1
|
Sumague TS, Niazy AA, Lambarte RNA, Nafisah IA, Gusnanto A. Influence of budesonide and fluticasone propionate in the anti-osteoporotic potential in human bone marrow-derived mesenchymal stem cells via stimulation of osteogenic differentiation. Heliyon 2024; 10:e39475. [PMID: 39497989 PMCID: PMC11532851 DOI: 10.1016/j.heliyon.2024.e39475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024] Open
Abstract
Osteoporosis is a prevalent bone condition with adverse effects observed in patients undergoing long-term glucocorticoid therapy, resulting in bone demineralization and tissue loss. There has been limited studies on the global response to dexamethasone in terms of comparing its expression profile to other common glucocorticoids during osteogenic differentiation. This study focused on the downregulated gene expression profile of glucocorticoid compounds; dexamethasone, budesonide, and fluticasone propionate, during osteogenic differentiation to elucidate the related target genes and pathways associated with the anti-osteoporotic potential of telomerase-immortalized human bone marrow-derived mesenchymal stem cells using a bioinformatics approach. Based on gene expression microarrays experiments and bioinformatics analysis, several key genes involved in the regulation of osteogenic differentiation and osteoporosis development in mesenchymal stem cells that were targeted by these specific glucocorticoids were determined. Network analysis using GeneCards, OMIM, and CTD databases were performed and osteoporosis-related genes were identified. LIMMA and moderated Welch test R packages were performed to determine significant downregulated differentially expressed genes for each glucocorticoid treatment. A total of 479 (dexamethasone), 84 (budesonide), and 889 (fluticasone propionate) differentially expressed genes were identified for each glucocorticoid, of which 35 common genes overlapped. Enrichment pathway analysis was conducted using Metascape, and protein-protein interaction networks were constructed using the STRING database and Cytoscape software to determine potential target genes involved with osteoporosis. Enrichment pathway analysis revealed genes involved in 3 Reactome pathways namely cytokine signaling in immune system, immune system and the interferon alpha/beta signaling pathways and identified 10 hub genes based on the PPI network to determine potential target pathways associated with osteoporosis. These findings provide preliminary insights into the relationship between the key target genes of dexamethasone, budesonide, and fluticasone propionate, and the pathways associated with regulated osteoporosis metabolism during osteogenic differentiation.
Collapse
Affiliation(s)
- Terrence Suministrado Sumague
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Abdurahman A. Niazy
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Rhodanne Nicole A. Lambarte
- Molecular and Cell Biology Laboratory, Prince Naif bin AbdulAziz Health Research Center, King Saud University Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Ibrahim A. Nafisah
- Department of Statistics and Operations Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
2
|
Li X, Liang T, Dai B, Chang L, Zhang Y, Hu S, Guo J, Xu S, Zheng L, Yao H, Lian H, Nie Y, Li Y, He X, Yao Z, Tong W, Wang X, Chow DHK, Xu J, Qin L. Excess glucocorticoids inhibit murine bone turnover via modulating the immunometabolism of the skeletal microenvironment. J Clin Invest 2024; 134:e166795. [PMID: 38512413 DOI: 10.1172/jci166795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Tongzhou Liang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Yuan Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shiwen Hu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Shunxiang Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Hong Lian
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, and
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Xuan He
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Zhi Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Xinluan Wang
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Faculty of Medicine
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, and
| |
Collapse
|
3
|
Guo W, Wang Y, Qi G, Wang J, Ren J, Jin Y, Wang E. Dual-signal readout sensing of ATP content in single dental pulp stem cells during differentiation via functionalized glass nanopipettes. Anal Chim Acta 2024; 1293:342200. [PMID: 38331549 DOI: 10.1016/j.aca.2024.342200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 02/10/2024]
Abstract
Adenosine triphosphate (ATP) is regarded as the "energy currency" in living cells, so real-time quantification of content variation of intracellular ATP is highly desired for understanding some important physiological processes. Due to its single-molecule readout ability, nanopipette sensing has emerged as a powerful technique for molecular sensing. In this study, based on the effect of targeting-aptamer binding on ionic current, and fluorescence resonance energy transfer (FRET), we reported a dual-signal readout nanopipette sensing system for monitoring ATP content variation at the subcellular level. In the presence of ATP, the complementary DNA-modified gold nanoparticles (cDNAs-AuNPs) were released from the inner wall of the nanopipette, which leads to sensitive response variations in ionic current rectification and fluorescence intensity. The developed nanopipette sensor was capable of detecting ATP in single cells, and the fluctuation of ATP content in the differentiation of dental pulp stem cells (DPSCs) was further quantified with this method. The study provides a more reliable nanopipette sensing platform due to the introduction of fluorescence readout signals. Significantly, the study of energy fluctuation during cell differentiation from the perspective of energy metabolism is helpful for differentiation regulation and cell therapy.
Collapse
Affiliation(s)
- Wenting Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jiafeng Wang
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, Jilin, China
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China; Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Kang N, Jung JS, Hwang J, Park SE, Kwon M, Yoon H, Yong J, Woo HM, Park KM. Beneficial Effect of Sirolimus-Pretreated Mesenchymal Stem Cell Implantation on Diabetic Retinopathy in Rats. Biomedicines 2024; 12:383. [PMID: 38397985 PMCID: PMC10886997 DOI: 10.3390/biomedicines12020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a vision-threatening complication that affects virtually all diabetic patients. Various treatments have been attempted, but they have many side effects and limitations. Alternatively, stem cell therapy is being actively researched, but it faces challenges due to a low cell survival rate. In this study, stem cells were pretreated with sirolimus, which is known to promote cell differentiation and enhance the survival rate. Additionally, the subconjunctival route was employed to reduce complications following intravitreal injections. METHODS Diabetes mellitus was induced by intraperitoneal injection of 55 mg/kg of streptozotocin (STZ), and DR was confirmed at 10 weeks after DM induction through electroretinogram (ERG). The rats were divided into four groups: intact control group (INT), diabetic retinopathy group (DR), DR group with subconjunctival MSC injection (DR-MSC), and DR group with subconjunctival sirolimus-pretreated MSC injection (DR-MSC-S). The effects of transplantation were evaluated using ERG and histological examinations. RESULTS The ERG results showed that the DR-MSC-S group did not significantly differ from the INT in b-wave amplitude and exhibited significantly higher values than the DR-MSC and DR groups (p < 0.01). The flicker amplitude results showed that the DR-MSC and DR-MSC-S groups had significantly higher values than the DR group (p < 0.01). Histological examination revealed that the retinal layers were thinner in the DR-induced groups compared to the INT group, with the DR-MSC-S group showing the thickest retinal layers among them. CONCLUSIONS Subconjunctival injection of sirolimus-pretreated MSCs can enhance retinal function and mitigate histological changes in the STZ-induced DR rat model.
Collapse
Affiliation(s)
- Nanyoung Kang
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (J.S.J.); (J.H.); (S.-E.P.); (M.K.); (H.Y.); (J.Y.)
| | - Ji Seung Jung
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (J.S.J.); (J.H.); (S.-E.P.); (M.K.); (H.Y.); (J.Y.)
| | - Jiyi Hwang
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (J.S.J.); (J.H.); (S.-E.P.); (M.K.); (H.Y.); (J.Y.)
| | - Sang-Eun Park
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (J.S.J.); (J.H.); (S.-E.P.); (M.K.); (H.Y.); (J.Y.)
| | - Myeongjee Kwon
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (J.S.J.); (J.H.); (S.-E.P.); (M.K.); (H.Y.); (J.Y.)
| | - Haerin Yoon
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (J.S.J.); (J.H.); (S.-E.P.); (M.K.); (H.Y.); (J.Y.)
| | - Jungyeon Yong
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (J.S.J.); (J.H.); (S.-E.P.); (M.K.); (H.Y.); (J.Y.)
| | - Heung-Myong Woo
- Laboratory of Veterinary Surgery, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Kyung-Mee Park
- Laboratory of Veterinary Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (J.S.J.); (J.H.); (S.-E.P.); (M.K.); (H.Y.); (J.Y.)
| |
Collapse
|
5
|
Peng Y, Jiang H, Zuo HD. Factors affecting osteogenesis and chondrogenic differentiation of mesenchymal stem cells in osteoarthritis. World J Stem Cells 2023; 15:548-560. [PMID: 37424946 PMCID: PMC10324504 DOI: 10.4252/wjsc.v15.i6.548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 06/26/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that often involves progressive cartilage degeneration and bone destruction of subchondral bone. At present, clinical treatment is mainly for pain relief, and there are no effective methods to delay the progression of the disease. When this disease progresses to the advanced stage, the only treatment option for most patients is total knee replacement surgery, which causes patients great pain and anxiety. As a type of stem cell, mesenchymal stem cells (MSCs) have multidirectional differentiation potential. The osteogenic differentiation and chondrogenic differentiation of MSCs can play vital roles in the treatment of OA, as they can relieve pain in patients and improve joint function. The differentiation direction of MSCs is accurately controlled by a variety of signaling pathways, so there are many factors that can affect the differentiation direction of MSCs by acting on these signaling pathways. When MSCs are applied to OA treatment, the microenvironment of the joints, injected drugs, scaffold materials, source of MSCs and other factors exert specific impacts on the differentiation direction of MSCs. This review aims to summarize the mechanisms by which these factors influence MSC differentiation to produce better curative effects when MSCs are applied clinically in the future.
Collapse
Affiliation(s)
- Yi Peng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hou-Dong Zuo
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, Chengdu Xinhua Hospital, Chengdu 610067, Sichuan Province, China
| |
Collapse
|
6
|
Melo US, Jatzlau J, Prada-Medina CA, Flex E, Hartmann S, Ali S, Schöpflin R, Bernardini L, Ciolfi A, Moeinzadeh MH, Klever MK, Altay A, Vallecillo-García P, Carpentieri G, Delledonne M, Ort MJ, Schwestka M, Ferrero GB, Tartaglia M, Brusco A, Gossen M, Strunk D, Geißler S, Mundlos S, Stricker S, Knaus P, Giorgio E, Spielmann M. Enhancer hijacking at the ARHGAP36 locus is associated with connective tissue to bone transformation. Nat Commun 2023; 14:2034. [PMID: 37041138 PMCID: PMC10090176 DOI: 10.1038/s41467-023-37585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Heterotopic ossification is a disorder caused by abnormal mineralization of soft tissues in which signaling pathways such as BMP, TGFβ and WNT are known key players in driving ectopic bone formation. Identifying novel genes and pathways related to the mineralization process are important steps for future gene therapy in bone disorders. In this study, we detect an inter-chromosomal insertional duplication in a female proband disrupting a topologically associating domain and causing an ultra-rare progressive form of heterotopic ossification. This structural variant lead to enhancer hijacking and misexpression of ARHGAP36 in fibroblasts, validated here by orthogonal in vitro studies. In addition, ARHGAP36 overexpression inhibits TGFβ, and activates hedgehog signaling and genes/proteins related to extracellular matrix production. Our work on the genetic cause of this heterotopic ossification case has revealed that ARHGAP36 plays a role in bone formation and metabolism, outlining first details of this gene contributing to bone-formation and -disease.
