1
|
Prisby RD. Vascular participation in bone healing: Implications related to advancing age and morbidity. Mech Ageing Dev 2025; 224:112041. [PMID: 39956329 DOI: 10.1016/j.mad.2025.112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Fracture non-union and the related morbidities represent a global health concern. While many factors are necessary for proper bone healing following fracture, the vascular system is requisite. Important considerations include vascular morphology in bone and marrow and the regulation of tissue blood flow. This review discusses the types of fracture management and associated bone repair (i.e., intramembranous vs. endochondral), the phases of bone healing, and the role of the bone vascular network. Finally, fracture healing is considered in the context of advanced age and morbidity.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX 76019, United States.
| |
Collapse
|
2
|
Perepletchikova D, Malashicheva A. Communication between endothelial cells and osteoblasts in regulation of bone homeostasis: Notch players. Stem Cell Res Ther 2025; 16:56. [PMID: 39920854 PMCID: PMC11806792 DOI: 10.1186/s13287-025-04176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Endothelial cells coat blood vessels and release molecular signals to affect the fate of other cells. Endothelial cells can adjust their behavior in response to the changing microenvironmental conditions. During bone regeneration, bone tissue cells release factors that promote blood vessel growth. Notch is a key signaling that regulates cell fate decisions in many tissues and plays an important role in bone tissue development and homeostasis. Understanding the interplay between angiogenesis and osteogenesis is currently a focus of research efforts in order to facilitate and improve osteogenesis when needed. Our review explores the cellular and molecular mechanisms including Notch-dependent endothelial-MSC communication that drive osteogenesis-angiogenesis processes and their effects on bone remodeling and repair.
Collapse
Affiliation(s)
| | - Anna Malashicheva
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia, 194064.
| |
Collapse
|
3
|
Nazzal MK, Battina HL, Tewari NP, Mostardo SL, Nagaraj RU, Zhou D, Awosanya OD, Majety SK, Samson S, Blosser RJ, Dadwal UC, Mulcrone PL, Kacena MA. The effects of young and aged, male and female megakaryocyte conditioned media on angiogenic properties of endothelial cells. Aging (Albany NY) 2024; 16:13181-13200. [PMID: 39578050 PMCID: PMC11719103 DOI: 10.18632/aging.206077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/11/2024] [Indexed: 11/24/2024]
Abstract
With aging, the risk of fractures and compromised healing increases. Angiogenesis plays a significant role in bone healing and is impaired with aging. We have previously shown the impact of megakaryocytes (MKs) in regulating bone healing. Notably, MKs produce factors known to promote angiogenesis. We examined the effects of conditioned media (CM) generated from MKs derived from young (3-4-month-old) and aged (22-24-month-old), male and female C57BL/6J mice on bone marrow endothelial cell (BMEC) growth and function. Female MK CM, regardless of age, caused a >65% increase in BMEC proliferation and improved vessel formation by >115%. Likewise, young male MK CM increased vessel formation by 160%. Although aged male MK CM resulted in >150% increases in the formation of vascular nodes and meshes, 62% fewer vessels formed compared to young male MK CM treatment. Aged female MK CM improved migration by over 2500%. However, aged female and male MK CM caused less wound closure. MK CM treatments also significantly altered the expression of several genes including PDGFRβ, CXCR4, and CD36 relative to controls and between ages. Further testing of mechanisms responsible for age-associated differences may allow for novel strategies to improve MK-mediated angiogenesis and bone healing, particularly within the aging population.
Collapse
Affiliation(s)
- Murad K. Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nikhil P. Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Saveda K. Majety
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sue Samson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Patrick L. Mulcrone
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Ximenes-Carballo C, Rey-Viñolas S, Blanco-Fernandez B, Pérez-Amodio S, Engel E, Castano O. Combining three-dimensionality and CaP glass-PLA composites: Towards an efficient vascularization in bone tissue healing. BIOMATERIALS ADVANCES 2024; 164:213985. [PMID: 39146606 DOI: 10.1016/j.bioadv.2024.213985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Bone regeneration often fails due to implants/grafts lacking vascular supply, causing necrotic tissue and poor integration. Microsurgical techniques are used to overcome this issue, allowing the graft to anastomose. These techniques have limitations, including severe patient morbidity and current research focuses on stimulating angiogenesis in situ using growth factors, presenting limitations, such as a lack of control and increased costs. Non-biological stimuli are necessary to promote angiogenesis for successful bone constructs. Recent studies have reported that bioactive glass dissolution products, such as calcium-releasing nanoparticles, stimulate hMSCs to promote angiogenesis and new vasculature. Moreover, the effect of 3D microporosity has also been reported to be important for vascularisation in vivo. Therefore, we used room-temperature extrusion 3D printing with polylactic acid (PLA) and calcium phosphate (CaP) based glass scaffolds, focusing on geometry and solvent displacement for scaffold recovery. Combining both methods enabled reproducible control of 3D structure, porosity, and surface topography. Scaffolds maintained calcium ion release at physiological levels and supported human mesenchymal stem cell proliferation. Scaffolds stimulated the secretion of vascular endothelial growth factor (VEGF) after 3 days of culture. Subcutaneous implantation in vivo indicated good scaffold integration and blood vessel infiltration as early as one week after. PLA-CaP scaffolds showed increased vessel maturation 4 weeks after implantation without vascular regression. Results show PLA/CaP-based glass scaffolds, made via controlled 3D printing, support angiogenesis and vessel maturation, promising improved vascularization for bone regeneration.
Collapse
Affiliation(s)
- Celia Ximenes-Carballo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sergi Rey-Viñolas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Barbara Blanco-Fernandez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Soledad Pérez-Amodio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; IMEM-BRT group, Materials Science and Engineering, Polytechnical University of Catalonia (UPC), Barcelona, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; IMEM-BRT group, Materials Science and Engineering, Polytechnical University of Catalonia (UPC), Barcelona, Spain.
| | - Oscar Castano
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona, Spain; Nanobioengineering and Biomaterials, Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
| |
Collapse
|
5
|
Chen J, Wu W, Xian C, Wang T, Hao X, Chai N, Liu T, Shang L, Wang B, Gao J, Bi L. Analysis of risk factors and development of a nomogram-based prediction model for defective bony non-union. Heliyon 2024; 10:e28502. [PMID: 38586399 PMCID: PMC10998093 DOI: 10.1016/j.heliyon.2024.e28502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To explore risk factors for defective non-union of bone and develop a nomogram-based prediction model for such an outcome. Methods This retrospective study analysed the case data of patients with defective bony non-unions who were treated at the authors' hospital between January 2010 and December 2020. Patients were divided into the union and non-union groups according to their Radiographic Union Score for Tibia scores 1 year after surgery. Univariate analysis was performed to assess factors related to demographic characteristics, laboratory investigations, surgery, and trauma in both groups. Subsequently, statistically significant factors were included in the multivariate logistic regression analysis to identify independent risk factors. A nomogram-based prediction model was established using statistically significant variables in the multivariate analysis. The accuracy and stability of the model were evaluated using receiver operating characteristic (ROC) and calibration curves. The clinical applicability of the nomogram model was evaluated using decision curve analysis. Results In total, 204 patients (171 male, 33 female; mean [±SD] age, 39.75 ± 13.00 years) were included. The mean body mass index was 22.95 ± 3.64 kg/m2. Among the included patients, 29 were smokers, 18 were alcohol drinkers, and 21 had a previous comorbid systemic disease (PCSD). Univariate analysis revealed that age, occupation, PCSD, smoking, drinking, interleukin-6, C-reactive protein (CRP), procalcitonin, alkaline phosphatase, glucose, and uric acid levels; blood calcium ion concentration; and bone defect size (BDS) were correlated with defective bone union (all P < 0.05). Multivariate logistic regression analysis revealed that PCSD, smoking, interleukin-6, CRP, and glucose levels; and BDS were associated with defective bone union (all P < 0.05), and the variables in the multivariate analysis were included in the nomogram-based prediction model. The value of the area under the ROC curve for the predictive model for bone defects was 0.95. Conclusion PCSD, smoking, interleukin-6, CRP, and glucose levels; and BDS were independent risk factors for defective bony non-union, and the incidence of such non-union was predicted using the nomogram. These findings are important for clinical interventions and decision-making.
Collapse
Affiliation(s)
- Jingdi Chen
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
- Department of Orthopedics, 95829 Military Hospital in PLA, Wuhan, 430000, China
| | - Wei Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430000, China
| | - Chunxing Xian
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Taoran Wang
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xiaotian Hao
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Na Chai
- Department of Radiology, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Tao Liu
- Department of Orthopedics, 95829 Military Hospital in PLA, Wuhan, 430000, China
| | - Lei Shang
- Department of Health Statistics, Air Force Medical University, Xi'an, 710032, China
| | - Bo Wang
- Department of Epidemiology, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - Jiakai Gao
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| |
Collapse
|
6
|
Eazer J, Barsoum M, Smith C, Hotta K, Behnke B, Holmes C, Caldwell J, Ghosh P, Reid-Foley E, Park H, Delp M, Muller-Delp J. Adaptations of bone and bone vasculature to muscular stretch training. JBMR Plus 2024; 8:ziad019. [PMID: 38741608 PMCID: PMC11090128 DOI: 10.1093/jbmrpl/ziad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 05/16/2024] Open
Abstract
The magnitude of bone formation and remodeling is linked to both the magnitude of strain placed on the bone and the perfusion of bone. It was previously reported that an increase in bone perfusion and bone density occurs in the femur of old rats with moderate aerobic exercise training. This study determined the acute and chronic effects of static muscle stretching on bone blood flow and remodeling. Old male Fischer 344 rats were randomized to either a naive or stretch-trained group. Static stretching of ankle flexor muscles was achieved by placement of a dorsiflexion splint on the left ankle for 30 min/d, 5d/wk for 4wk. The opposite hindlimb served as a contralateral control (nonstretched) limb. Bone blood flow was assessed during and after acute stretching in naive rats, and at rest and during exercise in stretch-trained rats. Vascular reactivity of the nutrient artery of the proximal tibia was also assessed in stretch-trained rats. MicroCT analysis was used to assess bone volume and micro-architecture of the trabecular bone of both tibias near that growth plate. In naive rats, static stretching increased blood flow to the proximal tibial metaphasis. Blood flow to the proximal tibial metaphysis during treadmill exercise was higher in the stretched limb after 4 wk of daily stretching. Daily stretching also increased tibial bone weight and increased total volume in both the proximal and distal tibial metaphyses. In the trabecular bone immediately below the proximal tibial growth plate, total volume and bone volume increased, but bone volume/total volume was unchanged and trabecular connectivity decreased. In contrast, intravascular volume increased in this region of the bone. These data suggest that blood flow to the tibia increases during bouts of static stretching of the hindlimb muscles, and that 4 wk of daily muscle stretching leads to bone remodeling and an increase in intravascular volume of the tibial bone.
