale implementation is described, and areas for further investigation are identified.
Collapse
Affiliation(s)
- Belinda R Beck
- Griffith University, Gold Coast, and The Bone Clinic, Coorparoo, QLD, Australia
| |
Collapse
|
14
|
BASKAN OZNUR, OZCIVICI ENGIN. VIABILITY OF 3T3-L1 PREADIPOCYTES IS MODULATED BY THE APPLIED FREQUENCY BUT NOT THE EXPOSURE DURATION OF LOW INTENSITY VIBRATORY STIMULATION. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422500063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mechanical forces are the integral determinants in cell and tissue homeostasis and regeneration, and they can affect numerous biological process from proliferation to fate determination. Mechanical forces that possess low magnitude and high frequency characteristics are also known as low intensity vibrations (LIVs). These signals were studied widely on many cell types for regenerative purposes, however most of these studies select components of LIV signals (e.g., magnitude, frequency, duration, etc.) arbitrarily. Here, we addressed the effect of LIV applied frequency, LIV daily exposure time and fate induction on the viability of preadipocyte 3T3-L1 cells. For this, we performed a frequency sweep that was ranging from 30[Formula: see text]Hz to 120[Formula: see text]Hz with 15[Formula: see text]Hz increments applied for 5, 10 or 20[Formula: see text]min during quiescent growth or adipogenesis for up to 10 days. Results suggest that the applied frequency and fate induction was an important determinant of cell viability while daily exposure time had no effect. These findings contribute to the effort of optimizing a relevant mechanical stimulus that can inhibit adipogenesis.
Collapse
Affiliation(s)
- OZNUR BASKAN
- Department of Bioengineering, Izmir Institute of Technology Urla, Izmir 35430, Turkey
| | - ENGIN OZCIVICI
- Department of Bioengineering, Izmir Institute of Technology Urla, Izmir 35430, Turkey
| |
Collapse
|
15
|
Gao C, Zeng Z, Peng S, Shuai C. Magnetostrictive alloys: Promising materials for biomedical applications. Bioact Mater 2022; 8:177-195. [PMID: 34541395 PMCID: PMC8424514 DOI: 10.1016/j.bioactmat.2021.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Magnetostrictive alloys have attracted increasing attention in biomedical applications because of the ability to generate reversible deformation in the presence of external magnetic fields. This review focuses on the advances in magnetostrictive alloys and their biomedical applications. The theories of magnetostriction are systematically summarized. The different types of magnetostrictive alloys and their preparation methods are also reviewed in detail. The magnetostrictive strains and phase compositions of typical magnetostrictive alloys, including iron based, rare-earth based and ferrite materials, are presented. Besides, a variety of approaches to preparing rods, blocks and films of magnetostriction materials, as well as the corresponding methods and setups for magnetostriction measurement, are summarized and discussed. Moreover, the interactions between magnetostrictive alloys and cells are analyzed and emphasis is placed on the transduction and transformation process of mechanochemical signals induced by magnetostriction. The latest applications of magnetostrictive alloys in remote microactuators, magnetic field sensors, wireless implantable devices and biodegradable implants are also reviewed. Furthermore, future research directions of magnetostrictive alloys are prospected with focus on their potential applications in remote cell actuation and bone repair.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Zihao Zeng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, China
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| |
Collapse
|
16
|
Loenen ACY, Noailly J, Ito K, Willems PC, Arts JJ, van Rietbergen B. Patient-Specific Variations in Local Strain Patterns on the Surface of a Trussed Titanium Interbody Cage. Front Bioeng Biotechnol 2022; 9:750246. [PMID: 35087797 PMCID: PMC8786731 DOI: 10.3389/fbioe.2021.750246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: 3D printed trussed titanium interbody cages may deliver bone stimulating mechanobiological strains to cells attached at their surface. The exact size and distribution of these strains may depend on patient-specific factors, but the influence of these factors remains unknown. Therefore, this study aimed to determine patient-specific variations in local strain patterns on the surface of a trussed titanium interbody fusion cage.Materials and Methods: Four patients eligible for spinal fusion surgery with the same cage size were selected from a larger database. For these cases, patient-specific finite element models of the lumbar spine including the same trussed titanium cage were made. Functional dynamics of the non-operated lumbar spinal segments, as well as local cage strains and caudal endplate stresses at the operated segment, were evaluated under physiological extension/flexion movement of the lumbar spine.Results: All patient-specific models revealed physiologically realistic functional dynamics of the operated spine. In all patients, approximately 30% of the total cage surface experienced strain values relevant for preserving bone homeostasis and stimulating bone formation. Mean caudal endplate contact pressures varied up to 10 MPa. Both surface strains and endplate contact pressures varied more between loading conditions than between patients.Conclusions: This study demonstrates the applicability of patient-specific finite element models to quantify the impact of patient-specific factors such as bone density, degenerative state of the spine, and spinal curvature on interbody cage loading. In the future, the same framework might be further developed in order to establish a pipeline for interbody cage design optimizations.
Collapse
Affiliation(s)
- Arjan C. Y. Loenen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jérôme Noailly
- Department of Information and Communication Technologies, BCN MedTech, Universitat Pompeu Fabra, Barcelona, Spain
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Paul C. Willems
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jacobus J. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bert van Rietbergen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Center, Maastricht, Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- *Correspondence: Bert van Rietbergen,
| |
Collapse
|
17
|
Beck B, Rubin C, Harding A, Paul S, Forwood M. The effect of low-intensity whole-body vibration with or without high-intensity resistance and impact training on risk factors for proximal femur fragility fracture in postmenopausal women with low bone mass: study protocol for the VIBMOR randomized controlled trial. Trials 2022; 23:15. [PMID: 34991684 PMCID: PMC8734256 DOI: 10.1186/s13063-021-05911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The prevailing medical opinion is that medication is the primary (some might argue, only) effective intervention for osteoporosis. It is nevertheless recognized that osteoporosis medications are not universally effective, tolerated, or acceptable to patients. Mechanical loading, such as vibration and exercise, can also be osteogenic but the degree, relative efficacy, and combined effect is unknown. The purpose of the VIBMOR trial is to determine the efficacy of low-intensity whole-body vibration (LIV), bone-targeted, high-intensity resistance and impact training (HiRIT), or the combination of LIV and HiRIT on risk factors for hip fracture in postmenopausal women with osteopenia and osteoporosis. METHODS Postmenopausal women with low areal bone mineral density (aBMD) at the proximal femur and/or lumbar spine, with or without a history of fragility fracture, and either on or off osteoporosis medications will be recruited. Eligible participants will be randomly allocated to one of four trial arms for 9 months: LIV, HiRIT, LIV + HiRIT, or control (low-intensity, home-based exercise). Allocation will be block-randomized, stratified by use of osteoporosis medications. Testing will be performed at three time points: baseline (T0), post-intervention (T1; 9 months), and 1 year thereafter (T2; 21 months) to examine detraining effects. The primary outcome measure will be total hip aBMD determined by dual-energy X-ray absorptiometry (DXA). Secondary outcomes will include aBMD at other regions, anthropometrics, and other indices of bone strength, body composition, physical function, kyphosis, muscle strength and power, balance, falls, and intervention compliance. Exploratory outcomes include bone turnover markers, pelvic floor health, quality of life, physical activity enjoyment, adverse events, and fracture. An economic evaluation will also be conducted. DISCUSSION No previous studies have compared the effect of LIV alone or in combination with bone-targeted HiRIT (with or without osteoporosis medications) on risk factors for hip fracture in postmenopausal women with low bone mass. Should either, both, or combined mechanical interventions be safe and efficacious, alternative therapeutic avenues will be available to individuals at elevated risk of fragility fracture who are unresponsive to or unwilling or unable to take osteoporosis medications. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (www. anzctr.org.au ) (Trial number ANZCTR12615000848505, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id = 368962 ); date of registration 14/08/2015 (prospectively registered). Universal Trial Number: U1111-1172-3652.