Collapse
Affiliation(s)
- Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany.
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany.
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Cesar A Prada-Medina
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Elisabetta Flex
- Istituto Superiore di Sanità, Department of Oncology and Molecular Medicine, 00161, Rome, Italy
| | - Sunhild Hartmann
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Salaheddine Ali
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Laura Bernardini
- Cytogenetics Unit, Casa Sollievo della Sofferenza Foundation, IRCCS, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - M-Hossein Moeinzadeh
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, 14195, Berlin, Germany
| | - Marius-Konstantin Klever
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany
| | - Aybuge Altay
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, 14195, Berlin, Germany
| | | | - Giovanna Carpentieri
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Melanie-Jasmin Ort
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Marko Schwestka
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | | | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126, Torino, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, 10126, Italy
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020, Salzburg, Austria
| | - Sven Geißler
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany
| | - Sigmar Stricker
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy.
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy.
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany.
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck, 23562, Germany.
- DZHK (German Centre for Cardiovascular Research) Germany, partner site Hamburg, Lübeck, Kiel, Lübeck, 23562, Germany.
| |
Collapse
|
7
|
The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs. Acta Biomater 2023; 156:190-201. [PMID: 36155098 DOI: 10.1016/j.actbio.2022.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Three Dimensional (3D) bioprinting is one of the most recent additive manufacturing technologies and enables the direct incorporation of cells within a highly porous 3D-bioprinted construct. While the field has mainly focused on developing methods for enhancing printing resolution and shape fidelity, little is understood about the biological impact of bioprinting on cells. To address this shortcoming, this study investigated the in vitro and in vivo response of human osteoblasts subsequent to bioprinting using gelatin methacryloyl (GelMA) as the hydrogel precursor. First, bioprinted and two-dimensional (2D) cultured osteoblasts were compared, demonstrating that the 3D microenvironment from bioprinting enhanced bone-related gene expression. Second, differentiation regimens of 2-week osteogenic pre-induction in 2D before bioprinting and/or 3-week post-printing osteogenic differentiation were assessed for their capacity to increase the bioprinted construct's biofunctionality towards bone regeneration. The combination of pre-and post-induction regimens showed superior osteogenic gene expression and mineralisation in vitro. Moreover, a rat calvarial model using microtomography and histology demonstrated bone regeneration potential for the pre-and post-differentiation procedure. This study shows the positive impact of bioprinting on cells for osteogenic differentiation and the increased in vivo osteogenic potential of bioprinted constructs via a pre-induction method. STATEMENT OF SIGNIFICANCE: 3D bioprinting, one of the most recent technologies for tissue engineering has mostly focussed on developing methods for enhancing printing properties, little is understood on the biological impact of bioprinting and /or subsequent in vitro maturation methods on cells. Therefore, we addressed these fundamental questions by investigating osteoblast gene expression in bioprinted construct and assessed the efficacy of several induction regimen towards osteogenic differentiation in vitro and in vivo. Osteogenic induction of cells prior to seeding in scaffolds used in conventional tissue engineering applications has been demonstrated to increase the osteogenic potential of the resulting construct. However, to the best of our knowledge, pre-induction methods have not been investigated in 3D bioprinting.
Collapse
|
8
|
Humphreys PA, Mancini FE, Ferreira MJS, Woods S, Ogene L, Kimber SJ. Developmental principles informing human pluripotent stem cell differentiation to cartilage and bone. Semin Cell Dev Biol 2022; 127:17-36. [PMID: 34949507 DOI: 10.1016/j.semcdb.2021.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells can differentiate into any cell type given appropriate signals and hence have been used to research early human development of many tissues and diseases. Here, we review the major biological factors that regulate cartilage and bone development through the three main routes of neural crest, lateral plate mesoderm and paraxial mesoderm. We examine how these routes have been used in differentiation protocols that replicate skeletal development using human pluripotent stem cells and how these methods have been refined and improved over time. Finally, we discuss how pluripotent stem cells can be employed to understand human skeletal genetic diseases with a developmental origin and phenotype, and how developmental protocols have been applied to gain a better understanding of these conditions.
Collapse
Affiliation(s)
- Paul A Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Miguel J S Ferreira
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, University of Manchester, UK
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| |
Collapse
|
9
|
Hinkelmann S, Springwald AH, Starke A, Kalwa H, Wölk C, Hacker MC, Schulz-Siegmund M. Microtissues from mesenchymal stem cells and siRNA-loaded cross-linked gelatin microparticles for bone regeneration. Mater Today Bio 2022; 13:100190. [PMID: 34988418 PMCID: PMC8693629 DOI: 10.1016/j.mtbio.2021.100190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/20/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was the evaluation of cross-linked gelatin microparticles (cGM) as substrates for osteogenic cell culture to assemble 3D microtissues and their use as delivery system for siRNA to cells in these assemblies. In a 2D transwell cultivation system, we found that cGM are capable to accumulate calcium ions from the surrounding medium. Such a separation of cGM and SaOS-2 cells consequently led to a suppressed matrix mineral formation in the SaOS-2 culture on the well bottom of the transwell system. Thus, we decided to use cGM as component in 3D microtissues and get a close contact between calcium ion accumulating microparticles and cells to improve matrix mineralization. Gelatin microparticles were cross-linked with a N,N-diethylethylenediamine-derivatized (DEED) maleic anhydride (MA) containing oligo (pentaerythritol diacrylate monostearate-co-N-isopropylacrylamide-co-MA) (oPNMA) and aggregated with SaOS-2 or human mesenchymal stem cells (hMSC) to microtissue spheroids. We systematically varied the content of cGM in microtissues and observed cell differentiation and tissue formation. Microtissues were characterized by gene expression, ALP activity and matrix mineralization. Mineralization was detectable in microtissues with SaOS-2 cells after 7 days and with hMSC after 24–28 days in osteogenic culture. When we transfected hMSC via cGM loaded with Lipofectamine complexed chordin siRNA, we found increased ALP activity and accelerated mineral formation in microtissues in presence of BMP-2. As a model for positive paracrine effects that indicate promising in vivo effects of these microtissues, we incubated pre-differentiated microtissues with freshly seeded hMSC monolayers and found improved mineral formation all over the well in the co-culture model. These findings may support the concept of microtissues from hMSC and siRNA-loaded cGM for bone regeneration.
Collapse
Affiliation(s)
- Sandra Hinkelmann
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany
| | - Alexandra H Springwald
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany
| | - Annett Starke
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany
| | - Hermann Kalwa
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Christian Wölk
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany
| | - Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany.,Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Düsseldorf, Germany
| | - Michaela Schulz-Siegmund
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University of Leipzig, Germany
| |
Collapse
|
10
|
Comparison of Osteogenic Potentials of Dental Pulp and Bone Marrow Mesenchymal Stem Cells Using the New Cell Transplantation Platform, CellSaic, in a Rat Congenital Cleft-Jaw Model. Int J Mol Sci 2021; 22:ijms22179478. [PMID: 34502394 PMCID: PMC8430713 DOI: 10.3390/ijms22179478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022] Open
Abstract
Scaffolds stimulate cell proliferation and differentiation and play major roles in providing growth and nutrition factors in the repair of bone defects. We used the recombinant peptide Cellnest™ to prepare the three-dimensional stem cell complex, CellSaic, and evaluated whether CellSaic containing rat dental pulp stem cells (rDPSCs) was better than that containing rat bone marrow stem cells (rBMSCs). rDPSC-CellSaic or rBMSC-CellSaic, cultured with or without osteogenic induction medium, formed the experimental and control groups, respectively. Osteoblast differentiation was evaluated in vitro and transplanted into a rat model with a congenital jaw fracture. Specimens were collected and evaluated by microradiology and histological analysis. In the experimental group, the amount of calcium deposits, expression levels of bone-related genes (RUNX2, ALP, BSP, and COL1), and volume of mineralized tissue, were significantly higher than those in the control group (p < 0.05). Both differentiated and undifferentiated rDPSC-CellSaic and only the differentiated rBMSC-CellSaic could induce the formation of new bone tissue. Overall, rBMSC-CellSaic and rDPSC-CellSaic made with Cellnest™ as a scaffold, provide excellent support for promoting bone regeneration in rat mandibular congenital defects. Additionally, rDPSC-CellSaic seems a better source for craniofacial bone defect repair than rBMSC-CellSaic, suggesting the possibility of using DPSCs in bone tissue regenerative therapy.
Collapse
|
11
|
Janebodin K, Chavanachat R, Hays A, Reyes Gil M. Silencing VEGFR-2 Hampers Odontoblastic Differentiation of Dental Pulp Stem Cells. Front Cell Dev Biol 2021; 9:665886. [PMID: 34249919 PMCID: PMC8267829 DOI: 10.3389/fcell.2021.665886] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are a source of postnatal stem cells essential for maintenance and regeneration of dentin and pulp tissues. Previous in vivo transplantation studies have shown that DPSCs are able to give rise to odontoblast-like cells, form dentin/pulp-like structures, and induce blood vessel formation. Importantly, dentin formation is closely associated to blood vessels. We have previously demonstrated that DPSC-induced angiogenesis is VEGFR-2-dependent. VEGFR-2 may play an important role in odontoblast differentiation of DPSCs, tooth formation and regeneration. Nevertheless, the role of VEGFR-2 signaling in odontoblast differentiation of DPSCs is still not well understood. Thus, in this study we aimed to determine the role of VEGFR-2 in odontoblast differentiation of DPSCs by knocking down the expression of VEGFR-2 in DPSCs and studying their odontoblast differentiation capacity in vitro and in vivo. Isolation and characterization of murine DPSCs was performed as previously described. DPSCs were induced by VEGFR-2 shRNA viral vectors transfection (MOI = 10:1) to silence the expression of VEGFR-2. The GFP+ expression in CopGFP DPSCs was used as a surrogate to measure the efficiency of transfection and verification that the viral vector does not affect the expression of VEGFR-2. The efficiency of viral transfection was shown by significant reduction in the levels of VEGFR-2 based on the Q-RT-PCR and immunofluorescence in VEGFR-2 knockdown DPSCs, compared to normal DPSCs. VEGFR-2 shRNA DPSCs expressed not only very low level of VEGFR-2, but also that of its ligand, VEGF-A, compared to CopGFP DPSCs in both transcriptional and translational levels. In vitro differentiation of DPSCs in osteo-odontogenic media supplemented with BMP-2 (100 ng/ml) for 21 days demonstrated that CopGFP DPSCs, but not VEGFR-2 shRNA DPSCs, were positive for alkaline phosphatase (ALP) staining and formed mineralized nodules demonstrated by positive Alizarin Red S staining. The expression levels of dentin matrix proteins, dentin matrix protein-1 (Dmp1), dentin sialoprotein (Dspp), and bone sialoprotein (Bsp), were also up-regulated in differentiated CopGFP DPSCs, compared to those in VEGFR-2 shRNA DPSCs, suggesting an impairment of odontoblast differentiation in VEGFR-2 shRNA DPSCs. In vivo subcutaneous transplantation of DPSCs with hydroxyapatite (HAp/TCP) for 5 weeks demonstrated that CopGFP DPSCs were able to differentiate into elongated and polarized odontoblast-like cells forming loose connective tissue resembling pulp-like structures with abundant blood vessels, as demonstrated by H&E, Alizarin Red S, and dentin matrix staining. On the other hand, in VEGFR-2 shRNA DPSC transplants, odontoblast-like cells were not observed. Collagen fibers were seen in replacement of dentin/pulp-like structures. These results indicate that VEGFR-2 may play an important role in dentin regeneration and highlight the potential of VEGFR-2 modulation to enhance dentin regeneration and tissue engineering as a promising clinical application.