Collapse
Affiliation(s)
- Julia Eazer
- Department of Biomedical Sciences, Florida State University, Tallahassee, Fl, 32304, United States
| | - Mina Barsoum
- Department of Chemical Engineering, Florida State University, Tallahassee, Fl, 32304, United States
| | - Cole Smith
- Department of Biomedical Sciences, Florida State University, Tallahassee, Fl, 32304, United States
| | - Kazuki Hotta
- Department of Biomedical Sciences, Florida State University, Tallahassee, Fl, 32304, United States
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Brad Behnke
- Department of Kinesiology & Johnson Cancer Research Center, Kansas State University, Manhattan, KS, 66506, United States
| | - Christina Holmes
- Department of Biomedical Engineering, Florida State University, Tallahassee, FL, 32310 United States
| | - Jacob Caldwell
- Department of Biomedical Sciences, Florida State University, Tallahassee, Fl, 32304, United States
| | - Payal Ghosh
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Fl, 32304, United States
| | - Emily Reid-Foley
- Department of Biomedical Sciences, Florida State University, Tallahassee, Fl, 32304, United States
| | - Hyerim Park
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Fl, 32304, United States
| | - Michael Delp
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Fl, 32304, United States
| | - Judy Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, Fl, 32304, United States
| |
Collapse
|
7
|
Glatt V, Bartnikowski N, Bartnikowski M, Aguilar L, Schuetz M, Tetsworth K. Intramedullary implant stability affects patterns of fracture healing in mice with morphologically different bone phenotypes. Bone 2024; 179:116978. [PMID: 37993038 DOI: 10.1016/j.bone.2023.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Almost all prior mouse fracture healing models have used needles or K-wires for fixation, unwittingly providing inadequate mechanical stability during the healing process. Our contention is that the reported outcomes have predominantly reflected this instability, rather than the impact of diverse biological conditions, pharmacologic interventions, exogenous growth factors, or genetic considerations. This important issue becomes obvious upon a critical review of the literature. Therefore, the primary aim of this study was to demonstrate the significance of mouse-specific implants designed to provide both axial and torsional stability (Screw and IM Nail) compared to conventional pins (Needle and K-wires), even when used in mice with differently sized marrow canals and diverse genetic backgrounds. B6 (large medullary canal), DBA, and C3H (smaller medullary canals) mice were employed, all of which have different bone morphologies. Closed femoral fractures were created and stabilized with intramedullary implants that provide different mechanical conditions during the healing process. The most important finding of this study was that appropriately designed mouse-specific implants, providing both axial and torsional stability, had the greatest influence on bone healing outcomes regardless of the different bone morphologies encountered. For instance, unstable implants in the B6 strain (largest medullary canal) resulted in significantly greater callus, with a fracture region mainly comprising trabecular bone along with the presence of cartilage 28 days after surgery. The DBA and C3H strains (with smaller medullary canals) instead formed significantly less callus, and only had a small amount of intracortical trabeculation remaining. Moreover, with more stable fracture fixation a higher BV/TV was observed and cortices were largely restored to their original dimensions and structure, indicating an accelerated healing and remodeling process. These observations reveal that the diaphyseal cortical thickness, influenced by the genetic background of each strain, played a pivotal role in determining the amount of bone formation in response to the fracture. These findings are highly important, indicating the rate and type of tissue formed is a direct result of mechanical instability, and this most likely would mask the true contribution of the tested genes, genetic backgrounds, or various therapeutic agents administered during the bone healing process.
Collapse
Affiliation(s)
- Vaida Glatt
- Department of Orthopaedic Surgery, University of Texas Health Science Center, San Antonio, TX, United States of America; Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center, San Antonio, TX, United States of America; Queensland University of Technology, Brisbane, Australia; Orthopaedic Research Centre of Australia, Brisbane, Australia.
| | | | | | - Leonardo Aguilar
- Department of Orthopaedic Surgery, University of Texas Health Science Center, San Antonio, TX, United States of America; Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center, San Antonio, TX, United States of America
| | | | - Kevin Tetsworth
- Department of Orthopaedic Surgery, The Royal Brisbane and Women's Hospital, Brisbane, Australia; Orthopaedic Research Centre of Australia, Brisbane, Australia
| |
Collapse
|
8
|
Xiao B, Liu Y, Chandrasiri I, Adjei-Sowah E, Mereness J, Yan M, Benoit DSW. Bone-Targeted Nanoparticle Drug Delivery System-Mediated Macrophage Modulation for Enhanced Fracture Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305336. [PMID: 37797180 PMCID: PMC10922143 DOI: 10.1002/smll.202305336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Indexed: 10/07/2023]
Abstract
Despite decades of progress, developing minimally invasive bone-specific drug delivery systems (DDS) to improve fracture healing remains a significant clinical challenge. To address this critical therapeutic need, nanoparticle (NP) DDS comprised of poly(styrene-alt-maleic anhydride)-b-poly(styrene) (PSMA-b-PS) functionalized with a peptide that targets tartrate-resistant acid phosphatase (TRAP) and achieves preferential fracture accumulation has been developed. The delivery of AR28, a glycogen synthase kinase-3 beta (GSK3β) inhibitor, via the TRAP binding peptide-NP (TBP-NP) expedites fracture healing. Interestingly, however, NPs are predominantly taken up by fracture-associated macrophages rather than cells typically associated with fracture healing. Therefore, the underlying mechanism of healing via TBP-NP is comprehensively investigated herein. TBP-NPAR28 promotes M2 macrophage polarization and enhances osteogenesis in preosteoblast-macrophage co-cultures in vitro. Longitudinal analysis of TBP-NPAR28 -mediated fracture healing reveals distinct spatial distributions of M2 macrophages, an increased M2/M1 ratio, and upregulation of anti-inflammatory and downregulated pro-inflammatory genes compared to controls. This work demonstrates the underlying therapeutic mechanism of bone-targeted NP DDS, which leverages macrophages as druggable targets and modulates M2 macrophage polarization to enhance fracture healing, highlighting the therapeutic benefit of this approach for fractures and bone-associated diseases.
Collapse
Affiliation(s)
- Baixue Xiao
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Yuxuan Liu
- Materials Science Program, University of Rochester, Rochester, NY, 14623, USA
| | - Indika Chandrasiri
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Emmanuela Adjei-Sowah
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Ming Yan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14623, USA
- Materials Science Program, University of Rochester, Rochester, NY, 14623, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14623, USA
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
9
|
Menger MM, Emmerich M, Scheuer C, Hans S, Ehnert S, Nüssler AK, Herath SC, Steinestel K, Menger MD, Histing T, Laschke MW. Cilostazol Stimulates Angiogenesis and Accelerates Fracture Healing in Aged Male and Female Mice by Increasing the Expression of PI3K and RUNX2. Int J Mol Sci 2024; 25:755. [PMID: 38255829 PMCID: PMC10815626 DOI: 10.3390/ijms25020755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Fracture healing in the aged is associated with a reduced healing capacity, which often results in delayed healing or non-union formation. Many factors may contribute to this deterioration of bone regeneration, including a reduced 'angiogenic trauma response'. The phosphodiesterase-3 (PDE-3) inhibitor cilostazol has been shown to exert pro-angiogenic and pro-osteogenic effects in preclinical studies. Therefore, we herein analyzed in a stable closed femoral fracture model whether this compound also promotes fracture healing in aged mice. Forty-two aged CD-1 mice (age: 16-18 months) were daily treated with 30 mg/kg body weight cilostazol (n = 21) or vehicle (control, n = 21) by oral gavage. At 2 and 5 weeks after fracture, the femora were analyzed by X-ray, biomechanics, micro-computed tomography (µCT), histology, immunohistochemistry, and Western blotting. These analyses revealed a significantly increased bending stiffness at 2 weeks (2.2 ± 0.4 vs. 4.3 ± 0.7 N/mm) and an enhanced bone formation at 5 weeks (4.4 ± 0.7 vs. 9.1 ± 0.7 mm3) in cilostazol-treated mice when compared to controls. This was associated with a higher number of newly formed CD31-positive microvessels (3.3 ± 0.9 vs. 5.5 ± 0.7 microvessels/HPF) as well as an elevated expression of phosphoinositide-3-kinase (PI3K) (3.6 ± 0.8 vs. 17.4 ± 5.5-pixel intensity × 104) and runt-related transcription factor (RUNX)2 (6.4 ± 1.2 vs. 18.2 ± 2.7-pixel intensity × 104) within the callus tissue. These findings indicate that cilostazol accelerates fracture healing in aged mice by stimulating angiogenesis and the expression of PI3K and RUNX2. Hence, cilostazol may represent a promising compound to promote bone regeneration in geriatric patients.
Collapse
Affiliation(s)
- Maximilian M. Menger
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Maximilian Emmerich
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Claudia Scheuer
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Sandra Hans
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Andreas K. Nüssler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Steven C. Herath
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, 89081 Ulm, Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
10
|
Pius AK, Toya M, Gao Q, Lee ML, Ergul YS, Chow SKH, Goodman SB. Effects of Aging on Osteosynthesis at Bone-Implant Interfaces. Biomolecules 2023; 14:52. [PMID: 38254652 PMCID: PMC10813487 DOI: 10.3390/biom14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Joint replacement is a common surgery and is predominantly utilized for treatment of osteoarthritis in the aging population. The longevity of many of these implants depends on bony ingrowth. Here, we provide an overview of current techniques in osteogenesis (inducing bone growth onto an implant), which is affected by aging and inflammation. In this review we cover the biologic underpinnings of these processes as well as the clinical applications. Overall, aging has a significant effect at the cellular and macroscopic level that impacts osteosynthesis at bone-metal interfaces after joint arthroplasty; potential solutions include targeting prolonged inflammation, preventing microbial adhesion, and enhancing osteoinductive and osteoconductive properties.
Collapse
Affiliation(s)
- Alexa K. Pius
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Masakazu Toya
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Qi Gao
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Max L. Lee
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Yasemin Sude Ergul
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Stuart Barry Goodman
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
He X, Hu W, Zhang Y, Chen M, Ding Y, Yang H, He F, Gu Q, Shi Q. Cellular senescence in skeletal disease: mechanisms and treatment. Cell Mol Biol Lett 2023; 28:88. [PMID: 37891477 PMCID: PMC10612178 DOI: 10.1186/s11658-023-00501-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The musculoskeletal system supports the movement of the entire body and provides blood production while acting as an endocrine organ. With aging, the balance of bone homeostasis is disrupted, leading to bone loss and degenerative diseases, such as osteoporosis, osteoarthritis, and intervertebral disc degeneration. Skeletal diseases have a profound impact on the motor and cognitive abilities of the elderly, thus creating a major challenge for both global health and the economy. Cellular senescence is caused by various genotoxic stressors and results in permanent cell cycle arrest, which is considered to be the underlying mechanism of aging. During aging, senescent cells (SnCs) tend to aggregate in the bone and trigger chronic inflammation by releasing senescence-associated secretory phenotypic factors. Multiple signalling pathways are involved in regulating cellular senescence in bone and bone marrow microenvironments. Targeted SnCs alleviate age-related degenerative diseases. However, the association between senescence and age-related diseases remains unclear. This review summarises the fundamental role of senescence in age-related skeletal diseases, highlights the signalling pathways that mediate senescence, and discusses potential therapeutic strategies for targeting SnCs.