Collapse
Affiliation(s)
- Belinda Beck
- Menzies Health Institute Queensland, School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD Australia
| | - Clinton Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook, New York, NY USA
| | - Amy Harding
- Menzies Health Institute Queensland, School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD Australia
| | - Sanjoy Paul
- Melbourne EpiCentre, University of Melbourne and Melbourne Health, Melbourne, VIC Australia
| | - Mark Forwood
- School of Pharmacy and Medical Sciences, Gold Coast, QLD Australia
| |
Collapse
|
18
|
Grover K, Hu M, Lin L, Muir J, Qin YX. Functional disuse initiates medullary endosteal micro-architectural impairment in cortical bone characterized by nanoindentation. J Bone Miner Metab 2019; 37:1048-1057. [PMID: 31292723 DOI: 10.1007/s00774-019-01011-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/16/2019] [Indexed: 01/22/2023]
Abstract
In this study, we evaluated the effect of functional disuse-induced bone remodeling on its mechanical properties, individually at periosteum and medullary endosteum regions of the cortical bone. Left middle tibiae were obtained from 5-month-old female Sprague-Dawley rats for the baseline control as well as hindlimb suspended (disuse) groups. Micro-nano-mechanical elastic moduli (at lateral region) was evaluated along axial (Z), circumferential (C) and radial (R) orientations using nanoindentation. Results indicated an anisotropic microstructure with axial orientation having the highest and radial orientation with the lowest moduli at periosteum and medullary endosteum for both baseline control as well as disuse groups. Between the groups: at periosteum, an insignificant difference was evaluated for each of the orientations (p > 0.05) and at endosteum, a significant decrease of elastic moduli in the radial (p < 0.0001), circumferential (p < 0.001) and statistically insignificant difference in axial (p > 0.05) orientation. For the moduli ratios between groups: at periosteum, only significant difference in the Z/R (p < 0.05) anisotropy ratio, whereas at endosteum, a statistically significant difference in Z/C (p < 0.001), and Z/R (p < 0.001), as well as C/R (p < 0.05) anisotropy ratios, was evaluated. The results suggested initial bone remodeling impaired bone micro-architecture predominantly at the medullary endosteum with possible alterations in the geometric orientations of collagen and mineral phases inside the bone. The findings could be significant for studying the mechanotransduction pathways involved in maintaining the bone micro-architecture and possibly have high clinical significance for drug use against impairment from functional disuse.
Collapse
Affiliation(s)
- Kartikey Grover
- Department of Biomedical Engineering, SUNY Stony Brook University, 215 Bioengineering Building, Stony Brook, New York, 11794, USA
| | - Minyi Hu
- Department of Biomedical Engineering, SUNY Stony Brook University, 215 Bioengineering Building, Stony Brook, New York, 11794, USA
| | - Liangjun Lin
- Department of Biomedical Engineering, SUNY Stony Brook University, 215 Bioengineering Building, Stony Brook, New York, 11794, USA
| | - Jesse Muir
- Department of Biomedical Engineering, SUNY Stony Brook University, 215 Bioengineering Building, Stony Brook, New York, 11794, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, SUNY Stony Brook University, 215 Bioengineering Building, Stony Brook, New York, 11794, USA.
| |
Collapse
|
19
|
Qin YX, Xia Y, Muir J, Lin W, Rubin CT. Quantitative ultrasound imaging monitoring progressive disuse osteopenia and mechanical stimulation mitigation in calcaneus region through a 90-day bed rest human study. J Orthop Translat 2019; 18:48-58. [PMID: 31508307 PMCID: PMC6718925 DOI: 10.1016/j.jot.2018.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/21/2018] [Accepted: 11/28/2018] [Indexed: 11/24/2022] Open
Abstract
Background Osteoporosis parallels aging and functional mechanical unloading (e.g., space flight and bed rest), jeopardizing mineral density, microstructure, and integrity of bone and leading to an increased risk of fracture. A way to combat this deterioration is to harness the sensitivity of bone to mechanical signals. Objective This study evaluates the longitudinal effect of a dynamic mechanical loading through the heel on human bone in vivo during 90-day bed rest, monitored by quantitative ultrasound (QUS) imaging and dual-energy X-ray absorptiometry (DXA) in localized regions of interests, i.e., calcaneus. Methods A total of 29 bed rest individuals were evaluated (11 control and 18 treatment) with a brief (10-minute) daily low-intensity (0.3g), high-frequency (30Hz) dynamic mechanical stimulation countermeasure through vibrational inhibition bone erosion (VIBE). Both QUS and DXA detected longitudinal bone density and quality changes. Results Ultrasound velocity (UV) decreased in the control group and increased in the group treated with low-intensity loading. The UV increased by 1.9% and 1.6% at 60- and 90-day bed rest (p=0.01) in VIBE over control groups. A trend was found in broadband ultrasound attenuation (BUA), with a VIBE benefit of 1.8% at day 60 and 0.5% at day 90 in comparison with control (p=0.5). Bone mineral density (BMD) assessed by DXA decreased -4.50% for control individuals and -2.18% for VIBE individuals, showing a moderate effect of the mechanical intervention (p=0.19). Significant correlations between QUS and DXA were observed, with a combined BUA and UV vs. BMD: r2=0.70. Conclusion These results indicated that low-intensity, high-frequency loading has the potential to mitigate regional bone loss induced by long-term bed rest and that QUS imaging may be able to assess the subtle changes in bone alteration. Translational potential of this article Quantitative ultrasound has shown the efficacy of noninvasively assessing bone mass and structural properties in cadaver and isolated trabecular bone samples. While its ability in measuring in vivo bone quality and density is still unclear, a scanning confocal ultrasound imaging is developed and can perform an instant assessment for the subtle changes of such bone loss. This ultrasound imaging modality can potentially be used in the clinical assessment of bone mass. Moreover, physical stimulation has shown the ability to prevent bone loss induced by functional disuse and estrogen deficiency in animal models. However, its treatment capability is unclear. This study has shown that low-magnitude mechanical signals, introduced using low-intensity vibration (LIV), can mitigate regional bone loss caused by functional disuse. Thus localized mechanical treatment, and the quantitative ultrasound imaging have shown translational potential to noninvasively attenuate bone loss, and assess bone mass in the clinic, e.g., in an extreme condition such as long-term space mission, and long-term bedrest such as in case of spinal cord injury.
Collapse
Affiliation(s)
- Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Yi Xia
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Jesse Muir
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Wei Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
20
|
Carpenter RD, Klosterhoff BS, Torstrick FB, Foley KT, Burkus JK, Lee CSD, Gall K, Guldberg RE, Safranski DL. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. J Mech Behav Biomed Mater 2019; 80:68-76. [PMID: 29414477 DOI: 10.1016/j.jmbbm.2018.01.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/29/2022]
Abstract
Osseointegration of load-bearing orthopaedic implants, including interbody fusion devices, is critical to long-term biomechanical functionality. Mechanical loads are a key regulator of bone tissue remodeling and maintenance, and stress-shielding due to metal orthopaedic implants being much stiffer than bone has been implicated in clinical observations of long-term bone loss in tissue adjacent to implants. Porous features that accommodate bone ingrowth have improved implant fixation in the short term, but long-term retrieval studies have sometimes demonstrated limited, superficial ingrowth into the pore layer of metal implants and aseptic loosening remains a problem for a subset of patients. Polyether-ether-ketone (PEEK) is a widely used orthopaedic material with an elastic modulus more similar to bone than metals, and a manufacturing process to form porous PEEK was recently developed to allow bone ingrowth while preserving strength for load-bearing applications. To investigate the biomechanical implications of porous PEEK compared to porous metals, we analyzed finite element (FE) models of the pore structure-bone interface using two clinically available implants with high (> 60%) porosity, one being constructed from PEEK and the other from electron beam 3D-printed titanium (Ti). The objective of this study was to investigate how porous PEEK and porous Ti mechanical properties affect load sharing with bone within the porous architectures over time. Porous PEEK substantially increased the load share transferred to ingrown bone compared to porous Ti under compression (i.e. at 4 weeks: PEEK = 66%; Ti = 13%), tension (PEEK = 71%; Ti = 12%), and shear (PEEK = 68%; Ti = 9%) at all time points of simulated bone ingrowth. Applying PEEK mechanical properties to the Ti implant geometry and vice versa demonstrated that the observed increases in load sharing with PEEK were primarily due to differences in intrinsic elastic modulus and not pore architecture (i.e. 4 weeks, compression: PEEK material/Ti geometry = 53%; Ti material/PEEK geometry = 12%). Additionally, local tissue energy effective strains on bone tissue adjacent to the implant under spinal load magnitudes were over two-fold higher with porous PEEK than porous Ti (i.e. 4 weeks, compression: PEEK = 784 ± 351 microstrain; Ti = 180 ± 300 microstrain; and 12 weeks, compression: PEEK = 298 ± 88 microstrain; Ti = 121 ± 49 microstrain). The higher local strains on bone tissue in the PEEK pore structure were below previously established thresholds for bone damage but in the range necessary for physiological bone maintenance and adaptation. Placing these strain magnitudes in the context of literature on bone adaptation to mechanical loads, this study suggests that porous PEEK structures may provide a more favorable mechanical environment for bone formation and maintenance under spinal load magnitudes than currently available porous 3D-printed Ti, regardless of the level of bone ingrowth.