Collapse
Affiliation(s)
- Kajohnkiart Janebodin
- Department of Pathology, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Aislinn Hays
- Department of Pathology, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| | - Morayma Reyes Gil
- Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
12
|
Schott NG, Friend NE, Stegemann JP. Coupling Osteogenesis and Vasculogenesis in Engineered Orthopedic Tissues. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:199-214. [PMID: 32854589 PMCID: PMC8349721 DOI: 10.1089/ten.teb.2020.0132] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Inadequate vascularization of engineered tissue constructs is a main challenge in developing a clinically impactful therapy for large, complex, and recalcitrant bone defects. It is well established that bone and blood vessels form concomitantly during development, as well as during repair after injury. Endothelial cells (ECs) and mesenchymal stromal cells (MSCs) are known to be key players in orthopedic tissue regeneration and vascularization, and these cell types have been used widely in tissue engineering strategies to create vascularized bone. Coculture studies have demonstrated that there is crosstalk between ECs and MSCs that can lead to synergistic effects on tissue regeneration. At the same time, the complexity in fabricating, culturing, and characterizing engineered tissue constructs containing multiple cell types presents a challenge in creating multifunctional tissues. In particular, the timing, spatial distribution, and cell phenotypes that are most conducive to promoting concurrent bone and vessel formation are not well understood. This review describes the processes of bone and vascular development, and how these have been harnessed in tissue engineering strategies to create vascularized bone. There is an emphasis on interactions between ECs and MSCs, and the culture systems that can be used to understand and control these interactions within a single engineered construct. Developmental engineering strategies to mimic endochondral ossification are discussed as a means of generating vascularized orthopedic tissues. The field of tissue engineering has made impressive progress in creating tissue replacements. However, the development of larger, more complex, and multifunctional engineered orthopedic tissues will require a better understanding of how osteogenesis and vasculogenesis are coupled in tissue regeneration. Impact statement Vascularization of large engineered tissue volumes remains a challenge in developing new and more biologically functional bone grafts. A better understanding of how blood vessels develop during bone formation and regeneration is needed. This knowledge can then be applied to develop new strategies for promoting both osteogenesis and vasculogenesis during the creation of engineered orthopedic tissues. This article summarizes the processes of bone and blood vessel development, with a focus on how endothelial cells and mesenchymal stromal cells interact to form vascularized bone both during development and growth, as well as tissue healing. It is meant as a resource for tissue engineers who are interested in creating vascularized tissue, and in particular to those developing cell-based therapies for large, complex, and recalcitrant bone defects.
Collapse
Affiliation(s)
- Nicholas G. Schott
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Findeisen L, Bolte J, Vater C, Petzold C, Quade M, Müller L, Goodman SB, Zwingenberger S. Cell spheroids are as effective as single cells suspensions in the treatment of critical-sized bone defects. BMC Musculoskelet Disord 2021; 22:401. [PMID: 33941144 PMCID: PMC8091496 DOI: 10.1186/s12891-021-04264-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/12/2021] [Indexed: 01/14/2023] Open
Abstract
Background Due to their multilineage potential and high proliferation rate, mesenchymal stem cells (MSC) indicate a sufficient alternative in regenerative medicine. In comparison to the commonly used 2-dimensional culturing method, culturing cells as spheroids stimulates the cell-cell communication and mimics the in vivo milieu more accurately, resulting in an enhanced regenerative potential. To investigate the osteoregenerative potential of MSC spheroids in comparison to MSC suspensions, cell-loaded fibrin gels were implanted into murine critical-sized femoral bone defects. Methods After harvesting MSCs from 4 healthy human donors and preculturing and immobilizing them in fibrin gel, cells were implanted into 2 mm murine femoral defects and stabilized with an external fixator. Therefore, 26 14- to 15-week-old nu/nu NOD/SCID nude mice were randomized into 2 groups (MSC spheroids, MSC suspensions) and observed for 6 weeks. Subsequently, micro-computed tomography scans were performed to analyze regenerated bone volume and bone mineral density. Additionally, histological analysis, evaluating the number of osteoblasts, osteoclasts and vessels at the defect side, were performed. Statistical analyzation was performed by using the Student’s t-test and, the Mann-Whitney test. The level of significance was set at p = 0.05. Results μCT-analysis revealed a significantly higher bone mineral density of the MSC spheroid group compared to the MSC suspension group. However, regenerated bone volume of the defect side was comparable between both groups. Furthermore, no significant differences in histological analysis between both groups could be shown. Conclusion Our in vivo results reveal that the osteo-regenerative potential of MSC spheroids is similar to MSC suspensions. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04264-y.
Collapse
Affiliation(s)
- Lisa Findeisen
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany.
| | - Julia Bolte
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Corina Vater
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Cathleen Petzold
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Mandy Quade
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Lars Müller
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University, Stanford, USA
| | - Stefan Zwingenberger
- University Center for Orthopedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
14
|
Ryan DA, Cheng J, Masuda K, Cashman JR. Role of Curcuminoids and Tricalcium Phosphate Ceramic in Rat Spinal Fusion. Tissue Eng Part C Methods 2020; 26:577-589. [PMID: 33086948 DOI: 10.1089/ten.tec.2020.0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Despite considerable research effort, there is a significant need for safe agents that stimulate bone formation. Treatment of large or complex bone defects remains a challenge. Implantation of small molecule-induced human bone marrow-derived mesenchymal stromal cells (hBMSCs) on an appropriate tricalcium phosphate (TCP) scaffold offers a robust system for noninvasive therapy for spinal fusion. To show the efficacy of this approach, we identified a small molecule curcuminoid that when combined with TCP ceramic in the presence of hBMSCs selectively induced growth of bone cells: after 8- or 25-day incubations, alkaline phosphatase was elevated. Treatment of hBMSCs with curcuminoid 1 and TCP ceramic increased osteogenic target gene expression (i.e., Runx2, BMP2, Osteopontin, and Osteocalcin) over time. In the presence of curcuminoid 1 and TCP ceramic, osteogenesis of hBMSCs, including proliferation, differentiation, and mineralization, was observed. No evidence of chondrogenic or adipogenic potential using this protocol was observed. Transplantation of curcuminoid 1-treated hBMSC/TCP mixtures into the spine of immunodeficient rats showed that it achieved spinal fusion and provided greater stability of the spinal column than untreated hBMSC-TCP implants or TCP alone implants. On the basis of histological analysis, greater bone formation was associated with curcuminoid 1-treated hBMSC implants manifested as contiguous growth plates with extensive hematopoietic territories. Stimulation of hBMSCs by administration of small molecule curcuminoid 1 in the presence of TCP ceramic afforded an effective noninvasive strategy that increased spinal fusion repair and provided greater stability of the spinal column after 8 weeks in immunodeficient rats. Impact statement Bone defects only slowly regenerate themselves in humans. Current procedures to restore spinal defects are not always effective. Some have side effects. In this article, a new method to produce bone growth within 8 weeks in rats is presented. In the presence of tricalcium phosphate ceramic, curcuminoid-1 small molecule-stimulated human bone marrow-derived mesenchymal stromal cells showed robust bone cell growth in vitro. Transplantation of this mixture into the spine showed efficient spinal fusion in rats. The approach presented herein provides an efficient biocompatible scaffold for delivery of a potentially clinically useful system that could be applicable in patients.
Collapse
Affiliation(s)
- Daniel A Ryan
- Human BioMolecular Research Institute, San Diego, California, USA
| | - Jiongjia Cheng
- Human BioMolecular Research Institute, San Diego, California, USA
| | - Koichi Masuda
- Department of Orthopedic Surgery, University of California, San Diego, San Diego, California, USA
| | - John R Cashman
- Human BioMolecular Research Institute, San Diego, California, USA
| |
Collapse
|
15
|
E LL, Cheng T, Li CJ, Zhang R, Zhang S, Liu HC, Zheng WJ. Combined Use of Recombinant Human BMP-7 and Osteogenic Media May Have No Ideal Synergistic Effect on Leporine Bone Regeneration of Human Umbilical Cord Mesenchymal Stem Cells Seeded on Nanohydroxyapatite/Collagen/Poly (l-Lactide). Stem Cells Dev 2020; 29:1215-1228. [PMID: 32674666 DOI: 10.1089/scd.2020.0066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are a promising alternative source of mesenchymal stem cells (MSCs) that are enormously attractive for clinical use. This study was designed to investigate the effect of recombinant human bone morphogenetic protein-7 (rhBMP-7) and/or osteogenic media (OMD) on bone regeneration of hUC-MSCs seeded on nanohydroxyapatite/collagen/poly(l-lactide) (nHAC/PLA) in a rabbit model. The characteristics of stem cells were analyzed by plastic adherence, cell phenotype, and multilineage differentiation potential. Cell proliferation was examined using cell counting kit-8 assay. Osteogenic differentiation was evaluated by quantitative Ca2+ concentration, PO43- concentration, alkaline phosphatase (ALP) activity, osteocalcin (OCN) secretion, and mineralized matrix formation. Bone regeneration was investigated in jaw bone defect repair in rabbit by microcomputed tomography, fluorescent labeling, and hematoxylin and eosin staining. Except for initial stress response, OMD and OMD + rhBMP-7 inhibited the proliferation of hUC-MSCs seeded on nHAC/PLA; rhBMP-7 inhibited cell proliferation in the nonlogarithmic phase and attenuated the inhibitory effect of OMD on cell proliferation. The inhibitory effects of OMD, rhBMP-7, and OMD + rhBMP-7 on cell proliferation were ranked as OMD > OMD + rhBMP-7 > rhBMP-7. OMD, rhBMP-7, and OMD + rhBMP-7 promoted Ca2+ concentration, PO43- concentration, ALP activity, OCN secretion, and mineralized matrix formation of hUC-MSCs seeded on nHAC/PLA. The promoting effects of OMD, rhBMP-7, and OMD+rhBMP-7 on Ca2+ concentration, PO43- concentration, ALP activity, OCN secretion, and mineralized matrix formation were ranked as rhBMP-7 > OMD > OMD + rhBMP-7, OMD > OMD + rhBMP-7 > rhBMP-7, OMD > rhBMP-7 > OMD + rhBMP-7, rhBMP-7 > OMD + rhBMP-7 > OMD, and OMD > rhBMP-7 > OMD + rhBMP-7, respectively. In rabbit jaw bone defect repair, OMD, rhBMP-7, and OMD + rhBMP-7 enhanced bone regeneration of hUC-MSCs seeded on nHAC/PLA, but the largest bone mineral apposition rate and bone formation were presented in cultures with rhBMP-7. These findings suggested that the combined use of rhBMP-7 and OMD may have no ideal synergistic effect on bone regeneration of hUC-MSCs seeded on nHAC/PLA in rabbit jaw bone defect.