Collapse
Affiliation(s)
- Xu He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Wei Hu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Yuanshu Zhang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, People's Republic of China
| | - Mimi Chen
- Department of Orthopedics, Children Hospital of Soochow University, No. 92 Zhongnan Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Yicheng Ding
- Xuzhou Medical University, 209 Copper Mountain Road, Xuzhou, 221004, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Fan He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
| | - Qiaoli Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, People's Republic of China.
| |
Collapse
|
12
|
Muratovic D, Findlay DM, Quinn MJ, Quarrington RD, Solomon LB, Atkins GJ. Microstructural and cellular characterisation of the subchondral trabecular bone in human knee and hip osteoarthritis using synchrotron tomography. Osteoarthritis Cartilage 2023; 31:1224-1233. [PMID: 37178862 DOI: 10.1016/j.joca.2023.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE It is unclear if different factors influence osteoarthritis (OA) progression and degenerative changes characterising OA disease in hip and knee. We investigated the difference between hip OA and knee OA at the subchondral bone (SCB) tissue and cellular level, relative to the degree of cartilage degeneration. DESIGN Bone samples were collected from 11 patients (aged 70.4 ± 10.7years) undergoing knee arthroplasty and 8 patients (aged 62.3 ± 13.4years) undergoing hip arthroplasty surgery. Trabecular bone microstructure, osteocyte-lacunar network, and bone matrix vascularity were evaluated using synchrotron micro-CT imaging. Additionally, osteocyte density, viability, and connectivity were determined histologically. RESULTS The associations between severe cartilage degeneration and increase of bone volume fraction (%) [- 8.7, 95% CI (-14.1, -3.4)], trabecular number (#/mm) [- 1.5, 95% CI (-0.8, -2.3)], osteocyte lacunar density (#/mm3) [4714.9; 95% CI (2079.1, 7350.6)] and decrease of trabecular separation (mm) [- 0.07, 95% CI (0.02, 0.1)] were found in both knee and hip OA. When compared to knee OA, hip OA was characterised by larger (µm3) but less spheric osteocyte lacunae [47.3; 95% CI (11.2, 83.4), - 0.04; 95% CI (-0.06, -0.02), respectively], lower vascular canal density (#/mm3) [- 22.8; 95% CI (-35.4, -10.3)], lower osteocyte cell density (#/mm2) [- 84.2; 95% CI (-102.5, -67.4)], and less senescent (#/mm2) but more apoptotic osteocytes (%) [- 2.4; 95% CI (-3.6, -1.2), 24.9; 95% CI (17.7, 32.1)], respectively. CONCLUSION SCB from hip OA and knee OA exhibits different characteristics at the tissue and cellular levels, suggesting different mechanisms of OA progression in different joints.
Collapse
Affiliation(s)
- Dzenita Muratovic
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia.
| | - David M Findlay
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - Micaela J Quinn
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Bone and Joint Osteoimmunology Laboratory, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ryan D Quarrington
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lucian B Solomon
- Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia; Orthopaedic and Trauma Service, the Royal Adelaide Hospital and the Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Gerald J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Shakya AK, Al-Sulaibi M, Naik RR, Nsairat H, Suboh S, Abulaila A. Review on PLGA Polymer Based Nanoparticles with Antimicrobial Properties and Their Application in Various Medical Conditions or Infections. Polymers (Basel) 2023; 15:3597. [PMID: 37688223 PMCID: PMC10490122 DOI: 10.3390/polym15173597] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The rise in the resistance to antibiotics is due to their inappropriate use and the use of a broad spectrum of antibiotics. This has also contributed to the development of multidrug-resistant microorganisms, and due to the unavailability of suitable new drugs for treatments, it is difficult to control. Hence, there is a need for the development of new novel, target-specific antimicrobials. Nanotechnology, involving the synthesis of nanoparticles, may be one of the best options, as it can be manipulated by using physicochemical properties to develop intelligent NPs with desired properties. NPs, because of their unique properties, can deliver drugs to specific targets and release them in a sustained fashion. The chance of developing resistance is very low. Polymeric nanoparticles are solid colloids synthesized using either natural or synthetic polymers. These polymers are used as carriers of drugs to deliver them to the targets. NPs, synthesized using poly-lactic acid (PLA) or the copolymer of lactic and glycolic acid (PLGA), are used in the delivery of controlled drug release, as they are biodegradable, biocompatible and have been approved by the USFDA. In this article, we will be reviewing the synthesis of PLGA-based nanoparticles encapsulated or loaded with antibiotics, natural products, or metal ions and their antibacterial potential in various medical applications.
Collapse
Affiliation(s)
- Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mazen Al-Sulaibi
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Hamdi Nsairat
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Sara Suboh
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | | |
Collapse
|
14
|
Magida N, Myezwa H, Mudzi W. Factors Informing the Development of a Clinical Pathway and Patients' Quality of Life after a Non-Union Fracture of the Lower Limb. Healthcare (Basel) 2023; 11:1810. [PMID: 37372927 DOI: 10.3390/healthcare11121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Patients with non-union fractures spend extended periods of time in the hospital following poor healing. Patients have to make several follow-up visits for medical and rehabilitation purposes. However, the clinical pathways and quality of life of these patients are unknown. This prospective study aimed to identify the clinical pathways (CPs) of 22 patients with lower-limb non-union fractures whilst determining their quality of life. Data were collected from hospital records from admission to discharge, utilizing a CP questionnaire. We used the same questionnaire to track patients' follow-up frequency, involvement in activities of daily living, and final outcomes at six months. We used the Short Form-36 questionnaire to assess patients' initial quality of life. The Kruskal-Wallis test compared the quality of life domains across different fracture sites. We examined CPs using medians and inter-quantile ranges. During the six-month follow-up period, 12 patients with lower-limb non-union fractures were readmitted. All of the patients had impairments, limited activity, and participation restrictions. Lower-limb fractures can have a substantial impact on emotional and physical health, and lower-limb non-union fractures may have an even greater effect on the emotional and physical health of patients, necessitating a more holistic approach to patient care.
Collapse
Affiliation(s)
- Nontembiso Magida
- Department of Physiotherapy, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, Pretoria 0007, South Africa
- Department of Physiotherapy, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Hellen Myezwa
- Department of Physiotherapy, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Witness Mudzi
- Centre for Graduate Support, University of Free State, Bloemfontein 9301, South Africa
| |
Collapse
|
15
|
Clement ND, Gaston MS, Simpson AH. Fractures in elderly mice demonstrate delayed ossification of the soft callus: a cellular and radiographic study. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2023; 33:977-985. [PMID: 35239001 PMCID: PMC10125932 DOI: 10.1007/s00590-022-03235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study was to assess the cellular age-related changes in fracture repair and relate these to the observed radiographic assessments at differing time points. METHODS Transverse traumatic tibial diaphyseal fractures were created in 12-14 weeks old (young n = 16) and 18 months old (elderly n = 20) in Balb/C wild mice. Fracture calluses were harvested at five time points from 1 to 35 days post fracture for histomorphometry (percent of cartilage and bone), radiographic analysis (total callus volume, callus index, and relative bone mineral content). RESULTS The elderly mice produced an equal amount of cartilage when compared to young mice (p > 0.08). However, by day 21 there was a significantly greater percentage of bone at the fracture site in the young group (mean percentage 50% versus 11%, p < 0.001). It was not until day 35 when the elderly group produced a similar amount of bone compared to the young group at 21 days (50% versus 53%, non-significant (ns)). The callus area and callus index on radiographic assessment was not significantly different between young and elderly groups at any time point. Relative bone mineral content was significantly greater in the young group at 14 days (545.7 versus -120.2, p < 0.001) and 21 days (888.7 versus 451.0, p < 0.001) when compared to the elderly group. It was not until day 35 when the elderly group produced a similar relative bone mineral content as the young group at 21 days (888.7 versus 921.8, ns). CONCLUSIONS Elderly mice demonstrated a delay in endochondral ossification which was associated with a decreased relative bone mineral content at the fracture site and may help assess these cellular changes in a clinical setting.
Collapse
Affiliation(s)
- N. D. Clement
- Department of Orthopaedics and Trauma, University of Edinburgh, Little France, Edinburgh, EH16 4SA UK
| | - M. S. Gaston
- Department of Orthopaedics and Trauma, University of Edinburgh, Little France, Edinburgh, EH16 4SA UK
| | - A. H. Simpson
- Department of Orthopaedics and Trauma, University of Edinburgh, Little France, Edinburgh, EH16 4SA UK
| |
Collapse
|
16
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
17
|
Hellwinkel JE, Working ZM, Certain L, García AJ, Wenke JC, Bahney CS. The intersection of fracture healing and infection: Orthopaedics research society workshop 2021. J Orthop Res 2022; 40:541-552. [PMID: 35076097 PMCID: PMC9169242 DOI: 10.1002/jor.25261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023]
Abstract
Infection is a common cause of impaired fracture healing. In the clinical setting, definitive fracture treatment and infection are often treated separately and sequentially, by different clinical specialties. The ability to treat infection while promoting fracture healing will greatly reduce the cost, number of procedures, and patient morbidity associated with infected fractures. In order to develop new therapies, scientists and engineers must understand the clinical need, current standards of care, pathologic effects of infection on fractures, available preclinical models, and novel technologies. One of the main causes of poor fracture healing is infection; unfortunately, bone regeneration and infection research are typically approached independently and viewed as two separate disciplines. Here, we aim to bring these two groups together in an educational workshop to promote research into the basic and translational science that will address the clinical challenge of delayed fracture healing due to infection. Statement of clinical significance: Infection and nonunion are each feared outcomes in fracture care, and infection is a significant driver of nonunion. The impact of nonunions on patie[Q2]nt well-being is substantial. Outcome data suggests a long bone nonunion is as impactful on health-related quality of life measures as a diagnosis of type 1 diabetes and fracture-related infection has been shown to significantly l[Q3]ower a patient's quality of life for over 4 years. Although they frequently are associated with one another, the treatment approaches for infections and nonunions are not always complimentary and cannot be performed simultaneously without accepting tradeoffs. Furthermore, different clinical specialties are often required to address the problem, the orthopedic surgeon treating the fracture and an infectious disease specialist addressing the sources of infection. A sequential approach that optimizes treatment parameters requires more time, more surgeries, and thus confers increased morbidity to the patient. The ability to solve fracture healing and infection clearance simultaneously in a contaminated defect would benefit both the patient and the health care system.