Collapse
Affiliation(s)
- R Dana Carpenter
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, USA.
| | - Brett S Klosterhoff
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - F Brennan Torstrick
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kevin T Foley
- Departments of Neurosurgery, Orthopaedic Surgery, and Biomedical Engineering, University of Tennessee Health Sciences Center, Memphis, TN, USA; Semmes-Murphey Neurologic & Spine Institute, Memphis, TN, USA
| | | | | | - Ken Gall
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA; Vertera Inc., Atlanta, GA, USA; MedShape Inc., Atlanta, GA, USA
| | - Robert E Guldberg
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
21
|
Komrakova M, Stuermer EK, Tezval M, Stuermer KM, Dullin C, Schmelz U, Doell C, Durkaya-Burchhardt N, Fuerst B, Genotte T, Sehmisch S. Evaluation of twelve vibration regimes applied to improve spine properties in ovariectomized rats. Bone Rep 2017. [PMCID: PMC5736857 DOI: 10.1016/j.bonr.2014.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While whole-body vibration (WBV) has recently been introduced as a non-pharmacological therapy for osteoporosis, studies have shown that it has no significant effect on the lumbar spine in older women. However, the vibration protocols differed among studies, and the major factor influencing the outcomes is unclear. The intention of the present study was to evaluate the effect of WBV—vertical (v) or horizontal (h) and of different frequencies and application regimes (1 × or 2 ×/d)—on lumbar spine properties in ovariectomized rats (Ovx). Three experiments were conducted. Thirteen-week old female Sprague–Dawley rats were Ovx or left intact (Non-Ovx). After eight weeks, all of the rats underwent metaphyseal osteotomy of the tibiae. Five days later, the rats were divided into six groups (n = 15): 1) intact, 2) Ovx, and 3–6) Ovx exposed to WBV. In Experiment 1, groups 3–6 underwent 35 Hz-v, 50 Hz-v, 70 Hz-v, and 90 Hz-v, respectively. In Experiment 2, groups 3–6 underwent 30 Hz-h, 50 Hz-h, 70 Hz-h, and 90 Hz-h, respectively. In Experiment 3, groups 3–6 underwent 35 Hz-v, 70 Hz-v, 35 Hz-h, and 70 Hz-h, respectively. Vibration exposure was 15 min 1 ×/d in Experiment 1 and 2 and 2 ×/d in Experiment 3 for up to 30 days. Vertebral bodies were used in micro-computed tomography, biomechanical, ashing, and gene expression analyses. Vertical vibrations applied once a day favorably affected bone volume fraction (BV/TV) and Ca2 +/PO43 − and decreased Rankl gene expression. When applied twice a day, v-vibrations diminished mineral content. Horizontal vibrations (1 ×/d) reduced Ca2 +/PO43 − ratio and Opg mRNA level, whereas h-vibration (2 ×/d) normalized OC serum levels. Many of the other measured parameters did not reveal any significant differences between the vibrated groups and the untreated Ovx group. The effect of ovariectomy was confirmed by atrophied uterus, impaired biomechanical properties, and bone mineral density and BV/TV of the vertebral body. The findings of the present study indicate that application frequency rate and direction of vibration might influence spine response differently. However, we were unable to find any clearly beneficial or harmful effect of vibration regimes on the osteopenic lumbar spine in rats. Whole body vibration (WBV) has been introduced as therapy for osteoporosis. WBV had no significant effect on lumbar spine in older women. WBVs of different frequencies and types were investigated in osteopenic rats. Horizontal, vertical WBVs and application frequency differently affected spine. Any clearly beneficial or harmful effect of WBVs on lumbar spine was identified.
Collapse
|
22
|
James CR, Atkins LT, Yang HS, Dufek JS, Bates BT. Prediction of calcaneal bone competence from biomechanical accommodation variables measured during weighted walking. Hum Mov Sci 2017; 56:37-45. [PMID: 29096182 DOI: 10.1016/j.humov.2017.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/03/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022]
Abstract
Carrying weight while walking is a common activity associated with increased musculoskeletal loading, but not all individuals accommodate to the weight in the same way. Different accommodation strategies could lead to different skeletal forces, stimuli for bone adaptation and ultimately bone competence. The purpose of the study was to explore the relationships between calcaneal bone competence and biomechanical accommodation variables measured during weighted walking. Twenty healthy men and women (10 each; age 27.8 ± 6.8 years) walked on a treadmill at 1.34 m/s while carrying 0, 44.5 and 89 N weights with two hands in front of the body. Peak vertical ground reaction force and sagittal plane angular displacements of the trunk and left lower extremity during weight acceptance were measured and used to quantify accommodation. Calcaneal bone stiffness index T-score (BST) was measured using quantitative ultrasound. Correlation and stepwise multiple regression were used to predict calcaneal BST from the accommodation variables. Accommodations of the foot and ankle explained 29 and 54% (p ≤ .015) of the variance in calcaneal BST in different regression models. Statistical resampling using 1000 replications confirmed the strength and consistency of relationships, with the best model explaining 94% of the variance in calcaneal BST. Individuals who change foot and ankle function when carrying heavier weight likely alter the control of gravitational and muscular forces, thereby affecting calcaneal loading, bone adaptation and bone competence. These novel findings illustrate the importance of gait accommodation strategies and highlight a potential clinical consequence that requires further investigation.
Collapse
Affiliation(s)
- C Roger James
- Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Lee T Atkins
- Department of Physical Therapy, Angelo State University, San Angelo, TX, USA.
| | - Hyung Suk Yang
- Division of Kinesiology and Sport Management, University of South Dakota, Vermillion, SD, USA.
| | - Janet S Dufek
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Barry T Bates
- Department of Human Physiology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
23
|
Random Electromyostimulation Promotes Osteogenesis and the Mechanical Properties of Rat Bones. Ann Biomed Eng 2017; 45:2837-2846. [PMID: 28929434 DOI: 10.1007/s10439-017-1927-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
Exercise is often recommended as a promising non-pharmacologic countermeasure to prevent osteoporosis. However, elderly osteoporotic patients generally have physical fitness difficulties preventing them from performing effective and sustainable exercise. Electromyostimulation should be one effective modality for non-pharmacological prevention of osteoporosis without any voluntary physical movements. However, successful stimulation patterns remain controversial. As suggested by our previous in vitro studies, randomized timing of stimulation could be a candidate to maximize the osteogenic effect of electromyostimulation. In this study, the effects of random stimulation to the quadriceps on osteogenesis in the femurs were investigated using rats, in comparison with a periodic stimulation pattern. In histomorphometric assessments, both stimulation patterns demonstrated increases in bone formation rate either in cortical bone at the midshaft or in trabecular bone at the femoral neck on the stimulated side. However, maximum load and strain energy to failure were enhanced only by the random stimulation, on either the stimulated or non-stimulated side. It is concluded that randomized muscle stimulation has effective osteogenic capability at the stimulation site, similar to periodic stimulation; however, its effectiveness on mechanical properties is expandable to other non-stimulated sites.
Collapse
|
24
|
Frechette DM, Krishnamoorthy D, Pamon T, Chan ME, Patel V, Rubin CT. Mechanical signals protect stem cell lineage selection, preserving the bone and muscle phenotypes in obesity. Ann N Y Acad Sci 2017; 1409:33-50. [PMID: 28891202 DOI: 10.1111/nyas.13442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
The incidence of obesity is rapidly rising, increasing morbidity and mortality rates worldwide. Associated comorbidities include type 2 diabetes, heart disease, fatty liver disease, and cancer. The impact of excess fat on musculoskeletal health is still unclear, although it is associated with increased fracture risk and a decline in muscular function. The complexity of obesity makes understanding the etiology of bone and muscle abnormalities difficult. Exercise is an effective and commonly prescribed nonpharmacological treatment option, but it can be difficult or unsafe for the frail, elderly, and morbidly obese. Exercise alternatives, such as low-intensity vibration (LIV), have potential for improving musculoskeletal health, particularly in conditions with excess fat. LIV has been shown to influence bone marrow mesenchymal stem cell differentiation toward higher-order tissues (i.e., bone) and away from fat. While the exact mechanisms are not fully understood, recent studies utilizing LIV both at the bench and in the clinic have demonstrated some efficacy. Here, we discuss the current literature investigating the effects of obesity on bone, muscle, and bone marrow and how exercise and LIV can be used as effective treatments for combating the negative effects in the presence of excess fat.