Collapse
Affiliation(s)
- Ling-Ling E
- Department of Chemistry, Jinan University, Guangzhou, China.,Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tao Cheng
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chuan-Jie Li
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Rong Zhang
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shuo Zhang
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Hong-Chen Liu
- Institute of Stomatology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wen-Jie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Jeong K, Jung KJ, Bae J, Kim J, Seo J, Park CH, Kim S, Song IH. Laser sterilization of hydroxyapatite implants as an alternative to using radioactive facility. OPTIK 2020. [DOI: 10.1016/j.ijleo.2020.165200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Osteogenic differentiation of rat bone mesenchymal stem cells modulated by MiR-186 via SIRT6. Life Sci 2020; 253:117660. [PMID: 32294474 DOI: 10.1016/j.lfs.2020.117660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 11/20/2022]
Abstract
AIMS Osteoporosis has been known to generally result from an imbalance between bone formation and resorption. Osteogenesis is the process of differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Sirtuin6 (SIRT6) has been reported to mediate osteogenic differentiation (OD) in rat bone MSCs (rBMSCs). The present study aimed to assess the influence of microRNA miR-186 on the proliferation and OD potential of rBMSCs. MAIN METHODS OD was performed and evaluated through Alizarin red S staining, alkaline phosphatase (ALP) activity, and specific marker expression. KEY FINDINGS miR-186 downregulation was observed during OD. rBMSCs with miR-186 overexpression were generated via transfection. Compared with vehicle negative controls, miR-186 upregulation significantly repressed rBMSCs' OD, as evidenced by a reduced ALP activity and decreased mRNA levels of osteogenic markers [osteocalcin, Runx2, BSP, and ALP]. Furthermore, bioinformatic prediction and dual-luciferase reporter assay demonstrated that miR-186 targeted SIRT6 3'-UTR for silencing. SIRT6 overexpression reversed the inhibitory effect of miR-186 on the OD of rBMSCs. Additionally, further examination showed that the activation of nuclear factor-kappa B (NFκB) pathway was involved in the miR-186/SIRT6 signal axis, and phorbol 12-myristate 13-acetate, a NFκB activator, also inhibited the OD of rBMSCs. SIGNIFICANCE The present study results may demonstrate a novel mechanism of rBMSCs OD via miR-186-SIRT6 interaction.
Collapse
|
18
|
A Novel High-Throughput Screening Platform Identifies Itaconate Derivatives from Marine Penicillium antarcticum as Inhibitors of Mesenchymal Stem Cell Differentiation. Mar Drugs 2020; 18:md18040192. [PMID: 32260516 PMCID: PMC7230868 DOI: 10.3390/md18040192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 01/14/2023] Open
Abstract
Worldwide diffused diseases such as osteoarthritis, atherosclerosis or chronic kidney disease are associated with a tissue calcification process which may involve unexpected local stem cell differentiation. Current pharmacological treatments for such musculoskeletal conditions are weakly effective, sometimes extremely expensive and often absent. The potential to develop new therapies is represented by the discovery of small molecules modulating resident progenitor cell differentiation to prevent aberrant tissue calcification. The marine environment is a rich reserve of compounds with pharmaceutical potential and many novel molecules are isolated from macro and microorganisms annually. The potential of small molecules synthetized by marine filamentous fungi to influence the osteogenic and chondrogenic differentiation of human mesenchymal stem/stromal cells (hMSCs) was investigated using a novel, high-throughput automated screening platform. Metabolites synthetized by the marine-derived fungus Penicillium antarcticum were evaluated on the platform. Itaconic acid derivatives were identified as inhibitors of calcium elaboration into the matrix of osteogenically differentiated hMSCs and also inhibited hMSC chondrogenic differentiation, highlighting their capacity to impair ectopic calcification. Bioactive small molecule discovery is critical to address ectopic tissue calcification and the use of biologically relevant assays to identify naturally occurring metabolites from marine sources represents a strategy that can contribute to this effort.
Collapse
|
19
|
Leite DM, Sousa DM, Lamghari M, Pêgo AP. Exploring Poly(Ethylene Glycol)-Poly(Trimethylene Carbonate) Nanoparticles as Carriers of Hydrophobic Drugs to Modulate Osteoblastic Activity. J Pharm Sci 2020; 109:1594-1604. [PMID: 31935391 DOI: 10.1016/j.xphs.2020.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/07/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022]
Abstract
Current treatment options for bone-related disorders rely on a systemic administration of therapeutic agents that possess low solubility and intracellular bioavailability, as well as a high pharmacokinetic variability, which in turn lead to major off-target side effects. Hence, there is an unmet need of developing drug delivery systems that can improve the clinical efficacy of such therapeutic agents. Nanoparticle delivery systems might serve as promising carriers of hydrophobic molecules. Here, we propose 2 nanoparticle-based delivery systems based on monomethoxy poly(ethylene glycol)-poly(trimethyl carbonate) (mPEG-PTMC) and poly(lactide-co-glycolide) for the intracellular controlled release of a small hydrophobic drug (dexamethasone) to osteoblast cells in vitro. mPEG-PTMC self-assembles into stable nanoparticles in the absence of surfactant and shows a greater entrapment capacity of dexamethasone, while assuring bioactivity in MC3T3-E1 and bone marrow stromal cells cultured under apoptotic and osteogenic conditions, respectively. The mPEG-PTMC nanoparticles represent a potential vector for the intracellular delivery of hydrophobic drugs in the framework of bone-related diseases.
Collapse
Affiliation(s)
- Diana M Leite
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Daniela M Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Paula Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
20
|
Tan F, Al-Rubeai M. A multifunctional dexamethasone-delivery implant fabricated using atmospheric plasma and its effects on apoptosis, osteogenesis and inflammation. Drug Deliv Transl Res 2020; 11:86-102. [PMID: 31898081 DOI: 10.1007/s13346-019-00700-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implant-based local drug delivery is a unique surgical therapy with many clinical advantages. Atmospheric pressure plasma is a novel non-thermal surface biotechnology that has only recently been applied in enhancing a surgical implant. We are the first to use this technology to successfully create a dexamethasone-delivery metallic implant. Irrespective of the loaded medication, the surface of this novel implant possesses advantageous material features including homogeneity, hydrophilicity, and optimal roughness. UV-vis spectroscopy revealed much more sustainable drug release compared to the implants produced using simple drug attachment. In addition, our drug-releasing implant was found to have multiple biological benefits. As proven by the ELISA data, this multi-layer drug complex provides differential regulation on the cell apoptosis, as well as pro-osteogenic and anti-inflammatory effects on the peri-implant tissue. Furthermore, using the pathway-specific PCR array, our study discovered 28 and 26 upregulated and downregulated genes during osteogenesis and inflammation on our newly fabricated drug-delivery implant, respectively. The medication-induced change in molecular profile serves as a promising clue for designing future implant-based therapy. Collectively, we present atmospheric pressure plasma as a potent tool for creating a surgical implant-based drug-delivery system, which renders multiple therapeutic potentials. Graphical abstract Schematic of the APP-facilitated Dex-delivery implant. This layer-by-layer drug-releasing complex consisted of bottom plasma activation layer, middle medication layer, and top absorbable polymer layer.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, Shanghai East Hospital, and School of Medicine, Tongji University, Shanghai, China. .,School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin-National University of Ireland, Dublin, Ireland. .,The Royal College of Surgeons of England, London, UK.
| | | |
Collapse
|
21
|
He J, Chen G, Liu M, Xu Z, Chen H, Yang L, Lv Y. Scaffold strategies for modulating immune microenvironment during bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110411. [PMID: 31923946 DOI: 10.1016/j.msec.2019.110411] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
Implanted bone scaffolds often fail to successfully integrate with the host tissue because they do not elicit a favorable immune reaction. Properties of bone scaffold not only provide mechanical and chemical signals to support cell adhesion, migration, proliferation and differentiation, but also play a pivotal role in determining the extent of immune response during bone regeneration. Appropriate design parameters of bone scaffold are of great significance in the process of developing a new generation of bone implants. Herein, this article addresses the recent advances in the field of bone scaffolds for immune response, particularly focusing on the physical and chemical properties of bone scaffold in manipulating the host response. Furthermore, incorporation of bioactive molecules and cells with immunoregulatory function in bone scaffolds are also presented. Finally, continuing challenges and future directions of scaffold-based strategies for modulating immune microenvironment are discussed.
Collapse
Affiliation(s)
- Jianhua He
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Guobao Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Mengying Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Zhiling Xu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Hua Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
22
|
Bolte J, Vater C, Culla AC, Ahlfeld T, Nowotny J, Kasten P, Disch AC, Goodman SB, Gelinsky M, Stiehler M, Zwingenberger S. Two-step stem cell therapy improves bone regeneration compared to concentrated bone marrow therapy. J Orthop Res 2019; 37:1318-1328. [PMID: 30628121 DOI: 10.1002/jor.24215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/26/2018] [Indexed: 02/04/2023]
Abstract
Adult stem cells are a promising tool to positively influence bone regeneration. Concentrated bone marrow therapy entails isolating osteoprogenitor cells during surgery with, however, only low cells yield. Two step stem cell therapy requires an additional harvesting procedure but generates high numbers of progenitor cells that facilitate osteogenic pre-differentiation. To further improve bone regeneration, stem cell therapy can be combined with growth factors from platelet rich plasma (PRP) or its lysate (PL) to potentially fostering vascularization. The aim of this study was to investigate the effects of bone marrow concentrate (BMC), osteogenic pre-differentiation of mesenchymal stromal cells (MSCs), and PL on bone regeneration and vascularization. Bone marrow from four different healthy human donors was used for either generation of BMC or for isolation of MSCs. Seventy-two mice were randomized to six groups (Control, PL, BMC, BMC + PL, pre-differentiated MSCs, pre-differentiated MSCs + PL). The influence of PL, BMC, and pre-differentiated MSCs was investigated systematically in a 2 mm femoral bone defect model. After a 6-week follow-up, the pre-differentiated MSCs + PL group showed the highest bone volume, highest grade of histological defect healing and highest number of bridged defects with measurable biomechanical stiffness. Using expanded and osteogenically pre-differentiated MSCs for treatment of a critical-size bone defect was favorable with regards to bone regeneration compared to treatment with cells from BMC. The addition of PL alone had no significant influence; therefore the role of PL for bone regeneration remains unclear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1318-1328, 2019.