Collapse
Affiliation(s)
- Justin E Hellwinkel
- Department of Orthopedic Surgery, Columbia University, New York, New York, USA
| | - Zachary M Working
- Department of Orthopaedic Surgery and Rehabilitation, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Laura Certain
- Division of Infectious Diseases, University of Utah, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Joseph C Wenke
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, Texas, USA
- 7Shriners Children's Texas, Galveston, TX
| | - Chelsea S Bahney
- Center for Regenerative and Personalized Medicine, The Steadman Clinic & Steadman Philippon Research Institute, Vail, Colorado, USA
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, California, USA
| |
Collapse
|
18
|
Working ZM, Peterson D, Lawson M, O’Hara K, Coghlan R, Provencher MT, Friess DM, Johnstone B, Miclau T, Bahney CS. Collagen X Longitudinal Fracture Biomarker Suggests Staged Fixation in Tibial Plateau Fractures Delays Rate of Endochondral Repair. J Orthop Trauma 2022; 36:S32-S39. [PMID: 35061649 PMCID: PMC10308601 DOI: 10.1097/bot.0000000000002307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To use a novel, validated bioassay to monitor serum concentrations of a breakdown product of collagen X in a prospective longitudinal study of patients sustaining isolated tibial plateau fractures. Collagen X is the hallmark extracellular matrix protein present during conversion of soft, cartilaginous callus to bone during endochondral repair. Previous preclinical and clinical studies demonstrated a distinct peak in collagen X biomarker (CXM) bioassay levels after long bone fractures. SETTING Level 1 academic trauma facility. PATIENTS/PARTICIPANTS Thirty-six patients; isolated tibial plateau fractures. INTERVENTION (3) Closed treatment, ex-fix (temporizing/definitive), and open reduction internal fixation. MAIN OUTCOME MEASUREMENTS Collagen X serum biomarker levels (CXM bioassay). RESULTS Twenty-two men and 14 women (average age: 46.3 y; 22.6-73.4, SD 13.3) enrolled (16 unicondylar and 20 bicondylar fractures). Twenty-five patients (72.2%) were treated operatively, including 12 (33.3%) provisionally or definitively treated by ex-fix. No difference was found in peak CXM values between sexes or age. Patients demonstrated peak expression near 1000 pg/mL (average: male-986.5 pg/mL, SD 369; female-953.2 pg/mL, SD 576). There was no difference in peak CXM by treatment protocol, external fixator use, or fracture severity (Schatzker). Patients treated with external fixation (P = 0.05) or staged open reduction internal fixation (P = 0.046) critically demonstrated delayed peaks. CONCLUSIONS Pilot analysis demonstrates a strong CXM peak after fractures commensurate with previous preclinical and clinical studies, which was delayed with staged fixation. This may represent the consequence of delayed construct loading. Further validation requires larger cohorts and long-term follow-up. Collagen X may provide an opportunity to support prospective interventional studies testing novel orthobiologics or fixation techniques. LEVEL OF EVIDENCE Level II, prospective clinical observational study.
Collapse
Affiliation(s)
- Zachary M. Working
- Department of Orthopaedics & Rehabilitation, Oregon Health and Science University, Portland, OR
| | - Danielle Peterson
- Department of Orthopaedics & Rehabilitation, Oregon Health and Science University, Portland, OR
| | - Michelle Lawson
- Department of Orthopaedics & Rehabilitation, Oregon Health and Science University, Portland, OR
| | | | | | | | - Darin M. Friess
- Department of Orthopaedics & Rehabilitation, Oregon Health and Science University, Portland, OR
| | - Brian Johnstone
- Department of Orthopaedics & Rehabilitation, Oregon Health and Science University, Portland, OR
- Portland Shriners Hospital, Portland, OR
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California at San Francisco, San Francisco, CA
| | - Chelsea S. Bahney
- Steadman Philippon Research Institute, Vail, CO
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California at San Francisco, San Francisco, CA
| |
Collapse
|
19
|
Yamaguchi R, Kamiya N, Kuroyanagi G, Ren Y, Kim HKW. Development of a murine model of ischemic osteonecrosis to study the effects of aging on bone repair. J Orthop Res 2021; 39:2663-2670. [PMID: 33580535 DOI: 10.1002/jor.25006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 12/20/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
Age at onset is one of the most important predictors of outcome following ischemic osteonecrosis (ON). Currently, there is no well-established animal model to study the effects of age on the repair process following ischemic ON. The purpose of this study was to further advance a murine model of ischemic ON using four age groups of mice to determine the effects of aging on revascularization and bone repair following ischemic ON. Ischemia was surgically induced in the distal femoral epiphysis of four age groups of skeletally immature and mature mice; juvenile (5 weeks), adolescent (12 weeks), adult (22 weeks), and middle age (52 weeks). Mice were euthanized at 2 days or 4 weeks post-ischemia surgery to evaluate the extent of ON, revascularization, and bone repair. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining showed extensive cell death in the epiphysis of all four age groups at 2 days post-ischemia surgery. At 4 weeks, the juvenile mice followed by the adolescent mice had significantly greater revascularization and repair of the necrotic marrow space, increased osteoblast and osteoclast numbers, and increased bone formation rates compared to the adult and middle-age mice. Faster revascularization and bone healing were observed in the skeletally immature mice compared to the skeletally mature mice following ischemic ON. The findings resemble the clinical observation of aging on bone repair following ischemic ON. The mouse model may serve as a useful tool to investigate the mechanisms underlying the age-related impairment of bone repair in adolescent and adult ON and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Ryosuke Yamaguchi
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA.,Department of Orthopaedic Surgery, Guraduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Kamiya
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA.,Sports Medicine, Tenri University, Tenri, Nara, Japan
| | - Gen Kuroyanagi
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA.,Department of Orthopaedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yinshi Ren
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA.,Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Harry K W Kim
- Center for Excellence in Hip, Scottish Rite for Children, Dallas, Texas, USA.,Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Dadwal UC, Bhatti FUR, Awosanya OD, de Andrade Staut C, Nagaraj RU, Perugini AJ, Tewari NP, Valuch CR, Sun S, Mendenhall SK, Zhou D, Mostardo SL, Blosser RJ, Li J, Kacena MA. The Effects of SRT1720 Treatment on Endothelial Cells Derived from the Lung and Bone Marrow of Young and Aged, Male and Female Mice. Int J Mol Sci 2021; 22:11097. [PMID: 34681756 PMCID: PMC8540697 DOI: 10.3390/ijms222011097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/10/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is critical for successful fracture healing. Age-related alterations in endothelial cells (ECs) may cause impaired bone healing. Therefore, examining therapeutic treatments to improve angiogenesis in aging may enhance bone healing. Sirtuin 1 (SIRT1) is highly expressed in ECs and its activation is known to counteract aging. Here, we examined the effects of SRT1720 treatment (SIRT1 activator) on the growth and function of bone marrow and lung ECs (BMECs and LECs, respectively), derived from young (3-4 month) and old (20-24 month) mice. While aging did not alter EC proliferation, treatment with SRT1720 significantly increased proliferation of all LECs. However, SRT1720 only increased proliferation of old female BMECs. Vessel-like tube assays showed similar vessel-like structures between young and old LECs and BMECs from both male and female mice. SRT1720 significantly improved vessel-like structures in all LECs. No age, sex, or treatment differences were found in migration related parameters of LECs. In males, old BMECs had greater migration rates than young BMECs, whereas in females, old BMECs had lower migration rates than young BMECs. Collectively, our data suggest that treatment with SRT1720 appears to enhance the angiogenic potential of LECs irrespective of age or sex. However, its role in BMECs is sex- and age-dependent.
Collapse
Affiliation(s)
- Ushashi Chand Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Olatundun Dupe Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Caio de Andrade Staut
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Anthony Joseph Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Nikhil Prasad Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Conner Riley Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (C.R.V.); (J.L.)
| | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Stephen Kyle Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Sarah Lyn Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
| | - Rachel Jean Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (C.R.V.); (J.L.)
| | - Melissa Ann Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (U.C.D.); (F.U.R.B.); (O.D.A.); (C.d.A.S.); (R.U.N.); (A.J.P.III); (N.P.T.); (S.S.); (S.K.M.); (D.Z.); (S.L.M.); (R.J.B.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Dadwal UC, Bhatti FUR, Awosanya OD, Nagaraj RU, Perugini AJ, Sun S, Valuch CR, de Andrade Staut C, Mendenhall SK, Tewari NP, Mostardo SL, Nazzal MK, Battina HL, Zhou D, Kanagasabapathy D, Blosser RJ, Mulcrone PL, Li J, Kacena MA. The effects of bone morphogenetic protein 2 and thrombopoietin treatment on angiogenic properties of endothelial cells derived from the lung and bone marrow of young and aged, male and female mice. FASEB J 2021; 35:e21840. [PMID: 34423881 DOI: 10.1096/fj.202001616rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
With an aging world population, there is an increased risk of fracture and impaired healing. One contributing factor may be aging-associated decreases in vascular function; thus, enhancing angiogenesis could improve fracture healing. Both bone morphogenetic protein 2 (BMP-2) and thrombopoietin (TPO) have pro-angiogenic effects. The aim of this study was to investigate the effects of treatment with BMP-2 or TPO on the in vitro angiogenic and proliferative potential of endothelial cells (ECs) isolated from lungs (LECs) or bone marrow (BMECs) of young (3-4 months) and old (22-24 months), male and female, C57BL/6J mice. Cell proliferation, vessel-like structure formation, migration, and gene expression were used to evaluate angiogenic properties. In vitro characterization of ECs generally showed impaired vessel-like structure formation and proliferation in old ECs compared to young ECs, but improved migration characteristics in old BMECs. Differential sex-based angiogenic responses were observed, especially with respect to drug treatments and gene expression. Importantly, these studies suggest that NTN1, ROBO2, and SLIT3, along with angiogenic markers (CD31, FLT-1, ANGPT1, and ANGP2) differentially regulate EC proliferation and functional outcomes based on treatment, sex, and age. Furthermore, treatment of old ECs with TPO typically improved vessel-like structure parameters, but impaired migration. Thus, TPO may serve as an alternative treatment to BMP-2 for fracture healing in aging owing to improved angiogenesis and fracture healing, and the lack of side effects associated with BMP-2.