Collapse
Affiliation(s)
- Danielle M Frechette
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Divya Krishnamoorthy
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Tee Pamon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - M Ete Chan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Vihitaben Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| |
Collapse
|
25
|
Pham MH, Buser Z, Wang JC, Acosta FL. Low-magnitude mechanical signals and the spine: A review of current and future applications. J Clin Neurosci 2017; 40:18-23. [DOI: 10.1016/j.jocn.2016.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023]
|
26
|
Stenlund P, Trobos M, Lausmaa J, Brånemark R, Thomsen P, Palmquist A. Effect of load on the bone around bone-anchored amputation prostheses. J Orthop Res 2017; 35:1113-1122. [PMID: 27341064 DOI: 10.1002/jor.23352] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/22/2016] [Indexed: 02/04/2023]
Abstract
Osseointegrated transfemoral amputation prostheses have proven successful as an alternative method to the conventional socket-type prostheses. The method improves prosthetic use and thus increases the demands imposed on the bone-implant system. The hypothesis of the present study was that the loads applied to the bone-anchored implant system of amputees would result in locations of high stress and strain transfer to the bone tissue and thus contribute to complications such as unfavourable bone remodeling and/or elevated inflammatory response and/or compromised sealing function at the tissue-abutment interface. In the study, site-specific loading measurements were made on amputees and used as input data in finite element analyses to predict the stress and strain distribution in the bone tissue. Furthermore, a tissue sample retrieved from a patient undergoing implant revision was characterized in order to evaluate the long-term tissue response around the abutment. Within the limit of the evaluated bone properties in the present experiments, it is concluded that the loads applied to the implant system may compromise the sealing function between the bone and the abutment, contributing to resorption of the bone in direct contact with the abutment at the most distal end. This was supported by observations in the retrieved clinical sample of bone resorption and the formation of a soft tissue lining along the abutment interface. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1113-1122, 2017.
Collapse
Affiliation(s)
- Patrik Stenlund
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margarita Trobos
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jukka Lausmaa
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås, Sweden
| | - Rickard Brånemark
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Thomsen
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- BIOMATCELL VINN Excellence Center of Biomaterials Cell Therapy, Gothenburg, Sweden.,Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Wu W, Liu H, Lou J, Yang Y, Rong X, Xu J. [Domestic artificial cervical disc interface pressure distribution and effect of bone-implant interface pressure on osseointegration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:443-450. [PMID: 29798610 DOI: 10.7507/1002-1892.201610121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To analyze the distribution of stress in the upper and lower plates of the prosthesis-bone interface, and the effect of interface pressure on osseointegration. Methods CT scanning was performed on goats at 1 week after artificial cervical disc replacement to establish the finite element model of C 3, 4. The stress distribution of the upper and lower plates of the interface was observed. At 6 and 12 months after replacement, Micro-CT scan and three dimensional reconstruction were performed to measure the bone volume fraction (BVF), trabecular number (Tb. N), trabecular thickness (Tb. Th), trabecular separation (Tb. Sp), bone mineral density (BMD), bone surface/bone volume (BS/BV), and trabecular pattern factor (Tb. Pf). The C 3 lower plate and C 4 upper plate of 4 normal goat were chosen to made the cylinder of the diameter of 2 mm. The gene expressions of receptor activator for nuclear factor κB ligand (RANKL), osteoprotegerin (OPG), transforming growth factor β (TGF-β), and macrophage colony-stimulating factor (M-CSF) were detected by real time fluorescent quantitative PCR at immediate after cutting and at 24 and 48 hours after culture. The samples of appropriate culture time were selected to made mechanical loading, and the gene expressions of RANKL, OPG, M-CSF, and TGF-β were detected by real time fluorescent quantitative PCR; no mechanical loading samples were used as normal controls. Results Under 25 N axial loading, the stress of the upper plate of C 3, 4 was concentrated to post median region, and the stress of the lower plate to middle-front region and two orbits. According to stress, the plate was divided into 5 regions. The Micro-CT scan showed that BMD, Tb.Th, BVF, and Tb.N significantly increased, and BS/BV, Tb.Sp, and Tb.Pf significantly decreased at 12 months after replacement when compared with ones at 6 months ( P<0.05). At 24 and 48 hours after culture, the gene expressions of RANKL, OPG, and TGF-β were signifi-cantly higher than those at immediate ( P<0.05), but no significant difference was found between at 24 and 48 hours after culture ( P>0.05). The mechanical loading test results at 24 hours after culture showed that the RANKL and OPG gene expressions and OPG/RANKL ratio in C 3 lower plate and C 4 upper plate were significantly up-regulated when compared with controls ( P<0.05), but no significant difference was shown in TGF-β and M-CSF gene expressions ( P>0.05). Conclusion Domestic artificial cervical disc endplate has different pressure distribution, the stress of lower plate is higher than that of upper plate. Pressure has important effect on local osseointegration; the higher pressure area is, the osseointegration is better. Under the maximum pressure in interface, the osteoblast proliferation will increase, which is advantageous to the local osseointegration.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China;Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China
| | - Hao Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| | - Jigang Lou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yunbei Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Rong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jianzhong Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, 400038, P.R.China
| |
Collapse
|
28
|
El Shazley N, Hamdy A, El-Eneen HA, El Backly RM, Saad MM, Essam W, Moussa H, El Tantawi M, Jain H, Marei MK. Bioglass in Alveolar Bone Regeneration in Orthodontic Patients: Randomized Controlled Clinical Trial. JDR Clin Trans Res 2016; 1:244-255. [PMID: 30931746 DOI: 10.1177/2380084416660672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study was designed as a split-mouth randomized controlled clinical trial to evaluate the effects of a novel bioactive glass scaffold-tailored amorphous multiporous (TAMP)-for the preservation of alveolar bone following tooth extraction in class II orthodontic patients. TAMP scaffolds were prepared and sterilized. Patients were screened for eligibility, and 6 patients accounting for 14 extraction sockets were included in this stage. Sockets were randomly allocated to either control (left empty) or test (grafted with TAMP scaffold particles). Follow-up was done after 1, 2, 4, 8, and 12 to 17 wk with digital periapical radiographs to evaluate changes in crestal bone height and bone mineral density (BMD), 3-dimensional volumetric analysis of impression casts, and histologic analysis of core biopsies. Furthermore, alveolar bone marrow mesenchymal stem cells were cultured from control and test sockets following biopsy retrieval to evaluate the ability of TAMP bioactive glass scaffolds to recruit host progenitor cells. Results showed that sockets grafted with TAMP bioactive glass scaffolds better preserved height after 3 mo where mesially 57.1% of test cases showed preservation of socket height, compared with 28.6% of control cases. Distally, this was 42.9% of test cases versus none of the control cases. Regarding BMD, the test sides had higher BMD in all 3 sections of the socket, with the greatest reduction in BMD found in the coronal third. Results were not statistically significant. Histologically, sockets grafted with TAMP bioactive glass scaffolds showed a distinct pattern of bone healing characterized by vertical trabeculae and large vascularized marrow spaces with sockets showing corticalization. Volumetric analysis showed a better preservation of socket contour with TAMP bioactive glass scaffolds. TAMP bioactive glass scaffolds appeared to enhance the recruitment of stem cells from the grafted sockets. In conclusion, TAMP scaffolds appear to better preserve alveolar bone following extraction and allow for a more active bone modeling and remodeling process( ClinicalTrials.gov identifier:NCT01878084). Knowledge Transfer statement: The results of this study set the stage for the recommended use of novel biomimetic scaffolds, such as the tailored amorphous multiporous bioactive glass for preservation of the socket following extraction. This can be valuable for patients and clinicians alike when deciding on long-term prosthetic alternatives that not only result in immediate bone preservation but will accommodate the dynamic nature of bone.