Collapse
Affiliation(s)
- Julia Bolte
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Corina Vater
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Anna Carla Culla
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Tilman Ahlfeld
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Jörg Nowotny
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
| | - Philip Kasten
- Orthopädisch Chirurgisches Centrum, Tübingen, Germany
| | - Alexander C Disch
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California
| | - Michael Gelinsky
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Maik Stiehler
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| | - Stefan Zwingenberger
- University Center of Orthopaedics and Traumatology, University Medicine Carl Gustav Carus Dresden, Fetscherstraße 74, TU Dresden 01307, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Medicine Carl Gustav Carus Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
23
|
Elashry MI, Gegnaw ST, Klymiuk MC, Wenisch S, Arnhold S. Influence of mechanical fluid shear stress on the osteogenic differentiation protocols for Equine adipose tissue-derived mesenchymal stem cells. Acta Histochem 2019; 121:344-353. [PMID: 30808518 DOI: 10.1016/j.acthis.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 01/07/2023]
Abstract
Cell-based therapies have become a promising approach to promote tissue regeneration and the treatment of musculoskeletal disorders. Bone regeneration maintains bone homeostasis, mechanical stability and physical performance. Mechanical stimulation showed to induce stem cell differentiation into the osteogenic fate. However, the effect of various osteogenic protocols on the osteogenic commitment of equine adipose-derived stem cells is not fully elucidated. Here we examined the influence of fluid-based shear stress (FSS) via mechanical rocking to assess whether mechanical stimulation promotes osteogenic differentiation of equine adipose-derived stem cells (ASCs). ASCs were induced into osteogenic fate using osteogenic differentiation medium (ODM) protocol or additional supplementation of 5 mM CaCl2 and 7.5 mM CaCl2 protocol compared to cells cultivated in basal medium (BM) up to 21 day. The ASCs proliferation pattern was evaluated using the sulforhodamine B (SRB) protein assay. Osteogenic differentiation examined via semi-quantification of alizarin red staining (ARS) and alkaline phosphatase activity (ALP) as well as, via quantification of osteocalcin (OC), alkaline phosphatase (ALP), osteopontin (OP), and collagen type-1 (COL1) gene expression using RT-qPCR. We show that mechanical FSS increased the proliferation pattern of ASCs compared to the static conditions. Mechanical FSS together with 5 mM CaCl2 and 7.5 mM CaCl2 promoted osteogenic nodule formation and increased ARS intensity compared to the standard osteogenic protocols. We observed that combined mechanical FSS with ODM protocol increase ALP activity compared to static culture conditions. We report that ALP and OC osteogenic markers expression were upregulated under mechanical FSS culture condition particularly with the ODM protocol. Taken together, it can be assumed that mechanical stress using FSS promotes the efficiency of the osteogenic differentiation protocols of ASCs through independent mechanisms.
Collapse
Affiliation(s)
- Mohamed I Elashry
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392, Giessen, Germany; Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, 35516, Egypt.
| | - Shumet T Gegnaw
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392, Giessen, Germany; Institute des Neurosciences Cellulaires et Integratives (INCI), University of Strasbourg, 67084, Strasbourg, France
| | - Michele C Klymiuk
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392, Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392, Germany
| | - Stefan Arnhold
- Institute of Veterinary Anatomy-, Histology and -Embryology, University of Giessen, 35392, Giessen, Germany
| |
Collapse
|
24
|
Karadjian M, Essers C, Tsitlakidis S, Reible B, Moghaddam A, Boccaccini AR, Westhauser F. Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence. Int J Mol Sci 2019; 20:ijms20020305. [PMID: 30646516 PMCID: PMC6359412 DOI: 10.3390/ijms20020305] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
Standard treatment for bone defects is the biological reconstruction using autologous bone—a therapeutical approach that suffers from limitations such as the restricted amount of bone available for harvesting and the necessity for an additional intervention that is potentially followed by donor-site complications. Therefore, synthetic bone substitutes have been developed in order to reduce or even replace the usage of autologous bone as grafting material. This structured review focuses on the question whether calcium phosphates (CaPs) and bioactive glasses (BGs), both established bone substitute materials, show improved properties when combined in CaP/BG composites. It therefore summarizes the most recent experimental data in order to provide a better understanding of the biological properties in general and the osteogenic properties in particular of CaP/BG composite bone substitute materials. As a result, BGs seem to be beneficial for the osteogenic differentiation of precursor cell populations in-vitro when added to CaPs. Furthermore, the presence of BG supports integration of CaP/BG composites into bone in-vivo and enhances bone formation under certain circumstances.
Collapse
Affiliation(s)
- Maria Karadjian
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Christopher Essers
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Stefanos Tsitlakidis
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Bruno Reible
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
- ATORG-Aschaffenburg Trauma and Orthopedics Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
25
|
TIMP-1 inhibits proliferation and osteogenic differentiation of hBMSCs through Wnt/β-catenin signaling. Biosci Rep 2019; 39:BSR20181290. [PMID: 30473539 PMCID: PMC6328886 DOI: 10.1042/bsr20181290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/03/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to evaluate the effect of tissue inhibitor of metalloproteinase-1 (TIMP-1) on the proliferation and osteogenic differentiation potential of human bone marrow-derived MSCs (hBMSCs). hBMSCs with stable TIMP-1 overexpression or TIMP-1 knockdown were generated. Osteogenic differentiation was assessed by Alizarin Red S staining, alkaline phosphatase (ALP) activity and expression of specific markers. Compared with the vehicle controls, TIMP-1 knockdown significantly promoted the growth of hBMSCs. TIMP-1 knockdown up-regulated β-catenin and cyclin D1 proteins. During osteogenic differentiation, TIMP-1 knockdown elevated the deposition of calcium nodules, ALP activity and the mRNA levels of the osteogenic markers sex determining region Y-box 9 (Sox9), CCAAT-enhancer-binding protein and peroxisome proliferator-activated receptor γ. During osteogenic differentiation, TIMP-1 knockdown significantly enhanced the up-regulation of osteocalcin proteins. Meanwhile, TIMP-1 overexpression attenuated the Wnt/activator Wnt3a-induced up-regulation cyclin D1 and Runt-related transcription factor 2 (RUNX-2) (during osteogenic differentiation) proteins, while TIMP-1 knockdown restored the inhibitor Dickkopf 1-induced inhibition effect on the expression of β-catenin, cyclin D1 and RUNX-2. TIMP-1 plays a negative regulatory role in the proliferation and osteogenesis of hBMSCs, at least partially, through Wnt/β-catenin signaling.
Collapse
|
26
|
Hanna H, Mir LM, Andre FM. In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties. Stem Cell Res Ther 2018; 9:203. [PMID: 30053888 PMCID: PMC6063016 DOI: 10.1186/s13287-018-0942-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Differentiation of mesenchymal stem cells to osteoblasts is widely performed in research laboratories. Classical tests to prove this differentiation employ procedures such as cell fixation, cell lysis or cell scraping. Very few studies report gentle dissociation of mesenchymal stem cells undergoing an osteodifferentiation process. Here we used this technique to reveal the presence of several cell layers during osteogenesis and to study their different properties. Methods Through the sequential enzymatic detachment of the cells, we confirm the presence of several layers of differentiated cells and we compare them in terms of enzymatic sensitivity for dissociation, expression of cluster of differentiation, cytosolic calcium oscillations and osteogenic potential. Adipogenic and neurogenic differentiations were also performed in order to compare the cell layers. Results The cells undergoing differentiation formed one layer in the neurogenic differentiation, two layers in the adipogenic differentiation and at least four layers in the osteogenic differentiation. In the latter, the upper layers, maintained by a collagen I extracellular matrix, can be dissociated using collagenase I, while the remaining lowest layer, attached to the bottom of the dish, is sensitive only to trypsin-versene. The action of collagenase I is more efficient before the mineralization of the extracellular matrix. The collagenase-sensitive and trypsin-sensitive layers differ in their cluster of differentiation expression. The dissociation of the cells on day 15 reveals that cells could resume their growth (increase in cell number) and rapidly differentiate again in osteoblasts, in 2 weeks (instead of 4 weeks). Cells from the upper layers displayed a higher mineralization. Conclusions MSCs undergoing osteogenic differentiation form several layers with distinct osteogenic properties. This could allow the investigators to use upper layers to rapidly produce differentiated osteoblasts and the lowest layer to continue growth and differentiation until an ulterior dissociation. Electronic supplementary material The online version of this article (10.1186/s13287-018-0942-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanna Hanna
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, PR2, 114 rue Edouard Vaillant, 94 805, Villejuif, France
| | - Lluis M Mir
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, PR2, 114 rue Edouard Vaillant, 94 805, Villejuif, France
| | - Franck M Andre
- Vectorology and Anticancer Therapies, UMR 8203, CNRS, Univ. Paris-Sud, Gustave Roussy, Université Paris-Saclay, PR2, 114 rue Edouard Vaillant, 94 805, Villejuif, France.
| |
Collapse
|
27
|
Elashry MI, Baulig N, Heimann M, Bernhardt C, Wenisch S, Arnhold S. Osteogenic differentiation of equine adipose tissue derived mesenchymal stem cells using CaCl 2. Res Vet Sci 2018; 117:45-53. [DOI: 10.1016/j.rvsc.2017.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 11/10/2017] [Accepted: 11/18/2017] [Indexed: 12/31/2022]
|
28
|
The effect of medium composition on deposition of collagen type 1 and expression of osteogenic genes in mesenchymal stem cells derived from human adipose tissue and bone marrow. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
He J, Guo J, Jiang B, Yao R, Wu Y, Wu F. Directing the osteoblastic and chondrocytic differentiations of mesenchymal stem cells: matrix vs. induction media. Regen Biomater 2017; 4:269-279. [PMID: 29026640 PMCID: PMC5633692 DOI: 10.1093/rb/rbx008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
While both induction culture media and matrix have been reported to regulate the stem cell fate, little is known about which factor plays a more decisive role in directing the MSC differentiation lineage as well as the underlying mechanisms. To this aim, we seeded MSCs on HA-collagen and HA-synthetic hydrogel matrixes, which had demonstrated highly different potentials toward osteoblastic and chondrocytic differentiation lineages, respectively, and cultured them with osteogenic, chondrogenic and normal culture media, respectively. A systematic comparison has been carried out on the effects of induction media and matrix on MSC adhesion, cytoskeleton organization, proliferation, and in particular differentiation into the osteoblastic and chondrocytic lineages. The results demonstrated that the matrix selection had a much more profound effect on directing the differentiation lineage than the induction media did. The strong modulation effect on the transcription activities might be the critical factor contributing to the above observations in our study, where canonical Wnt-β-Catenin signal pathway was directly involved in the matrix-driven osteoblastic differentiation. Such findings not only provide a critical insight on natural cellular events leading to the osteoblastic and chondrocytic differentiations, but also have important implications in biomaterial design for tissue engineering applications.