Collapse
Affiliation(s)
- Ushashi C Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Fazal Ur Rehman Bhatti
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Olatundun D Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rohit U Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony J Perugini
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Seungyup Sun
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Conner R Valuch
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Caio de Andrade Staut
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen K Mendenhall
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nikhil P Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah L Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hanisha L Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Deepa Kanagasabapathy
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachel J Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Patrick L Mulcrone
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiliang Li
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
22
|
Haffner-Luntzer M, Fischer V, Ignatius A. Differences in Fracture Healing Between Female and Male C57BL/6J Mice. Front Physiol 2021; 12:712494. [PMID: 34434120 PMCID: PMC8381649 DOI: 10.3389/fphys.2021.712494] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Mice are increasingly used in fracture healing research because of the opportunity to use transgenic animals. While both, male and female mice are employed, there is no consensus in the literature whether fracture healing differs between both sexes. Therefore, the aim of the present study was to analyze diaphyseal fracture healing in female and male C57BL/6J mice, a commonly used mouse strain in bone research. Methods For that purpose, 12-week-old Female (17–20 g) and Male mice (22–26 g) received a standardized femur midshaft osteotomy stabilized by an external fixator. Mice were euthanized 10 and 21 days after fracture and bone healing was analyzed by biomechanical testing, μCT, histology, immunohistochemistry and qPCR. Results Ten days after fracture, Male mice displayed significantly more cartilage but less fibrous tissue in the fracture callus compared to Female mice, whereas the amount of bone did not differ. At day 21, Male mice showed a significantly larger fracture callus compared to Female mice. The relative amount of bone in the fracture callus did not significantly differ between both sexes, whereas its tissue mineral density was significantly higher in Male mice on day 21, indicating more mature bone and slightly more rapid fracture healing. These results were confirmed by a significantly greater absolute bending stiffness of the fractured femurs of Male mice on day 21. On the molecular level, Male mice displayed increased active β-catenin expression in the fracture callus, whereas estrogen receptor α (ERα) expression was lower. Conclusion These results suggest that Male mice display more rapid fracture healing with more prominent cartilaginous callus formation. This might be due to the higher weight of Male mice, resulting in increased mechanical loading of the fracture. Furthermore, Male mice displayed significantly greater activation of osteoanabolic Wnt/β-catenin signaling, which might also contribute to more rapid bone regeneration.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Centre Ulm, Ulm, Germany
| |
Collapse
|
23
|
Gresham RC, Bahney CS, Leach JK. Growth factor delivery using extracellular matrix-mimicking substrates for musculoskeletal tissue engineering and repair. Bioact Mater 2021; 6:1945-1956. [PMID: 33426369 PMCID: PMC7773685 DOI: 10.1016/j.bioactmat.2020.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Therapeutic approaches for musculoskeletal tissue regeneration commonly employ growth factors (GFs) to influence neighboring cells and promote migration, proliferation, or differentiation. Despite promising results in preclinical models, the use of inductive biomacromolecules has achieved limited success in translation to the clinic. The field has yet to sufficiently overcome substantial hurdles such as poor spatiotemporal control and supraphysiological dosages, which commonly result in detrimental side effects. Physiological presentation and retention of biomacromolecules is regulated by the extracellular matrix (ECM), which acts as a reservoir for GFs via electrostatic interactions. Advances in the manipulation of extracellular proteins, decellularized tissues, and synthetic ECM-mimetic applications across a range of biomaterials have increased the ability to direct the presentation of GFs. Successful application of biomaterial technologies utilizing ECM mimetics increases tissue regeneration without the reliance on supraphysiological doses of inductive biomacromolecules. This review describes recent strategies to manage GF presentation using ECM-mimetic substrates for the regeneration of bone, cartilage, and muscle.
Collapse
Affiliation(s)
| | - Chelsea S. Bahney
- Steadman Phillippon Research Institute, Vail, CO, USA
- UCSF Orthopaedic Trauma Institute, San Francisco, CA, USA
| | - J. Kent Leach
- UC Davis, Department of Biomedical Engineering, Davis, CA, USA
- UC Davis Health, Department of Orthopaedic Surgery, Davis, CA, USA
| |
Collapse
|
24
|
Wang C, Ying J, Nie X, Zhou T, Xiao D, Swarnkar G, Abu-Amer Y, Guan J, Shen J. Targeting angiogenesis for fracture nonunion treatment in inflammatory disease. Bone Res 2021; 9:29. [PMID: 34099632 PMCID: PMC8184936 DOI: 10.1038/s41413-021-00150-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Atrophic fracture nonunion poses a significant clinical problem with limited therapeutic interventions. In this study, we developed a unique nonunion model with high clinical relevance using serum transfer-induced rheumatoid arthritis (RA). Arthritic mice displayed fracture nonunion with the absence of fracture callus, diminished angiogenesis and fibrotic scar tissue formation leading to the failure of biomechanical properties, representing the major manifestations of atrophic nonunion in the clinic. Mechanistically, we demonstrated that the angiogenesis defect observed in RA mice was due to the downregulation of SPP1 and CXCL12 in chondrocytes, as evidenced by the restoration of angiogenesis upon SPP1 and CXCL12 treatment in vitro. In this regard, we developed a biodegradable scaffold loaded with SPP1 and CXCL12, which displayed a beneficial effect on angiogenesis and fracture repair in mice despite the presence of inflammation. Hence, these findings strongly suggest that the sustained release of SPP1 and CXCL12 represents an effective therapeutic approach to treat impaired angiogenesis and fracture nonunion under inflammatory conditions.
Collapse
Affiliation(s)
- Cuicui Wang
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA
| | - Jun Ying
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA ,grid.417400.60000 0004 1799 0055Department of Orthopaedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China ,grid.417400.60000 0004 1799 0055Institute of Orthopaedics and Traumatology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolei Nie
- grid.4367.60000 0001 2355 7002Department of Mechanical Engineering & Materials Science, School of Engineering, Washington University, St. Louis, MO USA
| | - Tianhong Zhou
- grid.4367.60000 0001 2355 7002Department of Mechanical Engineering & Materials Science, School of Engineering, Washington University, St. Louis, MO USA
| | - Ding Xiao
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA
| | - Gaurav Swarnkar
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA
| | - Yousef Abu-Amer
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA ,grid.415840.c0000 0004 0449 6533Shriners Hospital for Children, St. Louis, MO USA
| | - Jianjun Guan
- grid.4367.60000 0001 2355 7002Department of Mechanical Engineering & Materials Science, School of Engineering, Washington University, St. Louis, MO USA
| | - Jie Shen
- grid.4367.60000 0001 2355 7002Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO USA
| |
Collapse
|
25
|
Abstract
The most common procedure that has been developed for use in rats and mice to model fracture healing is described. The nature of the regenerative processes that may be assessed and the types of research questions that may be addressed with this model are briefly outlined. The detailed surgical protocol to generate closed simple transverse fractures is presented and general considerations when setting up an experiment using this model are described.
Collapse
|
26
|
Menger MM, Bremer P, Scheuer C, Rollmann MF, Braun BJ, Herath SC, Orth M, Später T, Pohlemann T, Menger MD, Histing T. Pantoprazole impairs fracture healing in aged mice. Sci Rep 2020; 10:22376. [PMID: 33361800 PMCID: PMC7758334 DOI: 10.1038/s41598-020-79605-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Proton pump inhibitors (PPIs) belong to the most common medication in geriatric medicine. They are known to reduce osteoclast activity and to delay fracture healing in young adult mice. Because differentiation and proliferation in fracture healing as well as pharmacologic actions of drugs markedly differ in the elderly compared to the young, we herein studied the effect of the PPI pantoprazole on bone healing in aged mice using a murine fracture model. Bone healing was analyzed by biomechanical, histomorphometric, radiological and protein biochemical analyses. The biomechanical analysis revealed a significantly reduced bending stiffness in pantoprazole-treated animals when compared to controls. This was associated with a decreased amount of bone tissue within the callus, a reduced trabecular thickness and a higher amount of fibrous tissue. Furthermore, the number of osteoclasts in pantoprazole-treated animals was significantly increased at 2 weeks and decreased at 5 weeks after fracture, indicating an acceleration of bone turnover. Western blot analysis showed a lower expression of the bone morphogenetic protein-4 (BMP-4), whereas the expression of the pro-angiogenic parameters was higher when compared to controls. Thus, pantoprazole impairs fracture healing in aged mice by affecting angiogenic and osteogenic growth factor expression, osteoclast activity and bone formation.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany. .,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
| | - Philipp Bremer
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Claudia Scheuer
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Mika F Rollmann
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Benedikt J Braun
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Marcel Orth
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Tim Pohlemann
- Department of Trauma, Hand and Reconstructive Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Tina Histing
- Institute for Clinical & Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany.,Department of Trauma and Reconstructive Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| |
Collapse
|
27
|
Stucker S, Chen J, Watt FE, Kusumbe AP. Bone Angiogenesis and Vascular Niche Remodeling in Stress, Aging, and Diseases. Front Cell Dev Biol 2020; 8:602269. [PMID: 33324652 PMCID: PMC7726257 DOI: 10.3389/fcell.2020.602269] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 02/05/2023] Open
Abstract
The bone marrow (BM) vascular niche microenvironments harbor stem and progenitor cells of various lineages. Bone angiogenesis is distinct and involves tissue-specific signals. The nurturing vascular niches in the BM are complex and heterogenous consisting of distinct vascular and perivascular cell types that provide crucial signals for the maintenance of stem and progenitor cells. Growing evidence suggests that the BM niche is highly sensitive to stress. Aging, inflammation and other stress factors induce changes in BM niche cells and their crosstalk with tissue cells leading to perturbed hematopoiesis, bone angiogenesis and bone formation. Defining vascular niche remodeling under stress conditions will improve our understanding of the BM vascular niche and its role in homeostasis and disease. Therefore, this review provides an overview of the current understanding of the BM vascular niches for hematopoietic stem cells and their malfunction during aging, bone loss diseases, arthritis and metastasis.
Collapse
Affiliation(s)
- Sina Stucker
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Junyu Chen
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fiona E. Watt
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Anjali P. Kusumbe
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. J Bone Miner Res 2020; 35:2103-2120. [PMID: 32845550 DOI: 10.1002/jbmr.4171] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Bone vasculature and bone marrow vascular niches supply oxygen, nutrients, and secrete angiocrine factors required for the survival, maintenance, and self-renewal of stem and progenitor cells. In the skeletal system, vasculature creates nurturing niches for bone and blood-forming stem cells. Blood vessels regulate hematopoiesis and drive bone formation during development, repair, and regeneration. Dysfunctional vascular niches induce skeletal aging, bone diseases, and hematological disorders. Recent cellular and molecular characterization of the bone marrow microenvironment has provided unprecedented insights into the complexity, heterogeneity, and functions of the bone vasculature and vascular niches. The bone vasculature is composed of distinct vessel subtypes that differentially regulate osteogenesis, hematopoiesis, and disease conditions in bones. Further, bone marrow vascular niches supporting stem cells are often complex microenvironments involving multiple different cell populations and vessel subtypes. This review provides an overview of the emerging vascular cell heterogeneity in bone and the new roles of the bone vasculature and associated vascular niches in health and disease. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Junyu Chen
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michelle Hendriks
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Alexandros Chatzis
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Hellwinkel JE, Miclau T, Provencher MT, Bahney CS, Working ZM. The Life of a Fracture: Biologic Progression, Healing Gone Awry, and Evaluation of Union. JBJS Rev 2020; 8:e1900221. [PMID: 32796195 PMCID: PMC11147169 DOI: 10.2106/jbjs.rvw.19.00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New knowledge about the molecular biology of fracture-healing provides opportunities for intervention and reduction of risk for specific phases that are affected by disease and medications. Modifiable and nonmodifiable risk factors can prolong healing, and the informed clinician should optimize each patient to provide the best chance for union. Techniques to monitor progression of fracture-healing have not changed substantially over time; new objective modalities are needed.