Collapse
Affiliation(s)
- N El Shazley
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - A Hamdy
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - H A El-Eneen
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,2 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - R M El Backly
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,3 Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - M M Saad
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,4 Oral Biology Department, Faculty of Dentistry, Pharos University, Alexandria, Egypt
| | - W Essam
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,5 Department of Pedodontics and Public Health, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - H Moussa
- 6 Department of Orthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - M El Tantawi
- 7 Department of Preventive Dental Sciences, College of Dentistry, University of Dammam, Dammam, Saudi Arabia
| | - H Jain
- 8 Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - M K Marei
- 1 Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.,9 Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
29
|
Gnyubkin V, Guignandon A, Laroche N, Vanden-Bossche A, Malaval L, Vico L. High-acceleration whole body vibration stimulates cortical bone accrual and increases bone mineral content in growing mice. J Biomech 2016; 49:1899-1908. [PMID: 27178020 DOI: 10.1016/j.jbiomech.2016.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/17/2022]
Abstract
Whole body vibration (WBV) is a promising tool for counteracting bone loss. Most WBV studies on animals have been performed at acceleration <1g and frequency between 30 and 90Hz. Such WBV conditions trigger bone growth in osteopenia models, but not in healthy animals. In order to test the ability of WBV to promote osteogenesis in young animals, we exposed seven-week-old male mice to vibration at 90Hz and 2g peak acceleration for 15min/day, 5 days/week. We examined the effects on skeletal tissues with micro-computed tomography and histology. We also quantified bone vascularization and mechanosensitive osteocyte proteins, sclerostin and DMP1. Three weeks of WBV resulted in an increase of femur cortical thickness (+5%) and area (+6%), associated with a 25% decrease of sclerostin expression, and 35% increase of DMP1 expression in cortical osteocytes. Mass-structural parameters of trabecular bone were unaltered in femur or vertebra, while osteoclastic parameters and bone formation rate were increased at both sites. Three weeks of WBV resulted in higher blood vessel numbers (+23%) in the distal femoral metaphysis. After 9-week WBV, we have not observed the difference in structural cortical or trabecular parameters. However, the tissue mineral density of cortical bone was increased by 2.5%. Three or nine weeks of 2g/90Hz WBV treatment did not affect longitudinal growth rate or body weight increase under our experimental conditions, indicating that these are safe to use. These results validate a potential of 2g/90Hz WBV to stimulate trabecular bone cellular activity, accelerate cortical bone growth, and increase bone mineral density.
Collapse
Affiliation(s)
- Vasily Gnyubkin
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Alain Guignandon
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Norbert Laroche
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Arnaud Vanden-Bossche
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Luc Malaval
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France
| | - Laurence Vico
- INSERM U1059, 42023 Saint-Etienne, France; Université de Lyon, 42023 Saint-Etienne, France.
| |
Collapse
|
30
|
Srinivasan S, Ausk BJ, Bain SD, Gardiner EM, Kwon RY, Gross TS. Rest intervals reduce the number of loading bouts required to enhance bone formation. Med Sci Sports Exerc 2016; 47:1095-103. [PMID: 25207932 DOI: 10.1249/mss.0000000000000509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE As our society becomes increasingly sedentary, compliance with exercise regimens that require numerous high-energy activities each week become less likely. Alternatively, given an osteogenic exercise intervention that required minimal effort, it is reasonable to presume that participation would be enhanced. Insertion of brief rest intervals between each cycle of mechanical loading holds potential to achieve this result because substantial osteoblast function is activated by many fewer loading repetitions within each loading bout. Here, we examined the complementary hypothesis that the number of bouts per week of rest-inserted loading could be reduced from three bouts per week without loss of osteogenic efficacy. METHODS We conducted a series of 3-wk in vivo experiments that noninvasively exposed the right tibiae of mice to either cyclic (1 Hz) or rest-inserted loading interventions and quantified osteoblast function via dynamic histomorphometry. RESULTS Although reducing loading bouts from three bouts per week (i.e., nine total bouts) to one bout per week (i.e., three total bouts) effectively mitigated the osteogenic benefit of cyclic loading, the same reduction did not significantly reduce periosteal bone formation parameters induced by rest-inserted loading. The osteogenic response was robust to the timing of the rest-inserted loading bouts (three bouts in the first week vs one bout per week for 3 wk). However, elimination of any single bout of the three one-bout-per-week bouts mitigated the osteogenic response to rest-inserted loading. Finally, periosteal osteoblast function assessed after the 3-wk intervention was not sensitive to the timing or number of rest-inserted loading bouts. CONCLUSIONS We conclude that rest-inserted loading holds potential to retain the osteogenic benefits of mechanical loading with significantly reduced frequency of bouts of activity while also enabling greater flexibility in the timing of the activity.
Collapse
Affiliation(s)
- Sundar Srinivasan
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA
| | | | | | | | | | | |
Collapse
|
31
|
Grover K, Lin L, Hu M, Muir J, Qin YX. Spatial distribution and remodeling of elastic modulus of bone in micro-regime as prediction of early stage osteoporosis. J Biomech 2016; 49:161-6. [PMID: 26705110 PMCID: PMC4761497 DOI: 10.1016/j.jbiomech.2015.11.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 11/24/2022]
Abstract
We assessed the local distribution of bone mechanical properties on a micro-nano-scale and its correlation to strain distribution. Left tibia samples were obtained from 5-month old female Sprague Dawley rats, including baseline control (n=9) and hindlimb suspended (n=9) groups. Elastic modulus was measured by nanoindentation at the dedicated locations. Three additional tibias from control rats were loaded axially to measure bone strain, with 6-10N at 1Hz on a Bose machine for strain measurements. In the control group, the difference of the elastic modulus between periosteum and endosteum was much higher at the anterior and posterior regions (2.6GPa), where higher strain differences were observed (45μɛ). Minimal elastic modulus difference between periosteum and endosteum was observed at the medial region (0.2GPa), where neutral axis of the strain distribution was oriented with lower strain difference (5μɛ). In the disuse group, however, the elastic modulus differences in the anterior posterior regions reduced to 1.2GPa from 2.6GPa in the control group, and increased in the medial region to 2.7GPa from 0.2GPa. It is suggested that the remodeling rate in a region of bone is possibly influenced by the strain gradient from periosteum to endosteum. Such pattern of moduli gradients was compromised in disuse osteopenia, suggesting that the remodeling in distribution of micro-nano-elastic moduli among different regions may serve as a predictor for early stage of osteoporosis.
Collapse
Affiliation(s)
- Kartikey Grover
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Liangjun Lin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Minyi Hu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Jesse Muir
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
32
|
Hu M, Tian GW, Gibbons DE, Jiao J, Qin YX. Dynamic fluid flow induced mechanobiological modulation of in situ osteocyte calcium oscillations. Arch Biochem Biophys 2015; 579:55-61. [PMID: 26045248 DOI: 10.1016/j.abb.2015.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/23/2015] [Accepted: 05/27/2015] [Indexed: 01/20/2023]
Abstract
Distribution of intramedullary pressure (ImP) induced bone fluid flow has been suggested to influence the magnitude of mechanotransductory signals within bone. As osteocytes have been suggested as major mechanosensors in bone network, it is still unclear how osteocytes embedded within a mineralized bone matrix respond to the external mechanical stimuli derived from direct coupling of dynamic fluid flow stimulation (DFFS). While in vitro osteocytes show unique Ca(2+) oscillations to fluid shear, the objective of this study was to use a confocal imaging technique to visualize and quantify Ca(2+) responses in osteocytes in situ under DFFS into the marrow cavity of an intact ex vivo mouse femur. This study provided significant technical development for evaluating mechanotransduction mechanism in bone cell response by separation of mechanical strain and fluid flow factors using ImP stimulation, giving the ability for true real-time imaging and monitoring of bone cell activities during the stimulation. Loading frequency dependent Ca(2+) oscillations in osteocytes indicated the optimized loading at 10Hz, where such induced response was significantly diminished via blockage of the Wnt/β-catenin signaling pathway. The results provided a pilot finding of the potential crosstalk or interaction between Wnt/β-catenin signaling and Ca(2+) influx signaling of in situ osteocytes in response to mechanical signals. Findings from the present study make a valuable tool to investigate how in situ osteocytes respond and transduce mechanical signals, e.g. DFFS, as a central mechanosensor.