Collapse
Affiliation(s)
- Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Jianglong Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Bo Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Ruijuan Yao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
30
|
Freeman FE, Stevens HY, Owens P, Guldberg RE, McNamara LM. Osteogenic Differentiation of Mesenchymal Stem Cells by Mimicking the Cellular Niche of the Endochondral Template. Tissue Eng Part A 2016; 22:1176-1190. [PMID: 27604384 DOI: 10.1089/ten.tea.2015.0339] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vitro bone regeneration strategies that prime mesenchymal stem cells (MSCs) with chondrogenic factors, to mimic aspects of the endochondral ossification process, have been shown to promote mineralization and vascularization by MSCs both in vitro and when implanted in vivo. However, these approaches required the use of osteogenic supplements, namely dexamethasone, ascorbic acid, and β-glycerophosphate, none of which are endogenous mediators of bone formation in vivo. Rather MSCs, endothelial progenitor cells, and chondrocytes all reside in proximity within the cartilage template and might paracrineally regulate osteogenic differentiation. Thus, this study tests the hypothesis that an in vitro bone regeneration approach that mimics the cellular niche existing during endochondral ossification, through coculture of MSCs, endothelial cells, and chondrocytes, will obviate the need for extraneous osteogenic supplements and provide an alternative strategy to elicit osteogenic differentiation of MSCs and mineral production. The specific objectives of this study were to (1) mimic the cellular niche existing during endochondral ossification and (2) investigate whether osteogenic differentiation could be induced without the use of any external growth factors. To test the hypothesis, we evaluated the mineralization and vessel formation potential of (a) a novel methodology involving both chondrogenic priming and the coculture of human umbilical vein endothelial cells (HUVECs) and MSCs compared with (b) chondrogenic priming of MSCs alone, (c) addition of HUVECs to chondrogenically primed MSC aggregates, (d-f) the same experimental groups cultured in the presence of osteogenic supplements and (g) a noncoculture group cultured in the presence of osteogenic growth factors alone. Biochemical (DNA, alkaline phosphatase [ALP], calcium, CD31+, vascular endothelial growth factor [VEGF]), histological (alcian blue, alizarin red), and immunohistological (CD31+) analyses were conducted to investigate osteogenic differentiation and vascularization at various time points (1, 2, and 3 weeks). The coculture methodology enhanced both osteogenesis and vasculogenesis compared with osteogenic differentiation alone, whereas osteogenic supplements inhibited the osteogenesis and vascularization (ALP, calcium, and VEGF) induced through coculture alone. Taken together, these results suggest that chondrogenic and vascular priming can obviate the need for osteogenic supplements to induce osteogenesis of human MSCs in vitro, while allowing for the formation of rudimentary vessels.
Collapse
Affiliation(s)
- Fiona E Freeman
- 1 Biomedical Engineering, Centre for Biomechanics Research (BMEC), National University of Ireland Galway , Galway, Ireland
| | - Hazel Y Stevens
- 2 George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Peter Owens
- 3 Centre for Microscopy and Imaging, National University of Ireland , Galway, Galway, Ireland
| | - Robert E Guldberg
- 2 George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Laoise M McNamara
- 1 Biomedical Engineering, Centre for Biomechanics Research (BMEC), National University of Ireland Galway , Galway, Ireland
| |
Collapse
|
31
|
HU JUNZHENG, GU YANQING, FAN WEIMIN. Rg1 protects rat bone marrow stem cells against hydrogen peroxide-induced cell apoptosis through the PI3K/Akt pathway. Mol Med Rep 2016; 14:406-12. [DOI: 10.3892/mmr.2016.5238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/01/2016] [Indexed: 11/05/2022] Open
|
32
|
Wiraja C, Yeo DC, Chong MSK, Xu C. Nanosensors for Continuous and Noninvasive Monitoring of Mesenchymal Stem Cell Osteogenic Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1342-50. [PMID: 26756453 DOI: 10.1002/smll.201502047] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/15/2015] [Indexed: 05/22/2023]
Abstract
Assessing mesenchymal stem cell (MSC) differentiation status is crucial to verify therapeutic efficacy and optimize treatment procedures. Currently, this involves destructive methods including antibody-based protein detection and polymerase chain reaction gene analysis, or laborious and technically challenging genetic reporters. Development of noninvasive methods for real-time differentiation status assessment can greatly benefit MSC-based therapies. This report introduces a nanoparticle-based sensing platform that encapsulates two molecular beacon (MB) probes within the same biodegradable polymeric nanoparticles. One MB targets housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal reference, while another detects alkaline phosphatase (ALP), a functional biomarker. Following internalization, MBs are gradually released as the nanoparticle degrades. GAPDH MBs provide a stable reference signal throughout the monitoring period (18 days) regardless of differentiation induction. Meanwhile, ALP mRNA undergoes well-defined dynamics with peak expression observed during early stages of osteogenic differentiation. By normalizing ALP-MB signal with GAPDH-MB, changes in ALP expression can be monitored, to noninvasively validate osteogenic differentiation. As proof-of-concept, a dual-colored nanosensor is applied to validate MSC osteogenesis on 2D culture and polycaprolactone films containing osteo-inductive tricalcium phospate.
Collapse
Affiliation(s)
- Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, Singapore
| | - David C Yeo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, Singapore
| | - Mark S K Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore
| |
Collapse
|
33
|
Application of Green Tea Catechin for Inducing the Osteogenic Differentiation of Human Dedifferentiated Fat Cells in Vitro. Int J Mol Sci 2015; 16:27988-8000. [PMID: 26602917 PMCID: PMC4691028 DOI: 10.3390/ijms161226081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Despite advances in stem cell biology, there are few effective techniques to promote the osteogenic differentiation of human primary dedifferentiated fat (DFAT) cells. We attempted to investigate whether epigallocatechin-3-gallate (EGCG), the main component of green tea catechin, facilitates early osteogenic differentiation and mineralization on DFAT cells in vitro. DFAT cells were treated with EGCG (1.25-10 μM) in osteogenic medium (OM) with or without 100 nM dexamethasone (Dex) for 12 days (hereafter two osteogenic media were designated as OM(Dex) and OM). Supplementation of 1.25 μM EGCG to both the media effectively increased the mRNA expression of collagen 1 (COL1A1) and runt-related transcription factor 2 (RUNX2) and also increased proliferation and mineralization. Compared to OM(Dex) with EGCG, OM with EGCG induced earlier expression for COL1A1 and RUNX2 at day 1 and higher mineralization level at day 12. OM(Dex) with 10 μM EGCG remarkably hampered the proliferation of the DFAT cells. These results suggest that OM(without Dex) with EGCG might be a preferable medium to promote proliferation and to induce osteoblast differentiation of DFAT cells. Our findings provide an insight for the combinatory use of EGCG and DFAT cells for bone regeneration and stem cell-based therapy.
Collapse
|
34
|
Schmidt JR, Kliemt S, Preissler C, Moeller S, von Bergen M, Hempel U, Kalkhof S. Osteoblast-released Matrix Vesicles, Regulation of Activity and Composition by Sulfated and Non-sulfated Glycosaminoglycans. Mol Cell Proteomics 2015; 15:558-72. [PMID: 26598647 DOI: 10.1074/mcp.m115.049718] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 01/01/2023] Open
Abstract
Our aging population has to deal with the increasing threat of age-related diseases that impair bone healing. One promising therapeutic approach involves the coating of implants with modified glycosaminoglycans (GAGs) that mimic the native bone environment and actively facilitate skeletogenesis. In previous studies, we reported that coatings containing GAGs, such as hyaluronic acid (HA) and its synthetically sulfated derivative (sHA1) as well as the naturally low-sulfated GAG chondroitin sulfate (CS1), reduce the activity of bone-resorbing osteoclasts, but they also induce functions of the bone-forming cells, the osteoblasts. However, it remained open whether GAGs influence the osteoblasts alone or whether they also directly affect the formation, composition, activity, and distribution of osteoblast-released matrix vesicles (MV), which are supposed to be the active machinery for bone formation. Here, we studied the molecular effects of sHA1, HA, and CS1 on MV activity and on the distribution of marker proteins. Furthermore, we used comparative proteomic methods to study the relative protein compositions of isolated MVs and MV-releasing osteoblasts. The MV proteome is much more strongly regulated by GAGs than the cellular proteome. GAGs, especially sHA1, were found to severely impact vesicle-extracellular matrix interaction and matrix vesicle activity, leading to stronger extracellular matrix formation and mineralization. This study shows that the regulation of MV activity is one important mode of action of GAGs and provides information on underlying molecular mechanisms.
Collapse
Affiliation(s)
- Johannes R Schmidt
- From the ‡Department of Proteomics, Helmholtz Centre for Environmental Research UFZ, 04318 Leipzig, Germany
| | - Stefanie Kliemt
- From the ‡Department of Proteomics, Helmholtz Centre for Environmental Research UFZ, 04318 Leipzig, Germany
| | - Carolin Preissler
- the ‖Institute of Physiological Chemistry, TU Dresden, 01307 Dresden, Germany
| | | | - Martin von Bergen
- From the ‡Department of Proteomics, Helmholtz Centre for Environmental Research UFZ, 04318 Leipzig, Germany; the ‡‡Department of Metabolomics, Helmholtz Centre for Environmental Research UFZ, 04318 Leipzig, Germany; §§Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg East, Denmark
| | - Ute Hempel
- the ‖Institute of Physiological Chemistry, TU Dresden, 01307 Dresden, Germany;
| | - Stefan Kalkhof
- From the ‡Department of Proteomics, Helmholtz Centre for Environmental Research UFZ, 04318 Leipzig, Germany; the ¶¶Department of Bioanalytics, University of Applied Sciences and Arts of Coburg, 96450 Coburg, Germany
| |
Collapse
|
35
|
LeBlon CE, Casey ME, Fodor CR, Zhang T, Zhang X, Jedlicka SS. Correlation between in vitro expansion-related cell stiffening and differentiation potential of human mesenchymal stem cells. Differentiation 2015; 90:1-15. [PMID: 26381795 DOI: 10.1016/j.diff.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/28/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are an attractive cell source for tissue regeneration, given their self-renewal and multilineage potential. However, they are present in only small percentages in human bone marrow, and are generally propagated in vitro prior to downstream use. Previous work has shown that hMSC propagation can lead to alterations in cell behavior and differentiation potency, yet optimization of differentiation based on starting cell elastic modulus is an area still under investigation. To further advance the knowledge in this field, hMSCs were cultured and routinely passaged on tissue-culture polystyrene to investigate the correlation between cell stiffening and differentiation potency during in vitro aging. Local cell elastic modulus was measured at every passage using atomic force microscopy indentation. At each passage, cells were induced to differentiate down myogenic and osteogenic paths. Cells induced to differentiate, as well as undifferentiated cells were assessed for gene and protein expression using quantitative polymerase chain reaction and immunofluorescent staining, respectively, for osteogenic and myogenic markers. Myogenic and osteogenic cell potential are highly reliant on the elastic modulus of the starting cell population (of undifferentiated cells), and this potential appears to peak when the innate cell elastic modulus is close to that of differentiated tissue. However, the latent expression of the same markers in undifferentiated cells also appears to undergo a correlative relationship with cell elastic modulus, indicating some endogenous effects of cell elastic modulus and gene/protein expression. Overall, this study correlates age-related changes with regards to innate cell stiffening and gene/protein expression in commercial hMSCs, providing some guidance as to maintenance and future use of hMSCs in future tissue engineering applications.