Collapse
Affiliation(s)
- Justin E Hellwinkel
- Department of Orthopedic Surgery, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Theodore Miclau
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Matthew T Provencher
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Chelsea S Bahney
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Zachary M Working
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
- Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
30
|
Yılmaz Şaştım Ç, Gürsoy M, Könönen E, Kasurinen A, Norvio S, Gürsoy UK, Doğan B. Salivary and serum markers of angiogenesis in periodontitis in relation to smoking. Clin Oral Investig 2020; 25:1117-1126. [PMID: 32643086 DOI: 10.1007/s00784-020-03411-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Angiogenesis is essential in maintenance of periodontal homeostasis, and it is regulated by growth factors and cytokines, including basic fibroblast growth factor (b-FGF), endoglin, platelet and endothelial cell adhesion molecule (PECAM-1), vascular endothelial growth factor (VEGF), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1). In this study, the salivary and serum concentrations of these angiogenesis-related proteins in relation to smoking and periodontitis were examined. MATERIAL AND METHODS Full-mouth periodontal status together with unstimulated whole saliva and serum samples was collected from 78 individuals, including 40 periodontitis patients (20 smokers and 20 nonsmokers) and 38 periodontally healthy controls (20 smokers and 18 nonsmokers). The Luminex®-xMAP™ technique was used for protein analyses. RESULTS Concentrations of all tested proteins in saliva as well as VEGF in serum were significantly higher in periodontitis patients than in healthy controls. In smokers, serum concentrations of endoglin (p = 0.017) and sICAM-1 (p = 0.001) were elevated in comparison to nonsmokers. After adjusting for smoking and gender, periodontitis associated significantly with salivary concentrations of b-FGF, PECAM-1, VEGF, sICAM-1, and sVCAM-1 (p < 0.01). CONCLUSION Taken together, salivary concentrations of b-FGF, PECAM-1, and VEGF associate with periodontitis. The suppressive effect of smoking on salivary marker levels is limited to periodontitis patients only. CLINICAL RELEVANCE Smoking-related suppression of salivary marker levels is observed only in periodontitis patients.
Collapse
Affiliation(s)
- Çiğdem Yılmaz Şaştım
- Department of Periodontology, Faculty of Dentistry, University of Marmara, 34854 Maltepe, Istanbul, Turkey
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
- Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| | - Akseli Kasurinen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Susanna Norvio
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Başak Doğan
- Department of Periodontology, Faculty of Dentistry, University of Marmara, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
31
|
Abstract
The skeleton is highly vascularized due to the various roles blood vessels play in the homeostasis of bone and marrow. For example, blood vessels provide nutrients, remove metabolic by-products, deliver systemic hormones, and circulate precursor cells to bone and marrow. In addition to these roles, bone blood vessels participate in a variety of other functions. This article provides an overview of the afferent, exchange and efferent vessels in bone and marrow and presents the morphological layout of these blood vessels regarding blood flow dynamics. In addition, this article discusses how bone blood vessels participate in bone development, maintenance, and repair. Further, mechanical loading-induced bone adaptation is presented regarding interstitial fluid flow and pressure, as regulated by the vascular system. The role of the sympathetic nervous system is discussed in relation to blood vessels and bone. Finally, vascular participation in bone accrual with intermittent parathyroid hormone administration, a medication prescribed to combat age-related bone loss, is described and age- and disease-related impairments in blood vessels are discussed in relation to bone and marrow dysfunction. © 2020 American Physiological Society. Compr Physiol 10:1009-1046, 2020.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
32
|
Lee S, Prisby RD. Short-term intermittent parathyroid hormone (1-34) administration increased angiogenesis and matrix metalloproteinase 9 in femora of mature and middle-aged C57BL/6 mice. Exp Physiol 2020; 105:1159-1171. [PMID: 32306445 DOI: 10.1113/ep087869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 04/15/2020] [Indexed: 01/09/2023]
Abstract
NEW FINDINGS What is the central question of this study? We sought to assess the effects of intermittent parathyroid hormone (1-34) administration on bone angiogenesis, the redistribution of bone marrow blood vessels, and matrix metalloproteinase 9 as a function of advancing age in mice. What is the main finding and its importance? Short-term (i.e. 10 days) intermittent parathyroid hormone (1-34) administration increased the number of small (≤29-µm-diameter) bone marrow blood vessels and augmented matrix metalloproteinase 9. These changes occurred before alterations in trabecular bone. Given the rapid response in bone angiogenesis, this investigation highlights the impact of intermittent parathyroid hormone (1-34) administration on the bone vascular network. ABSTRACT Intermittent parathyroid hormone (PTH) administration augments bone, stimulates the production of matrix metalloproteinase 9 (Mmp9) and relocates bone marrow blood vessels closer to osteoid seams. Discrepancies exist, however, regarding bone angiogenesis. Given that Mmp9 participates in cellular homing and migration, it might aid in blood vessel relocation. We examined the influence of short-term intermittent PTH administration on angiogenesis, Mmp9 secretion and the distance between blood vessels and bone. Mature (6- to 8-month-old) and middle-aged (10- to 12-month-old) male and female C57BL/6 mice were divided into three groups: control (CON), and 5 (5dPTH) and 10 days (10dPTH) of intermittent PTH administration. Mice were given PBS (50 µl day-1 ) or PTH(1-34) (43 µg kg-1 day-1 ). Frontal sections (5 µm thick) of the right distal femoral metaphysis were triple-immunolabelled to identify endothelial cells (anti-CD31), vascular smooth muscle cells (anti-αSMA) and Mmp9 (anti-Mmp9). Vascular density, Mmp9 density, area and localization, and blood vessel distance from bone were analysed. Blood vessels were analysed according to diameter: 1-29, 30-100 and 101-200 µm. Trabecular bone microarchitecture and bone static and dynamic properties were assessed. No main effects of age were observed for any variable. The density of CD31-labelled blood vessels 1-29 and 30-100 µm in diameter was higher (P < 0.05) and tended (P = 0.055) to be higher, respectively, in 10dPTH versus 5dPTH and CON. Mmp9 was augmented (P < 0.05) in 10dPTH versus the other groups. Mmp9 was closer (P < 0.05) to blood vessels 1-29 µm in diameter and furthest (P < 0.05) from bone. In conclusion, bone angiogenesis occurred by day 10 of intermittent PTH administration, coinciding with augmented Mmp9 secretion near the smallest blood vessels (1-29 µm in diameter).
Collapse
Affiliation(s)
- Seungyong Lee
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Rhonda D Prisby
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
33
|
Berkmann JC, Herrera Martin AX, Ellinghaus A, Schlundt C, Schell H, Lippens E, Duda GN, Tsitsilonis S, Schmidt-Bleek K. Early pH Changes in Musculoskeletal Tissues upon Injury-Aerobic Catabolic Pathway Activity Linked to Inter-Individual Differences in Local pH. Int J Mol Sci 2020; 21:ijms21072513. [PMID: 32260421 PMCID: PMC7177603 DOI: 10.3390/ijms21072513] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023] Open
Abstract
Local pH is stated to acidify after bone fracture. However, the time course and degree of acidification remain unknown. Whether the acidification pattern within a fracture hematoma is applicable to adjacent muscle hematoma or is exclusive to this regenerative tissue has not been studied to date. Thus, in this study, we aimed to unravel the extent and pattern of acidification in vivo during the early phase post musculoskeletal injury. Local pH changes after fracture and muscle trauma were measured simultaneously in two pre-clinical animal models (sheep/rats) immediately after and up to 48 h post injury. The rat fracture hematoma was further analyzed histologically and metabolomically. In vivo pH measurements in bone and muscle hematoma revealed a local acidification in both animal models, yielding mean pH values in rats of 6.69 and 6.89, with pronounced intra- and inter-individual differences. The metabolomic analysis of the hematomas indicated a link between reduction in tricarboxylic acid cycle activity and pH, thus, metabolic activity within the injured tissues could be causative for the different pH values. The significant acidification within the early musculoskeletal hematoma could enable the employment of the pH for novel, sought-after treatments that allow for spatially and temporally controlled drug release.
Collapse
Affiliation(s)
- Julia C. Berkmann
- Julius Wolff Institut, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.S.); (H.S.); (E.L.); (G.N.D.); (S.T.)
- Berlin-Brandenburg School for Regenerative Therapies, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Aaron X. Herrera Martin
- Julius Wolff Institut, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.S.); (H.S.); (E.L.); (G.N.D.); (S.T.)
- Berlin-Brandenburg School for Regenerative Therapies, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Agnes Ellinghaus
- BIH Center for Regenerative Therapies, Charité–Universitätsmedizin Berlin, Berlin 10178, Germany;
| | - Claudia Schlundt
- Julius Wolff Institut, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.S.); (H.S.); (E.L.); (G.N.D.); (S.T.)
| | - Hanna Schell
- Julius Wolff Institut, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.S.); (H.S.); (E.L.); (G.N.D.); (S.T.)
| | - Evi Lippens
- Julius Wolff Institut, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.S.); (H.S.); (E.L.); (G.N.D.); (S.T.)
| | - Georg N. Duda
- Julius Wolff Institut, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.S.); (H.S.); (E.L.); (G.N.D.); (S.T.)
- BIH Center for Regenerative Therapies, Charité–Universitätsmedizin Berlin, Berlin 10178, Germany;
| | - Serafeim Tsitsilonis
- Julius Wolff Institut, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.S.); (H.S.); (E.L.); (G.N.D.); (S.T.)
- Center for Musculoskeletal Surgery, Charité–Universitätsmedizin Berlin, 13357 Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institut, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany; (J.C.B.); (A.X.H.M.); (C.S.); (H.S.); (E.L.); (G.N.D.); (S.T.)
- BIH Center for Regenerative Therapies, Charité–Universitätsmedizin Berlin, Berlin 10178, Germany;
- Correspondence: ; Tel.: +49-(0)30-450-659209; Fax: +49-(0)30-450-559938
| |
Collapse
|
34
|
Onishi T, Shimizu T, Akahane M, Okuda A, Kira T, Omokawa S, Tanaka Y. Robust method to create a standardized and reproducible atrophic non-union model in a rat femur. J Orthop 2020; 21:223-227. [PMID: 32273661 DOI: 10.1016/j.jor.2020.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Objective No evidence exists about which biological approach is more reliable for creating non-union model. We investigated how to create a reproducible atrophic non-union model in a rat femur. Methods We compared three groups: simple osteotomy (group A), partial periosteum cauterization (group B), and extensive periosteum and bone marrow resection (group C). Results All samples in group C demonstrated atrophic non-union in radiological, histological, and biomechanical analyses, however half of the samples in group B showed fracture healing at week 16. Conclusion Extensive resection of periosteum and bone marrow is important for a reproducible atrophic non-union model in a rat femur.