Collapse
Affiliation(s)
- Minyi Hu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Guo-Wei Tian
- CMIC-Two Photon Imaging Center, Stony Brook University, Stony Brook, NY 11794-5200, United States
| | - Daniel E Gibbons
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Jian Jiao
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States.
| |
Collapse
|
33
|
Ehnes DD, Price FD, Shrive NG, Hart DA, Rancourt DE, zur Nieden NI. Embryonic stem cell-derived osteocytes are capable of responding to mechanical oscillatory hydrostatic pressure. J Biomech 2015; 48:1915-21. [PMID: 25936968 DOI: 10.1016/j.jbiomech.2015.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/04/2015] [Accepted: 04/08/2015] [Indexed: 11/28/2022]
Abstract
Osteoblasts can be derived from embryonic stem cells (ESCs) by a 30 day differentiation process, whereupon cells spontaneously differentiate upon removal of LIF and respond to exogenously added 1,25α(OH)2 vitamin D3 with enhanced matrix mineralization. However, bone is a load-bearing tissue that has to perform under dynamic pressure changes during daily movement, a capacity that is executed by osteocytes. At present, it is unclear whether ESC-derived osteogenic cultures contain osteocytes and whether these are capable of responding to a relevant cyclic hydrostatic compression stimulus. Here, we show that ESC-osteoblastogenesis is followed by the generation of osteocytes and then mechanically load ESC-derived osteogenic cultures in a compression chamber using a cyclic loading protocol. Following mechanical loading of the cells, iNOS mRNA was upregulated 31-fold, which was consistent with a role for iNOS as an immediate early mechanoresponsive gene. Further analysis of matrix and bone-specific genes suggested a cellular response in favor of matrix remodeling. Immediate iNOS upregulation also correlated with a concomitant increase in Ctnnb1 and Tcf7l2 mRNAs along with increased nuclear TCF transcriptional activity, while the mRNA for the repressive Tcf7l1 was downregulated, providing a possible mechanistic explanation for the noted matrix remodeling. We conclude that ESC-derived osteocytes are capable of responding to relevant mechanical cues, at least such that mimic oscillatory compression stress, which not only provides new basic understanding, but also information that likely will be important for their use in cell-based regenerative therapies.
Collapse
Affiliation(s)
- D D Ehnes
- University of California Riverside, Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - F D Price
- The Alberta Children's Hospital Research Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - N G Shrive
- McCaig Institute for Bone and Joint Health, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - D A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - D E Rancourt
- The Alberta Children's Hospital Research Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - N I zur Nieden
- University of California Riverside, Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, 1113 Biological Sciences Building, Riverside, CA 92521, USA; The Alberta Children's Hospital Research Institute, University of Calgary, Heritage Medical Research Building, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
34
|
Abstract
There is growing interest in the interaction between skeletal muscle and bone, particularly at the genetic and molecular levels. However, the genetic and molecular linkages between muscle and bone are achieved only within the context of the essential mechanical coupling of the tissues. This biomechanical and physiological linkage is readily evident as muscles attach to bone and induce exposure to varied mechanical stimuli via functional activity. The responsiveness of bone cells to mechanical stimuli, or their absence, is well established. However, questions remain regarding how muscle forces applied to bone serve to modulate bone homeostasis and adaptation. Similarly, the contributions of varied, but unique, stimuli generated by muscle to bone (such as low-magnitude, high-frequency stimuli) remains to be established. The current article focuses upon the mechanical relationship between muscle and bone. In doing so, we explore the stimuli that muscle imparts upon bone, models that enable investigation of this relationship, and recent data generated by these models.
Collapse
Affiliation(s)
- Keith G. Avin
- Center for Translational Musculoskeletal Research and Department of Physical Therapy, School of the Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan St., CF-120, Indianapolis, IN, USA,
| | - Susan A. Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, USA,
| | - Ted S. Gross
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA,
| | - Stuart J. Warden
- Center for Translational Musculoskeletal Research and Department of Physical Therapy, School of the Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan St., CF-120, Indianapolis, IN, USA
| |
Collapse
|
35
|
Mechanotransduction in musculoskeletal tissue regeneration: effects of fluid flow, loading, and cellular-molecular pathways. BIOMED RESEARCH INTERNATIONAL 2014; 2014:863421. [PMID: 25215295 PMCID: PMC4151828 DOI: 10.1155/2014/863421] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/13/2014] [Indexed: 12/28/2022]
Abstract
While mechanotransductive signal is proven essential for tissue regeneration, it is critical to determine specific cellular responses to such mechanical signals and the underlying mechanism. Dynamic fluid flow induced by mechanical loading has been shown to have the potential to regulate bone adaptation and mitigate bone loss. Mechanotransduction pathways are of great interests in elucidating how mechanical signals produce such observed effects, including reduced bone loss, increased bone formation, and osteogenic cell differentiation. The objective of this review is to develop a molecular understanding of the mechanotransduction processes in tissue regeneration, which may provide new insights into bone physiology. We discussed the potential for mechanical loading to induce dynamic bone fluid flow, regulation of bone adaptation, and optimization of stimulation parameters in various loading regimens. The potential for mechanical loading to regulate microcirculation is also discussed. Particularly, attention is allotted to the potential cellular and molecular pathways in response to loading, including osteocytes associated with Wnt signaling, elevation of marrow stem cells, and suppression of adipotic cells, as well as the roles of LRP5 and microRNA. These data and discussions highlight the complex yet highly coordinated process of mechanotransduction in bone tissue regeneration.
Collapse
|
36
|
Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of Duchenne muscular dystrophy. PLoS One 2014; 9:e104339. [PMID: 25121503 PMCID: PMC4133244 DOI: 10.1371/journal.pone.0104339] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/11/2014] [Indexed: 01/29/2023] Open
Abstract
The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26) and mdx mice (n = 22) were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk) groups. Invivo and exvivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P≥0.34). Vibration did not alter any measure of muscle contractile function (P≥0.12); however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03) and higher intramuscular triglyceride concentrations (P = 0.03). These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.
Collapse
|
37
|
Vickerton P, Jarvis JC, Gallagher JA, Akhtar R, Sutherland H, Jeffery N. Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle. Proc Biol Sci 2014; 281:20140786. [PMID: 24966314 PMCID: PMC4083794 DOI: 10.1098/rspb.2014.0786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/03/2014] [Indexed: 01/06/2023] Open
Abstract
Muscular contraction plays a pivotal role in the mechanical environment of bone, but controlled muscular contractions are rarely used to study the response of bone to mechanical stimuli. Here, we use implantable stimulators to elicit programmed contractions of the rat tibialis anterior (TA) muscle. Miniature stimulators were implanted in Wistar rats (n = 9) to induce contraction of the left TA every 30 s for 28 days. The right limb was used as a contralateral control. Hindlimbs were imaged using microCT. Image data were used for bone measurements, and to construct a finite-element (FE) model simulation of TA forces propagating through the bone. This simulation was used to target subsequent bone histology and measurement of micromechanical properties to areas of high strain. FE mapping of simulated strains revealed peak values in the anterodistal region of the tibia (640 µε ± 30.4 µε). This region showed significant increases in cross-sectional area (28.61%, p < 0.05) and bone volume (30.29%, p < 0.05) in the stimulated limb. Histology revealed a large region of new bone, containing clusters of chondrocytes, indicative of endochondral ossification. The new bone region had a lower elastic modulus (8.8 ± 2.2 GPa) when compared with established bone (20 ± 1.4 GPa). Our study provides compelling new evidence of the interplay between muscle and bone.
Collapse
Affiliation(s)
- Paula Vickerton
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Jonathan C Jarvis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Merseyside, Liverpool L3 3AF, UK
| | - James A Gallagher
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Riaz Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, Merseyside, Liverpool L69 3GH, UK
| | - Hazel Sutherland
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Merseyside, Liverpool L3 3AF, UK
| | - Nathan Jeffery
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| |
Collapse
|
38
|
Srinivasan S, Threet D, Worton LE, Ausk BJ, Bain SD, Gardiner EM, Kwon RY, Gross TS. Distinct cyclosporin a doses are required to enhance bone formation induced by cyclic and rest-inserted loading in the senescent skeleton. PLoS One 2014; 9:e84868. [PMID: 24404194 PMCID: PMC3880323 DOI: 10.1371/journal.pone.0084868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 11/19/2013] [Indexed: 01/06/2023] Open
Abstract
Age-related decline in periosteal adaptation negatively impacts the ability to utilize exercise to enhance bone mass and strength in the elderly. We recently observed that in senescent animals subject to cyclically applied loading, supplementation with Cyclosporin A (CsA) substantially enhanced the periosteal bone formation rates to levels observed in young animals. We therefore speculated that if the CsA supplement could enhance bone response to a variety of types of mechanical stimuli, this approach could readily provide the means to expand the range of mild stimuli that are robustly osteogenic at senescence. Here, we specifically hypothesized that a given CsA supplement would enhance bone formation induced in the senescent skeleton by both cyclic (1-Hz) and rest-inserted loading (wherein a 10-s unloaded rest interval is inserted between each load cycle). To examine this hypothesis, the right tibiae of senescent female C57BL/6 mice (22 Mo) were subjected to cyclic or rest-inserted loading supplemented with CsA at 3.0 mg/kg. As previously, we initially found that while the periosteal bone formation rate (p.BFR) induced by cyclic loading was enhanced when supplemented with 3.0 mg/kg CsA (by 140%), the response to rest-inserted loading was not augmented at this CsA dosage. In follow-up experiments, we observed that while a 30-fold lower CsA dosage (0.1 mg/kg) significantly enhanced p.BFR induced by rest-inserted loading (by 102%), it was ineffective as a supplement with cyclic loading. Additional experiments and statistical analysis confirmed that the dose-response relations were significantly different for cyclic versus rest-inserted loading, only because the two stimuli required distinct CsA dosages for efficacy. While not anticipated a priori, clarifying the complexity underlying the observed interaction between CsA dosage and loading type holds potential for insight into how bone response to a broad range of mechanical stimuli may be substantially enhanced in the senescent skeleton.