Collapse
Affiliation(s)
- Courtney E LeBlon
- Mechanical Engineering & Mechanics, Packard Laboratory, Lehigh University, 19 Memorial Drive, Bethlehem, PA 18015, United States
| | - Meghan E Casey
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Caitlin R Fodor
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Tony Zhang
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Xiaohui Zhang
- Mechanical Engineering & Mechanics, Packard Laboratory, Lehigh University, 19 Memorial Drive, Bethlehem, PA 18015, United States; Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Sabrina S Jedlicka
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States; Materials Science and Engineering, Whitaker Laboratory, Lehigh University, 5 East Packer Ave., Bethlehem, PA 18015, United States; Center for Advanced Materials & Nanotechnology, Whitaker Laboratory, Lehigh University, 5 East Packer Ave., Bethlehem, PA 18015, United States.
| |
Collapse
|
36
|
Bae S, Lee HJ, Lee JS, Webb K. Cell-Mediated Dexamethasone Release from Semi-IPNs Stimulates Osteogenic Differentiation of Encapsulated Mesenchymal Stem Cells. Biomacromolecules 2015; 16:2757-65. [PMID: 26259127 DOI: 10.1021/acs.biomac.5b00694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Scaffold-based delivery of bioactive molecules capable of directing stem cell differentiation is critical to the development of point-of-care cell therapy for orthopedic repair. Dexamethasone-conjugated hyaluronic acid (HA-DXM) was synthesized and combined with hydrolytically degradable, photo-cross-linkable PEG-bis(2-acryloyloxy propanoate) (PEG-bis-AP) to form semi-IPNs. Dexamethasone (DX) release was limited in physiological buffer and substantially increased in the presence of encapsulated human mesenchymal stem cells (hMSCs) or exogenous hyaluronidase, confirming that release occurred primarily by a cell-mediated enzymatic mechanism. hMSCs encapsulated in PEG-bis-AP/HA-DXM semi-IPNs increased osteoblast-specific gene expression, alkaline phosphatase activity, and matrix mineralization, attaining levels that were not significantly different from positive controls consisting of hMSCs in PEG-bis-AP/native HA cultured with DX supplementation in the culture medium. These studies demonstrate that PEG-bis-AP/HA-DXM semi-IPNs can provide cell-mediated release of bioactive free DX that induces hMSC osteogenic differentiation. This approach offers an efficient system for local delivery of osteogenic molecules empowering point of care applications.
Collapse
Affiliation(s)
- Sooneon Bae
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| | - Ho-Joon Lee
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| | - Jeoung Soo Lee
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| | - Ken Webb
- Microenvironmental Engineering Laboratory and ‡Drug Design, Development, and Delivery Laboratory, Department of Bioengineering, Clemson University , 301 Rhodes Research Center, Clemson, South Carolina 29634, United States
| |
Collapse
|
37
|
Herberg S, Aguilar-Perez A, Howie RN, Kondrikova G, Periyasamy-Thandavan S, Elsalanty ME, Shi X, Hill WD, Cray JJ. Mesenchymal stem cell expression of SDF-1β synergizes with BMP-2 to augment cell-mediated healing of critical-sized mouse calvarial defects. J Tissue Eng Regen Med 2015; 11:1806-1819. [PMID: 26227988 DOI: 10.1002/term.2078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/28/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023]
Abstract
Bone has the potential for spontaneous healing. This process, however, often fails in patients with comorbidities. Tissue engineering combining functional cells, biomaterials and osteoinductive cues may provide alternative treatment strategies. We have recently demonstrated that stromal cell-derived factor-1β (SDF-1β) works in concert with bone morphogenetic protein-2 (BMP-2) to potentiate osteogenic differentiation of bone marrow-derived mesenchymal stem/stromal cells (BMSCs). Here, we test the hypothesis that SDF-1β overexpressed in Tet-Off-SDF-1β BMSCs, delivered on acellular dermal matrix (ADM), synergistically augments BMP-2-induced healing of critical-sized mouse calvarial defects. BMSC therapies alone showed limited bone healing, which was increased with co-delivery of BMP-2. This was further enhanced in Tet-Off-SDF-1β BMSCs + BMP-2. Only limited BMSC retention on ADM constructs was observed after 4 weeks in vivo, which was increased with BMP-2 co-delivery. In vitro cell proliferation studies showed that supplementing BMP-2 to Tet-Off BMSCs significantly increased the cell number during the first 24 h. Consequently, the increased cell numbers decreased the detectable BMP-2 levels in the medium, but increased cell-associated BMP-2. The data suggest that SDF-1β provides synergistic effects supporting BMP-2-induced, BMSC-mediated bone formation and appears suitable for optimization of bone augmentation in combination therapy protocols. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Samuel Herberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Alexandra Aguilar-Perez
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Cellular and Molecular Biology, Universidad Central del Caribe, Bayamón, Puerto Rico, USA
| | - R Nicole Howie
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Oral Biology, Georgia Regents University, Augusta, GA, USA
| | - Galina Kondrikova
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA
| | | | - Mohammed E Elsalanty
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Oral Biology, Georgia Regents University, Augusta, GA, USA.,Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - Xingming Shi
- Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA
| | - William D Hill
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA, USA.,Department of Orthopedic Surgery, Georgia Regents University, Augusta, GA, USA.,Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA, USA.,Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, GA, USA.,Charlie Norwood VA Medical Centre, Augusta, GA, USA
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
38
|
Santo VE, Ratanavaraporn J, Sato K, Gomes ME, Mano JF, Reis RL, Tabata Y. Cell engineering by the internalization of bioinstructive micelles for enhanced bone regeneration. Nanomedicine (Lond) 2015; 10:1707-21. [DOI: 10.2217/nnm.15.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To direct precursor cells toward the osteoblastic lineage, by using an intracellular nanocarrier releasing dexamethasone. Materials & methods: Biodegradable gelatin-based micelles entrapped dexamethasone (dex-micelles). Internalization efficiency and biocompatibility of dex-micelles and their potency for in vitro osteogenic differentiation and in vivo bone regeneration were assessed. Results: Dex-micelles were internalized by rat bone marrow mesenchymal stem cells and demonstrated a pH-responsive release profile and an enhancement of 2D and 3D in vitro osteogenic differentiation. In vivo implantation of gelatin scaffolds seeded with rat bone marrow mesenchymal stem cells precultured for 24 h with dex-micelles promoted a significant enhancement of de novo bone formation in a rat ulna defect, in a dose-dependent manner. Conclusion: The proposed intracellular delivery system is a powerful tool to promote bone regeneration.
Collapse
Affiliation(s)
- Vítor E Santo
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo Ku, Kyoto 6068507, Japan
- 3B's Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, 4806–909 Taipas, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Juthamas Ratanavaraporn
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo Ku, Kyoto 6068507, Japan
| | - Keisuke Sato
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo Ku, Kyoto 6068507, Japan
| | - Manuela E Gomes
- 3B's Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, 4806–909 Taipas, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, 4806–909 Taipas, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group – Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, 4806–909 Taipas, Guimarães, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Sakyo Ku, Kyoto 6068507, Japan
| |
Collapse
|
39
|
Damaraju S, Matyas JR, Rancourt DE, Duncan NA. The role of gap junctions and mechanical loading on mineral formation in a collagen-I scaffold seeded with osteoprogenitor cells. Tissue Eng Part A 2015; 21:1720-32. [PMID: 25752490 DOI: 10.1089/ten.tea.2014.0522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fracture nonunions represent one of many large bone defects where current treatment strategies fall short in restoring both form and function of the injured tissue. In this case, the use of a tissue-engineered scaffold for promoting bone healing offers an accessible and easy-to-manipulate environment for studying bone formation processes in vitro. We have previously shown that mechanical prestimulation using confined compression of differentiating osteoblasts results in an increase in mineralization formed in a 3D collagen-I scaffold. This study builds on this knowledge by evaluating the short and long-term effects of blocking gap junction-mediated intercellular communication among osteogenic cells on their effectiveness to mineralize collagen-I scaffolds in vitro, and in the presence and absence of mechanical stimulation. In this study, confined compression was applied in conjunction with octanol (a general communication blocker) or 18-α-glycerrhetinic acid (AGA, a specific gap junction blocker) using a modified FlexCell plate to collagen-I scaffolds seeded with murine embryonic stem cells stimulated toward osteoblast differentiation using beta-glycerol phosphate. The activity, presence, and expression of osteoblast cadherin, connexin-43, as well as various pluripotent and osteogenic markers were examined at 5-30 days of differentiation. Fluorescence recovery after photobleaching, immunofluorescence, viability, histology assessments, and reverse-transcriptase polymerase chain reaction assessments revealed that inhibiting communication in this scaffold altered the lineage and function of differentiating osteoblasts. In particular, treatment with communication inhibitors caused reduced mineralization in the matrix, and dissociation between connexin-43 and integrin α5β1. This dissociation was not restored even after long-term recovery. Thus, in order for this scaffold to be considered as an alternative strategy for the repair of large bone defects, cell-cell contacts and cell-matrix interactions must remain intact for osteoblast differentiation and function to be preserved. This study shows that within this 3D scaffold, gap junctions are essential in osteoblast response to mechanical loading, and are essential structures in producing a significant amount and organization of mineralization in the matrix.