Collapse
Affiliation(s)
- Tadanobu Onishi
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Takamasa Shimizu
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Manabu Akahane
- Department of Public Health, Health Management and Policy, Nara Medical University School of Medicine, Kashihara, Nara, 634-8521, Japan
| | - Akinori Okuda
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Tsutomu Kira
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Shohei Omokawa
- Department of Hand Surgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| | - Yasuhito Tanaka
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, 634-8522, Japan
| |
Collapse
|
35
|
Ma R, Wang W, Yang P, Wang C, Guo D, Wang K. In vitro antibacterial activity and cytocompatibility of magnesium-incorporated poly(lactide-co-glycolic acid) scaffolds. Biomed Eng Online 2020; 19:12. [PMID: 32070352 PMCID: PMC7029519 DOI: 10.1186/s12938-020-0755-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone defects are often combined with the risk of infection in the clinic, and artificial bone substitutes are often implanted to repair the defective bone. However, the implant materials are carriers for bacterial growth, and biofilm can form on the implant surface, which is difficult to eliminate using antibiotics and the host immune system. Magnesium (Mg) was previously reported to possess antibacterial potential. METHODS In this study, Mg was incorporated into poly(lactide-co-glycolic acid) (PLGA) to fabricate a PLGA/Mg scaffold using a low-temperature rapid-prototyping technique. All scaffolds were divided into three groups: PLGA (P), PLGA/10 wt% Mg with low Mg content (PM-L) and PLGA/20 wt% Mg with high Mg content (PM-H). The degradation test of the scaffolds was conducted by immersing them into the trihydroxymethyl aminomethane-hydrochloric acid (Tris-HCl) buffer solution and measuring the change of pH values and concentrations of Mg ions. The antibacterial activity of the scaffolds was investigated by the spread plate method, tissue culture plate method, scanning electron microscopy and confocal laser scanning microscopy. Additionally, the cell attachment and proliferation of the scaffolds were evaluated by the cell counting kit-8 (CCK-8) assay using MC3T3-E1 cells. RESULTS The Mg-incorporated scaffolds degraded and released Mg ions and caused an increase in the pH value. Both PM-L and PM-H inhibited bacterial growth and biofilm formation, and PM-H exhibited higher antibacterial activity than PM-L after incubation for 24 and 48 h. Cell tests revealed that PM-H exerted a suppressive effect on cell attachment and proliferation. CONCLUSIONS These findings demonstrated that the PLGA/Mg scaffolds possessed favorable antibacterial activity, and a higher content of Mg (20%) exhibited higher antibacterial activity and inhibitory effects on cell attachment and proliferation than low Mg content (10%).
Collapse
Affiliation(s)
- Rui Ma
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Wei Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Pei Yang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Chunsheng Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Dagang Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shanxi, China
| | - Kunzheng Wang
- Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China.
| |
Collapse
|
36
|
Zeiter S, Koschitzki K, Alini M, Jakob F, Rudert M, Herrmann M. Evaluation of Preclinical Models for the Testing of Bone Tissue-Engineered Constructs. Tissue Eng Part C Methods 2020; 26:107-117. [PMID: 31808374 DOI: 10.1089/ten.tec.2019.0213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autologous bone grafting is the clinical gold standard for the treatment of large bone defects, but it can only be obtained in limited amounts and is associated with donor site morbidity. These challenges might be overcome by tissue engineering (TE). Although promising results have been reported, translation into clinics often fails. Lack of reproducibility in preclinical studies may be one of the reasons. We evaluated preclinical models for testing of novel TE strategies, as well as the perception of researchers and clinicians toward the models. Therefore, a review of publications on preclinical models of the past 10 years was performed. A survey addressed to both clinicians and scientists was conducted to assess the clinical need for bone tissue engineering (BTE) constructs and researchers were asked about their satisfaction with the currently available preclinical models. A literature review revealed 169 articles on in vivo studies in the field of BTE, including 26 studies utilizing large animal models and 143 studies in small animals, with rabbits and rats presenting the most commonly used species. Only a few studies used skeletally mature animals, which is in large contrast to the patients targeted. The localization of the bone defects varied, but the vast majority (60%) were segmental bone defects with various fixation techniques. Results of 70 surveys confirmed a great clinical need for TE constructs and positive perceptions of all participants toward its future clinical application. Nevertheless, the need for optimization of preclinical models and limitations when it comes to translation of results to the clinical situation were indicated. No clear trends were detected with regards to the preclinical model, leading to most satisfying results despite the trend that scientists rated generally large animal models higher than small animal models. Results of the literature review and the survey reveal the lack of standardized methods. Despite the affirmed clinical need as well as a very positive perception of clinicians toward the use of TE, results indicate a critical need to optimize preclinical models and, in particular, improve translational aspects of the models. A consensus in the field on a limited number of well-standardized models should be reached.
Collapse
Affiliation(s)
| | - Kim Koschitzki
- IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics Wuerzburg, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Franz Jakob
- Bernhard-Heine-Center for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| | - Maximilian Rudert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Germany
| | - Marietta Herrmann
- IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics Wuerzburg, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
37
|
Comparative Analysis of the Effect of Gene-Activated Grafts Carrying a PBUD-VEGF165A-BMP2 Plasmid on Bone Regeneration in a Rat Femur Defect Model. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Haffner-Luntzer M, Hankenson KD, Ignatius A, Pfeifer R, Khader BA, Hildebrand F, van Griensven M, Pape HC, Lehmicke M. Review of Animal Models of Comorbidities in Fracture-Healing Research. J Orthop Res 2019; 37:2491-2498. [PMID: 31444806 DOI: 10.1002/jor.24454] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 02/04/2023]
Abstract
There is clinical evidence that patient-specific comorbidities like osteoporosis, concomitant tissue injury, and ischemia may strongly interfere with bone regeneration. However, underlying mechanisms are still unclear. To study these mechanisms in detail, appropriate animal models are needed. For decades, bone healing has been studied in large animals, including dogs, rabbits, pigs, or sheep. However, large animal models display a limited ability to study molecular pathways and cellular functions. Therefore in recent years, mice and rats have become increasingly popular as a model organism for fracture healing research due to the availability of molecular analysis tools and transgenic models. Both large and small animals can be used to study comorbidities and risk factors, modelling the human clinical situation. However, attention has to be paid when choosing an appropriate model due to species differences between large animals, rodents, and humans. This review focuses on large and small animal models for the common comorbidities ischemic injury/reduced vascularization, osteoporosis, and polytrauma, and critically discusses the translational and molecular aspects of these models. Here, we review material which was presented at the workshop "Animal Models of Comorbidities in Fracture Healing Research" at the 2019 ORS Annual Meeting in Austin Texas. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2491-2498, 2019.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Roman Pfeifer
- Department of Trauma, University Hospital Zurich, Zurich, Switzerland
| | - Basel A Khader
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Frank Hildebrand
- Department of Orthopaedic Trauma, University Hospital RWTH Aachen, Aachen, Germany
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Michael Lehmicke
- Alliance for Regenerative Medicine, Washington, District of Columbia
| |
Collapse
|
39
|
Sivan U, De Angelis J, Kusumbe AP. Role of angiocrine signals in bone development, homeostasis and disease. Open Biol 2019; 9:190144. [PMID: 31575330 PMCID: PMC6833221 DOI: 10.1098/rsob.190144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal vasculature plays a central role in the maintenance of microenvironments for osteogenesis and haematopoiesis. In addition to supplying oxygen and nutrients, vasculature provides a number of inductive factors termed as angiocrine signals. Blood vessels drive recruitment of osteoblast precursors and bone formation during development. Angiogenesis is indispensable for bone repair and regeneration. Dysregulation of the angiocrine crosstalk is a hallmark of ageing and pathobiological conditions in the skeletal system. The skeletal vascular bed is complex, heterogeneous and characterized by distinct capillary subtypes (type H and type L), which exhibit differential expression of angiocrine factors. Furthermore, distinct blood vessel subtypes with differential angiocrine profiles differentially regulate osteogenesis and haematopoiesis, and drive disease states in the skeletal system. This review provides an overview of the role of angiocrine signals in bone during homeostasis and disease.
Collapse
Affiliation(s)
- Unnikrishnan Sivan
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Jessica De Angelis
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali P Kusumbe
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
40
|
Borgiani E, Figge C, Kruck B, Willie BM, Duda GN, Checa S. Age-Related Changes in the Mechanical Regulation of Bone Healing Are Explained by Altered Cellular Mechanoresponse. J Bone Miner Res 2019; 34:1923-1937. [PMID: 31121071 DOI: 10.1002/jbmr.3801] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/03/2019] [Accepted: 05/18/2019] [Indexed: 02/05/2023]
Abstract
Increasing age is associated with a reduced bone regeneration potential and increased risk of morbidities and mortality. A reduced bone formation response to mechanical loading has been shown with aging, and it remains unknown if the interplay between aging and mechanical stimuli during regeneration is similar to adaptation. We used a combined in vivo/in silico approach to investigate age-related alterations in the mechanical regulation of bone healing and identified the relative impact of altered cellular function on tissue patterns during the regenerative cascade. To modulate the mechanical environment, femoral osteotomies in adult and elderly mice were stabilized using either a rigid or a semirigid external fixator, and the course of healing was evaluated using histomorphometric and micro-CT analyses at 7, 14, and 21 days post-surgery. Computer models were developed to investigate the influence of the local mechanical environment within the callus on tissue formation patterns. The models aimed to identify the key processes at the cellular level that alter the mechanical regulation of healing with aging. Fifteen age-related biological alterations were investigated on two levels (adult and elderly) with a design of experiments setup. We show a reduced response to changes in fixation stability with age, which could be explained by reduced cellular mechanoresponse, simulated as alteration of the ranges of mechanical stimuli driving mesenchymal stem cell differentiation. Cellular mechanoresponse has been so far widely ignored as a therapeutic target in aged patients. Our data hint to mechanotherapeutics as a potential treatment to enhance bone healing in the elderly. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Edoardo Borgiani
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Christine Figge
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Kruck
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
41
|
Weber B, Lackner I, Haffner-Luntzer M, Palmer A, Pressmar J, Scharffetter-Kochanek K, Knöll B, Schrezenemeier H, Relja B, Kalbitz M. Modeling trauma in rats: similarities to humans and potential pitfalls to consider. J Transl Med 2019; 17:305. [PMID: 31488164 PMCID: PMC6728963 DOI: 10.1186/s12967-019-2052-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Trauma is the leading cause of mortality in humans below the age of 40. Patients injured by accidents frequently suffer severe multiple trauma, which is life-threatening and leads to death in many cases. In multiply injured patients, thoracic trauma constitutes the third most common cause of mortality after abdominal injury and head trauma. Furthermore, 40-50% of all trauma-related deaths within the first 48 h after hospital admission result from uncontrolled hemorrhage. Physical trauma and hemorrhage are frequently associated with complex pathophysiological and immunological responses. To develop a greater understanding of the mechanisms of single and/or multiple trauma, reliable and reproducible animal models, fulfilling the ethical 3 R's criteria (Replacement, Reduction and Refinement), established by Russell and Burch in 'The Principles of Human Experimental Technique' (published 1959), are required. These should reflect both the complex pathophysiological and the immunological alterations induced by trauma, with the objective to translate the findings to the human situation, providing new clinical treatment approaches for patients affected by severe trauma. Small animal models are the most frequently used in trauma research. Rattus norvegicus was the first mammalian species domesticated for scientific research, dating back to 1830. To date, there exist numerous well-established procedures to mimic different forms of injury patterns in rats, animals that are uncomplicated in handling and housing. Nevertheless, there are some physiological and genetic differences between humans and rats, which should be carefully considered when rats are chosen as a model organism. The aim of this review is to illustrate the advantages as well as the disadvantages of rat models, which should be considered in trauma research when selecting an appropriate in vivo model. Being the most common and important models in trauma research, this review focuses on hemorrhagic shock, blunt chest trauma, bone fracture, skin and soft-tissue trauma, burns, traumatic brain injury and polytrauma.