Collapse
Affiliation(s)
- Sundar Srinivasan
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Dewayne Threet
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Leah E. Worton
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Brandon J. Ausk
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Steven D. Bain
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Edith M. Gardiner
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Ronald Y. Kwon
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Ted S. Gross
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
39
|
Synthesis and characterization of novel elastomeric poly(D,L-lactide urethane) maleate composites for bone tissue engineering. Eur Polym J 2013; 49:3337-3349. [PMID: 24817764 DOI: 10.1016/j.eurpolymj.2013.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here, we report the synthesis and characterization of a novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its composites with nano-hydroxyapatite (nHA) as potential weight-bearing composite. The 4PLAUMA/nHA ratios of the composites were 1:3, 2:5, 1:2 and 1:1. FTIR and NMR characterization showed urethane and maleate units integrated into the PLA matrix. Energy dispersion and Auger electron spectroscopy confirmed homogeneous distribution of nHA in the polymer matrix. Maximum moduli and strength of the composites of 4PLAUMA/nHA, respectively, are 1973.31 ± 298.53 MPa and 78.10 ± 3.82 MPa for compression, 3630.46 ± 528.32 MPa and 6.23 ± 1.44 MPa for tension, 1810.42 ± 86.10 MPa and 13.00 ± 0.72 for bending, and 282.46 ± 24.91 MPa and 5.20 ± 0.85 MPa for torsion. The maximum tensile strains of the polymer and composites are in the range of 5% to 93%, and their maximum torsional strains vary from 0.26 to 0.90. The composites exhibited very slow degradation rates in aqueous solution, from approximately 50% mass remaining for the pure polymer to 75% mass remaining for composites with high nHA contents, after a period of 8 weeks. Increase in ceramic content increased mechanical properties, but decreased maximum strain, degradation rate, and swelling of the composites. Human bone marrow stem cells and human endothelial cells adhered and proliferated on 4PLAUMA films and degradation products of the composites showed little-to-no toxicity. These results demonstrate that novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its nHA composites may have potential applications in regenerative medicine.
Collapse
|
40
|
Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. J Biomech 2013; 46:2296-302. [PMID: 23870506 DOI: 10.1016/j.jbiomech.2013.06.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 12/14/2022]
Abstract
Consistent across studies in humans, animals and cells, the application of vibrations can be anabolic and/or anti-catabolic to bone. The physical mechanisms modulating the vibration-induced response have not been identified. Recently, we developed an in vitro model in which candidate parameters including acceleration magnitude and fluid shear can be controlled independently during vibrations. Here, we hypothesized that vibration induced fluid shear does not modulate mesenchymal stem cell (MSC) proliferation and mineralization and that cell's sensitivity to vibrations can be promoted via actin stress fiber formation. Adipose derived human MSCs were subjected to vibration frequencies and acceleration magnitudes that induced fluid shear stress ranging from 0.04 Pa to 5 Pa. Vibrations were applied at magnitudes of 0.15 g, 1g, and 2g using frequencies of both 100 Hz and 30 Hz. After 14 d and under low fluid shear conditions associated with 100 Hz oscillations, mineralization was greater in all vibrated groups than in controls. Greater levels of fluid shear produced by 30 Hz vibrations enhanced mineralization only in the 2g group. Over 3d, vibrations led to the greatest increase in total cell number with the frequency/acceleration combination that induced the smallest level of fluid shear. Acute experiments showed that actin remodeling was necessary for early mechanical up-regulation of RUNX-2 mRNA levels. During osteogenic differentiation, mechanically induced up-regulation of actin remodeling genes including Wiskott-Aldrich syndrome (WAS) protein, a critical regulator of Arp2/3 complex, was related to the magnitude of the applied acceleration but not to fluid shear. These data demonstrate that fluid shear does not regulate vibration induced proliferation and mineralization and that cytoskeletal remodeling activity may play a role in MSC mechanosensitivity.
Collapse
|
41
|
Daegling DJ, Judex S, Ozcivici E, Ravosa MJ, Taylor AB, Grine FE, Teaford MF, Ungar PS. Viewpoints: Feeding mechanics, diet, and dietary adaptations in early hominins. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 151:356-71. [DOI: 10.1002/ajpa.22281] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 03/24/2013] [Indexed: 11/09/2022]
Affiliation(s)
- David J. Daegling
- Department of Anthropology; University of Florida; Gainesville; FL; 32605
| | - Stefan Judex
- Department of Biomedical Engineering; Stony Brook University; Stony Brook; NY; 11794-5281
| | - Engin Ozcivici
- Department of Mechanical Engineering; Izmir Institute of Technology; Urla; Izmir; 35430; Turkey
| | | | | | | | - Mark F. Teaford
- Department of Physical Therapy; High Point University; High Point; NC; 27262-3598
| | - Peter S. Ungar
- Department of Anthropology; University of Arkansas; Fayetteville; AR; 72701
| |
Collapse
|
42
|
Vanleene M, Shefelbine SJ. Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone. Bone 2013; 53:507-14. [PMID: 23352925 PMCID: PMC3590448 DOI: 10.1016/j.bone.2013.01.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 12/26/2022]
Abstract
Osteogenesis imperfecta (OI) is characterized by extremely brittle bone. Currently, bisphosphonate drugs allow a decrease of fracture by inhibiting bone resorption and increasing bone mass but with possible long term side effects. Whole body mechanical vibrations (WBV) treatment may offer a promising route to stimulate bone formation in OI patients as it has exhibited health benefits on both muscle and bone mass in human and animal models. The present study has investigated the effects of WBV (45Hz, 0.3g, 15minutes/days, 5days/week) in young OI (oim) and wild type female mice from 3 to 8weeks of age. Vibration therapy resulted in a significant increase in the cortical bone area and cortical thickness in the femur and tibia diaphysis of both vibrated oim and wild type mice compared to sham controls. Trabecular bone was not affected by vibration in the wild type mice; vibrated oim mice, however, exhibited significantly higher trabecular bone volume fraction in the proximal tibia. Femoral stiffness and yield load in three point bending were greater in the vibrated wild type mice than in sham controls, most likely attributed to the increase in femur cortical cross sectional area observed in the μCT morphology analyses. The vibrated oim mice showed a trend toward improved mechanical properties, but bending data had large standard deviations and there was no significant difference between vibrated and non-vibrated oim mice. No significant difference of the bone apposition was observed in the tibial metaphyseal trabecular bone for both the oim and wild type vibrated mice by histomorphometry analyses of calcein labels. At the mid diaphysis, the cortical bone apposition was not significantly influenced by the WBV treatment in both the endosteum and periosteum of the oim vibrated mice while a significant change is observed in the endosteum of the vibrated wild type mice. As only a weak impact in bone apposition between the vibrated and sham groups is observed in the histological sections, it is possible that WBV reduced bone resorption, resulting in a relative increase in cortical thickness. Whole body vibration appears as a potential effective and innocuous means for increasing bone formation and strength, which is particularly attractive for treating the growing skeleton of children suffering from brittle bone disease or low bone density pathologies without the long term disadvantages of current pharmacological therapies.
Collapse
Affiliation(s)
- Maximilien Vanleene
- Corresponding author at: Department of Bioengineering, Imperial College London, Royal School of Mines Building, South Kensington Campus, London, SW7 2AZ, UK.
| | | |
Collapse
|
43
|
Thai traditional massage increases biochemical markers of bone formation in postmenopausal women: a randomized crossover trial. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:69. [PMID: 23530566 PMCID: PMC3770450 DOI: 10.1186/1472-6882-13-69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 01/24/2013] [Indexed: 12/26/2022]
Abstract
Background The effect of massage therapy on bone metabolism in adults has only scarcely been explored. In a randomized crossover trial, we investigated the skeletal effect of Thai traditional massage by examining the changes in biochemical markers of bone turnover. Methods Forty-eight postmenopausal women participated in the study. All volunteers were randomized to a 2-hour session of Thai traditional massage twice a week for 4 weeks and a 4-week control period after a 2-week washout, or vice versa. Twenty-one subjects were allocated to receiving Thai traditional massage first, followed by the control period, while 27 were initially allocated to the control period. Results Serum P1NP increased significantly after Thai traditional massage (P <0.01), while there was no change in serum osteocalcin or CTX. During the control period, there was no significant change in P1NP, osteocalcin or CTX compared to baseline. When age and height were taken into account, P1NP in postmenopausal women whose ages were in the middle and higher tertiles and whose heights were in the lower and middle tertiles (n = 22) had a 14.8 ± 3.3% increase in P1NP after massage (P <0.001), while no change in P1NP was found in the rest of the women (n = 26). Conclusions Thai traditional massage results in an increase in bone formation as assessed by serum P1NP, particularly in postmenopausal women who are older and have a smaller body build. Future studies with larger samples and additional design features are warranted. Trial registration ClinicalTrials.gov : NCT01627028
Collapse
|
44
|
Qian J, Wennerberg A, Albrektsson T. Reasons for Marginal Bone Loss around Oral Implants. Clin Implant Dent Relat Res 2012. [DOI: 10.1111/cid.12014] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Whole-Body Vibration During Passive Standing in Individuals With Spinal Cord Injury: Effects of Plate Choice, Frequency, Amplitude, and Subject's Posture on Vibration Propagation. PM R 2012; 4:963-75. [DOI: 10.1016/j.pmrj.2012.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/16/2012] [Accepted: 08/14/2012] [Indexed: 11/22/2022]
|
46
|
Halldin A, Jimbo R, Johansson CB, Wennerberg A, Jacobsson M, Albrektsson T, Hansson S. Implant stability and bone remodeling after 3 and 13 days of implantation with an initial static strain. Clin Implant Dent Relat Res 2012; 16:383-93. [PMID: 23061968 DOI: 10.1111/cid.12000] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Bone is constantly exposed to dynamic and static loads, which induce both dynamic and static bone strains. Although numerous studies exist on the effect of dynamic strain on implant stability and bone remodeling, the effect of static strain needs further investigation. Therefore, the effect of two different static bone strain levels on implant stability and bone remodeling at two different implantation times was investigated in a rabbit model. METHODS Two different test implants with a diametrical expansion of 0.15 mm (group A) and 0.05 mm (group B) creating initial static bone strains of 0.045 and 0.015, respectively. The implants were inserted in the proximal tibial metaphysis of 24 rabbits to observe the biological response at implant removal. Both groups were compared to control implants (group C), with no diametrical increase. The insertion torque (ITQ) was measured to represent the initial stability and the removal torque (RTQ) was measured to analyze the effect that static strain had on implant stability and bone remodeling after 3 and 13 days of implantation time. RESULTS The ITQ and the RTQ values for test implants were significantly higher for both implantation times compared to control implants. A selection of histology samples was prepared to measure bone to implant contact (BIC). There was a tendency that the BIC values for test implants were higher compared to control implants. CONCLUSION These findings suggest that increased static bone strain creates higher implant stability at the time of insertion, and this increased stability is maintained throughout the observed period.
Collapse
Affiliation(s)
- Anders Halldin
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; Astra Tech AB, Mölndal, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Bistolfi F. Evidence of interlinks between bioelectromagnetics and biomechanics: from biophysics to medical physics. Phys Med 2012; 22:71-95. [PMID: 17664154 DOI: 10.1016/s1120-1797(06)80002-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 05/29/2006] [Accepted: 06/12/2006] [Indexed: 01/22/2023] Open
Abstract
A vast literature on electromagnetic and mechanical bioeffects at the bone and soft tissue level, as well as at the cellular level (osteoblasts, osteoclasts, keratinocytes, fibroblasts, chondrocytes, nerve cells, endothelial and muscle cells) has been reviewed and analysed in order to show the evident connections between both types of physical energies. Moreover, an intimate link between the two is suggested by transduction phenomena (electromagnetic-acoustic transduction and its reverse) occurring in living matter, as a sound biophysical literature has demonstrated. However, electromagnetic and mechanical signals are not always interchangeable, depending on their respective intensity. Calculations are reported in order to show in which cases (read: for which values of electric field in V/m and of mechanical pressure in Pa) a given electromagnetic or mechanical bioeffect is only due to the directly impinging energy or even to the indirect transductional energy. The relevance of the treated item for the applications of medical physics to regenerative medicine is stressed.
Collapse
Affiliation(s)
- F Bistolfi
- Radiotherapy Department, Galliera Hospital, Genova (Italy)
| |
Collapse
|
48
|
Hu M, Cheng J, Qin YX. Dynamic hydraulic flow stimulation on mitigation of trabecular bone loss in a rat functional disuse model. Bone 2012; 51:819-25. [PMID: 22820398 PMCID: PMC3437383 DOI: 10.1016/j.bone.2012.06.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 11/20/2022]
Abstract
Bone fluid flow (BFF) has been demonstrated as a critical regulator in mechanotransductive signaling and bone adaptation. Intramedullary pressure (ImP) and matrix strain have been identified as potential generators to regulate BFF. To elevate in vivo oscillatory BFF using ImP, a dynamic hydraulic stimulation (DHS) approach was developed. The objective of this study was to evaluate the effects of DHS on mitigation of bone loss and structural alteration in a rat hindlimb suspension (HLS) functional disuse model. Sixty-one 5-month old female Sprague-Dawley rats were divided into five groups: 1) baseline control, 2) age-matched control, 3) HLS, 4) HLS+static loading, and 5) HLS+DHS. Hydraulic flow stimulation was carried out daily on a "10 min on-5 min off-10 min on" loading regime, 5 days/week, for a total of 4 weeks in the tibial region. The metaphyseal trabecular regions of the proximal tibiae were analyzed using μCT and histomorphometry. Four weeks of HLS resulted in a significant loss of trabecular bone, leading to structural deterioration. HLS with static loading alone was not sufficient to attenuate the bone loss. Bone quantity and microarchitecture were significantly improved by applying DHS loading, resulting increase of 83% in bone volume fraction, 25% in trabecular number and mitigation of 26% in trabecular separation compared to HLS control. Histomorphometry analysis on trabecular mineralization coincided with the μCT analysis, in which DHS loading yielded increases of 34% in histomorphometric BV/TV, 121% in MS/BS, 190% in BFR/BS and 146% in BFR/BV, compared to the HLS control. Overall, the data demonstrated that dynamic hydraulic flow loading has potentials to provide regulatory signals for mitigating bone loss induced by functional disuse. This approach may provide a new alternative mechanical intervention for future clinical treatment for osteoporosis.
Collapse
Affiliation(s)
| | | | - Yi-Xian Qin
- Corresponding Author: Yi-Xian Qin, Ph.D., Dept. of Biomedical Engineering, Stony Brook University, Bioengineering Bldg., Rm 215, Stony Brook, NY 11794-5281, Phone: 631-632-1481, Fax: 631-632-8577,
| |
Collapse
|
49
|
Abstract
Mechanical loading is a crucial factor for maintaining skeletal health. Physical activities, exercise, and sports provide a wealth and variety of mechanical loads to bones, through muscle forces, ground reaction forces, and other contact or impact forces. Weightbearing activities can be effective exercises to enhance bone health-particularly, those that involve jumping and impact loads (with greater strain magnitudes, rates, and frequencies). Physical activity appears to be acutely beneficial for enhancing bone health in the early pubertal period and in older age, such as in postmenopausal women. In preparing this article, PubMed, Web of Science, and relevant edited books (English language) were reviewed from 1961 to present.
Collapse
Affiliation(s)
- Sarah L Manske
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
50
|
Hansson S, Halldin A. Alveolar ridge resorption after tooth extraction: A consequence of a fundamental principle of bone physiology. JOURNAL OF DENTAL BIOMECHANICS 2012; 3:1758736012456543. [PMID: 22924065 PMCID: PMC3425398 DOI: 10.1177/1758736012456543] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It is well established that tooth extraction is followed by a reduction of the buccolingual as well as the apicocoronal dimension of the alveolar ridge. Different measures have been taken to avoid this bone modelling process, such as immediate implant placement and bone grafting, but in most cases with disappointing results. One fundamental principle of bone physiology is the adaptation of bone mass and bone structure to the levels and frequencies of strain. In the present article, it is shown that the reduction of the alveolar ridge dimensions after tooth extraction is a natural consequence of this physiological principle.
Collapse
|