Collapse
Affiliation(s)
- Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Jochen Pressmar
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Bernd Knöll
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | - Hubert Schrezenemeier
- Institute of Transfusion Medicine, University of Ulm and Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt, Germany
- Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm Medical School, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|
42
|
Orth M, Baudach J, Scheuer C, Osche D, Veith N, Braun B, Rollmann M, Herath S, Pohlemann T, Menger M, Histing T. Erythropoietin does not improve fracture healing in aged mice. Exp Gerontol 2019; 122:1-9. [DOI: 10.1016/j.exger.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 01/08/2023]
|
43
|
Wagner DR, Karnik S, Gunderson ZJ, Nielsen JJ, Fennimore A, Promer HJ, Lowery JW, Loghmani MT, Low PS, McKinley TO, Kacena MA, Clauss M, Li J. Dysfunctional stem and progenitor cells impair fracture healing with age. World J Stem Cells 2019; 11:281-296. [PMID: 31293713 PMCID: PMC6600851 DOI: 10.4252/wjsc.v11.i6.281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly.
Collapse
Affiliation(s)
- Diane R Wagner
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Sonali Karnik
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Zachary J Gunderson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jeffery J Nielsen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Alanna Fennimore
- Department of Physical Therapy, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Hunter J Promer
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, United States
| | - Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine, Indianapolis, IN 46222, United States
| | - M Terry Loghmani
- Department of Physical Therapy, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907 United States
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, United States
| | - Matthias Clauss
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jiliang Li
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, United States
| |
Collapse
|
44
|
Meinberg EG, Clark D, Miclau KR, Marcucio R, Miclau T. Fracture repair in the elderly: Clinical and experimental considerations. Injury 2019; 50 Suppl 1:S62-S65. [PMID: 31130210 PMCID: PMC7021229 DOI: 10.1016/j.injury.2019.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/01/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023]
Abstract
Fractures in the elderly represent a significant and rising socioeconomic problem. Although aging has been associated with delays in healing, there is little direct clinical data isolating the effects of aging on bone healing from the associated comorbidities that are frequently present in elderly populations. Basic research has demonstrated that all of the components of fracture repair-cells, extracellular matrix, blood supply, and molecules and their receptors-are negatively impacted by the aging process, which likely explains poorer clinical outcomes. Improved understanding of age-related fracture healing should aid in the development of novel treatment strategies, technologies, and therapies to improve bone repair in elderly patients.
Collapse
Affiliation(s)
- E G Meinberg
- UCSF/ZSFG Orthopaedic Trauma Institute, UCSF Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - D Clark
- UCSF/ZSFG Orthopaedic Trauma Institute, UCSF Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - K R Miclau
- UCSF/ZSFG Orthopaedic Trauma Institute, UCSF Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - R Marcucio
- UCSF/ZSFG Orthopaedic Trauma Institute, UCSF Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - T Miclau
- UCSF/ZSFG Orthopaedic Trauma Institute, UCSF Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA.
| |
Collapse
|
45
|
|
46
|
Bahney CS, Zondervan RL, Allison P, Theologis A, Ashley JW, Ahn J, Miclau T, Marcucio RS, Hankenson KD. Cellular biology of fracture healing. J Orthop Res 2019; 37:35-50. [PMID: 30370699 PMCID: PMC6542569 DOI: 10.1002/jor.24170] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/27/2018] [Indexed: 02/04/2023]
Abstract
The biology of bone healing is a rapidly developing science. Advances in transgenic and gene-targeted mice have enabled tissue and cell-specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing-coupled with the heterogeneity of animal models-renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Chelsea S. Bahney
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Robert L. Zondervan
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| | - Patrick Allison
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Alekos Theologis
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Jason W. Ashley
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Jaimo Ahn
- Department of Biology, Eastern Washington University, Cheney, Washington
| | - Theodore Miclau
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
47
|
Bioinformatics Analysis of the Molecular Mechanism of Aging on Fracture Healing. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7530653. [PMID: 30643820 PMCID: PMC6311305 DOI: 10.1155/2018/7530653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 11/26/2018] [Accepted: 12/02/2018] [Indexed: 01/08/2023]
Abstract
Increasing age negatively affects different phases of bone fracture healing. The present study aimed to explore underlying mechanisms related to bone fracture repair in the elderly. GSE17825 public transcriptome data from the Gene Expression Omnibus database were used for analysis. First, raw data were normalized and differentially expressed genes (DEGs) were identified. Next, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were implemented to evaluate pathways and DEGs. A protein-protein interaction (PPI) network was then constructed. A total of 726, 861, and 432 DEGs were identified between the young and elderly individuals at 1, 3, and 5 days after fracture, respectively. The results of GO, KEGG, and PPI network analyses suggested that the inflammatory response, Wnt signaling pathway, vascularization-associated processes, and synaptic-related functions of the identified DEGs are markedly enriched, which may account for delayed fracture healing in the elderly. These findings provide valuable clues for investigating the effects of aging on fracture healing but should be validated through further experiments.
Collapse
|
48
|
Liu M, Nakasaki M, Shih YRV, Varghese S. Effect of age on biomaterial-mediated in situ bone tissue regeneration. Acta Biomater 2018; 78:329-340. [PMID: 29966759 PMCID: PMC6286153 DOI: 10.1016/j.actbio.2018.06.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/28/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022]
Abstract
Emerging studies show the potential application of synthetic biomaterials that are intrinsically osteoconductive and osteoinductive as bone grafts to treat critical bone defects. Here, the biomaterial not only assists recruitment of endogenous cells, but also supports cellular activities relevant to bone tissue formation and function. While such biomaterial-mediated in situ tissue engineering is highly attractive, success of such an approach relies largely on the regenerative potential of the recruited cells, which is anticipated to vary with age. In this study, we investigated the effect of the age of the host on mineralized biomaterial-mediated bone tissue repair using critical-sized cranial defects as a model system. Mice of varying ages, 1-month-old (juvenile), 2-month-old (young-adult), 6-month-old (middle-aged), and 14-month-old (elderly), were used as recipients. Our results show that the bio-mineralized scaffolds support bone tissue formation by recruiting endogenous cells for all groups albeit with differences in an age-related manner. Analyses of bone tissue formation after 2 and 8 weeks post-treatment show low mineral deposition and reduced number of osteocalcin and tartrate-resistant acid phosphatase (TRAP)-expressing cells in elderly mice. STATEMENT OF SIGNIFICANCE Tissue engineering strategies that promote tissue repair through recruitment of endogenous cells will have a significant impact in regenerative medicine. Previous studies from our group have shown that biomineralized materials containing calcium phosphate minerals can contribute to neo-bone tissue through recruitment and activation of endogenous cells. In this study, we investigated the effect of age of the recipient on biomaterial-mediated bone tissue repair. Our results show that the age of the recipient mouse had a significant impact on the quality and quantity of the engineered neo-bone tissues, in which delayed/compromised bone tissue formation was observed in older mice. These findings are in agreement with the clinical observations that age of patients is a key factor in bone repair.
Collapse
Affiliation(s)
- Mengqian Liu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, United States
| | - Manando Nakasaki
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Yu-Ru Vernon Shih
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, United States
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, United States; Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, United States; Department of Biomedical Engineering, Duke University, Durham, NC 27710, United States.
| |
Collapse
|
49
|
Sarkar B, Nguyen PK, Gao W, Dondapati A, Siddiqui Z, Kumar VA. Angiogenic Self-Assembling Peptide Scaffolds for Functional Tissue Regeneration. Biomacromolecules 2018; 19:3597-3611. [PMID: 30132656 DOI: 10.1021/acs.biomac.8b01137] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Implantation of acellular biomimetic scaffolds with proangiogenic motifs may have exciting clinical utility for the treatment of ischemic pathologies such as myocardial infarction. Although direct delivery of angiogenic proteins is a possible treatment option, smaller synthetic peptide-based nanostructured alternatives are being investigated due to favorable factors, such as sustained efficacy and high-density epitope presentation of functional moieties. These peptides may be implanted in vivo at the site of ischemia, bypassing the first-pass metabolism and enabling long-term retention and sustained efficacy. Mimics of angiogenic proteins show tremendous potential for clinical use. We discuss possible approaches to integrate the functionality of such angiogenic peptide mimics into self-assembled peptide scaffolds for application in functional tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek A Kumar
- Rutgers School of Dental Medicine , Newark , New Jersey 07101 , United States
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The identity and functional roles of stem cell population(s) that contribute to fracture repair remains unclear. This review provides a brief history of mesenchymal stem cell (MSCs) and provides an updated view of the many stem/progenitor cell populations contributing to fracture repair. RECENT FINDINGS Functional studies show MSCs are not the multipotential stem cell population that form cartilage and bone during fracture repair. Rather, multiple studies have confirmed the periosteum is the primary source of stem/progenitor cells for fracture repair. Newer work is also identifying other stem/progenitor cells that may also contribute to healing. Although the heterogenous periosteal cells migrate to the fracture site and contribute directly to callus formation, other cell populations are involved. Pericytes and bone marrow stromal cells are now thought of as key secretory centers that mostly coordinate the repair process. Other populations of stem/progenitor cells from the muscle and transdifferentiated chondroctyes may also contribute to repair, and their functional role is an area of active research.
Collapse
Affiliation(s)
- Beth C Bragdon
- Department of Orthopaedic Surgery, Boston University School of Medicine, 72 East Concord St, Evans 243, Boston, MA, 02118, USA.
| | - Chelsea S Bahney
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|