Collapse
Affiliation(s)
- Swathi Damaraju
- 1 McCaig Institute for Bone and Joint Health, University of Calgary , Calgary, Canada
| | | | | | | |
Collapse
|
40
|
Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 2014; 4:117. [PMID: 24073831 PMCID: PMC3854789 DOI: 10.1186/scrt328] [Citation(s) in RCA: 400] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The standard procedure for the osteogenic differentiation of multipotent stem cells is treatment of a confluent monolayer with a cocktail of dexamethasone (Dex), ascorbic acid (Asc) and β-glycerophosphate (β-Gly). This review describes the effects of these substances on intracellular signaling cascades that lead to osteogenic differentiation of bone marrow stroma-derived stem cells. We conclude that Dex induces Runx2 expression by FHL2/β-catenin-mediated transcriptional activation and that Dex enhances Runx2 activity by upregulation of TAZ and MKP1. Asc leads to the increased secretion of collagen type I (Col1), which in turn leads to increased Col1/α2β1 integrin-mediated intracellular signaling. The phosphate from β-Gly serves as a source for the phosphate in hydroxylapatite and in addition influences intracellular signaling molecules. In this context we give special attention to the differences between dystrophic and bone-specific mineralization.
Collapse
|
41
|
Song IH, Dennis JE. Simple evaluation method for osteoinductive capacity of cells or scaffolds using ceramic cubes. Tissue Cell 2014; 46:372-8. [PMID: 25109762 DOI: 10.1016/j.tice.2014.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 06/11/2014] [Accepted: 06/26/2014] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells are good candidates for the clinical application of bone repair because of their osteogenic differentiation potential, but in vivo osteoinduction potential should be verified for culture expanded cells before clinical application. This study analyzed in vivo bone formation by MSCs quantitatively after implantation of MSCs planted porous biphasic ceramic cubes into athymic mice. MSCs were divided into osteogenic differentiation-induced and normal groups and also tested in vitro to evaluate the degree of differentiation into osteoblasts. The osteogenic induced group showed higher alkaline phosphatase and calcium level in vitro and corresponding higher level of bone formation in vivo compared to control group. Whereas there was no bone formation observed in fibroblast-implanted negative control group. In critical sized bone defect models, commonly used for evaluation of bone regeneration ability, it is difficult to distinguish between osteoinduction and osteoconduction, and quantitative analysis is not simple. However, this method for evaluating osteoinduction is both accurate and simple. In conclusion, the analysis of in vivo bone formation using porous ceramic cubes is a powerful and simple method for evaluating the osteoinduction ability of target cells and, furthermore, can be applied for evaluation of scaffolds for their osteoinductive properties.
Collapse
Affiliation(s)
- In-Hwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, Daegu 705-717, South Korea
| | - James E Dennis
- Hope Heart and Matrix Biology Program, Benaroya Research Institute, Seattle, WA 98101, USA; Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Pak J, Lee JH, Lee SH. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:436029. [PMID: 24592390 PMCID: PMC3925627 DOI: 10.1155/2014/436029] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/04/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee.
Collapse
Affiliation(s)
- Jaewoo Pak
- Stems Medical Clinic, 32-3 Chungdam-dong, Gangnam-gu, Seoul 135-950, Republic of Korea
| | - Jung Hun Lee
- Stems Medical Clinic, 32-3 Chungdam-dong, Gangnam-gu, Seoul 135-950, Republic of Korea
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Gyeonggido, Yongin 449-728, Republic of Korea
| | - Sang Hee Lee
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Gyeonggido, Yongin 449-728, Republic of Korea
| |
Collapse
|
43
|
Yamashita H, Ochiai H, Saito A, Shintani S, Azuma T. Phosphoinositide 3-Kinase (PI3K) Activation is Differentially Regulated during Osteogenesis induced by TGF-β1 and BMP-2/BMP-7. J HARD TISSUE BIOL 2014. [DOI: 10.2485/jhtb.23.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Ma J, Both SK, Yang F, Cui FZ, Pan J, Meijer GJ, Jansen JA, van den Beucken JJJP. Concise review: cell-based strategies in bone tissue engineering and regenerative medicine. Stem Cells Transl Med 2013; 3:98-107. [PMID: 24300556 DOI: 10.5966/sctm.2013-0126] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cellular strategies play an important role in bone tissue engineering and regenerative medicine (BTE/RM). Variability in cell culture procedures (e.g., cell types, cell isolation and expansion, cell seeding methods, and preculture conditions before in vivo implantation) may influence experimental outcome. Meanwhile, outcomes from initial clinical trials are far behind those of animal studies, which is suggested to be related to insufficient nutrient and oxygen supply inside the BTE/RM constructs as some complex clinical implementations require bone regeneration in too large a quantity. Coculture strategies, in which angiogenic cells are introduced into osteogenic cell cultures, might provide a solution for improving vascularization and hence increasing bone formation for cell-based constructs. So far, preclinical studies have demonstrated that cell-based tissue-engineered constructs generally induce more bone formation compared with acellular constructs. Further, cocultures have been shown to enhance vascularization and bone formation compared with monocultures. However, translational efficacy from animal studies to clinical use requires improvement, and the role implanted cells play in clinical bone regeneration needs to be further elucidated. In view of this, the present review provides an overview of the critical procedures during in vitro and in vivo phases for cell-based strategies (both monoculture and coculture) in BTE/RM to achieve more standardized culture conditions for future studies, and hence enhance bone formation.
Collapse
Affiliation(s)
- Jinling Ma
- Department of VIP Service and Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biomaterials and Department of Oral and Maxillofacial Surgery, Radboud University Medical Center, Nijmegen, The Netherlands; State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science & Engineering, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
McDuffee LA, Esparza Gonzalez BP, Nino-Fong R, Aburto E. Evaluation of an in vivo heterotopic model of osteogenic differentiation of equine bone marrow and muscle mesenchymal stem cells in fibrin glue scaffold. Cell Tissue Res 2013; 355:327-35. [DOI: 10.1007/s00441-013-1742-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/29/2013] [Indexed: 10/26/2022]
|
46
|
Di Tomo P, Pipino C, Lanuti P, Morabito C, Pierdomenico L, Sirolli V, Bonomini M, Miscia S, Mariggiò MA, Marchisio M, Barboni B, Pandolfi A. Calcium sensing receptor expression in ovine amniotic fluid mesenchymal stem cells and the potential role of R-568 during osteogenic differentiation. PLoS One 2013; 8:e73816. [PMID: 24040082 PMCID: PMC3767786 DOI: 10.1371/journal.pone.0073816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/24/2013] [Indexed: 02/07/2023] Open
Abstract
Amniotic fluid-derived stem (AFS) cells have been identified as a promising source for cell therapy applications in bone traumatic and degenerative damage. Calcium Sensing Receptor (CaSR), a G protein-coupled receptor able to bind calcium ions, plays a physiological role in regulating bone metabolism. It is expressed in different kinds of cells, as well as in some stem cells. The bone CaSR could potentially be targeted by allosteric modulators, in particular by agonists such as calcimimetic R-568, which may potentially be helpful for the treatment of bone disease. The aim of our study was first to investigate the presence of CaSR in ovine Amniotic Fluid Mesenchymal Stem Cells (oAFMSCs) and then the potential role of calcimimetics in in vitro osteogenesis. oAFMSCs were isolated, characterized and analyzed to examine the possible presence of CaSR by western blotting and flow cytometry analysis. Once we had demonstrated CaSR expression, we worked out that 1 µM R-568 was the optimal and effective concentration by cell viability test (MTT), cell number, Alkaline Phosphatase (ALP) and Alizarin Red S (ARS) assays. Interestingly, we observed that basal diffuse CaSR expression in oAFMSCs increased at the membrane when cells were treated with R-568 (1 µM), potentially resulting in activation of the receptor. This was associated with significantly increased cell mineralization (ALP and ARS staining) and augmented intracellular calcium and Inositol trisphosphate (IP3) levels, thus demonstrating a potential role for calcimimetics during osteogenic differentiation. Calhex-231, a CaSR allosteric inhibitor, totally reversed R-568 induced mineralization. Taken together, our results demonstrate for the first time that CaSR is expressed in oAFMSCs and that calcimimetic R-568, possibly through CaSR activation, can significantly improve the osteogenic process. Hence, our study may provide useful information on the mechanisms regulating osteogenesis in oAFMSCs, perhaps prompting the use of calcimimetics in bone regenerative medicine.
Collapse
Affiliation(s)
- Pamela Di Tomo
- Department of Experimental and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Caterina Pipino
- Department of Experimental and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Caterina Morabito
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Laura Pierdomenico
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Vittorio Sirolli
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Mario Bonomini
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Sebastiano Miscia
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Maria Addolorata Mariggiò
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Barbara Barboni
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Comparative Biomedical Science, University of Teramo, Teramo, Italy
| | - Assunta Pandolfi
- Department of Experimental and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- * E-mail:
| |
Collapse
|
47
|
Yan XZ, Yang W, Yang F, Kersten-Niessen M, Jansen JA, Both SK. Effects of continuous passaging on mineralization of MC3T3-E1 cells with improved osteogenic culture protocol. Tissue Eng Part C Methods 2013; 20:198-204. [PMID: 23898861 DOI: 10.1089/ten.tec.2012.0412] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The murine-derived MC3T3-E1 cell line provided by the American Type Culture Collection (ATCC) is a well-known osteogenic cell culture model system to test materials in vitro. However, the effect of passaging on its mineralization capacity has never been described and their culture supplements can be further optimized. Therefore, we evaluated the influence of the passage number and different osteogenic culture supplements, including ascorbic acid (AsAP) and dexamethasone (Dex) on the osteogenic capacity of MC3T3-E1 cells. This capacity was measured by the deposited calcium, the alkaline phosphatase activity, and the expression of osteogenic-related genes, including bone sialoprotein (BSP), osteocalcin (OC), and osteopontin (OPN). The results indicated that the mineralization capacity of MC3T3-E1 cells significantly decreased during passaging and got exhausted at passage 34, as assessed by measuring calcium deposition after 28 days of osteogenic induction. Moreover, the combination of AsAP and Dex triggered significantly more mineralization in MC3T3-E1 cells than the ATCC recommended addition of AsAP alone, as indicated by increased calcium deposition and higher expression of BSP and OPN. However, Dex alone could not trigger this effect, but only in combination with the AsAP, which indicates that Dex has no direct effect on mineralization. In conclusion, the passage number of MC3T3-E1 cells is of great importance and the use of cells above 30 passages should be avoided. In addition, the favored osteogenic supplements providing an improved osteogenic differentiation of MC3T3-E1 cells are the combination of AsAP and Dex.
Collapse
Affiliation(s)
- Xiang-Zhen Yan
- 1 Department of Biomaterials, Radboud University Nijmegen Medical Center , Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Rodrigues M, Blair H, Stockdale L, Griffith L, Wells A. Surface tethered epidermal growth factor protects proliferating and differentiating multipotential stromal cells from FasL-induced apoptosis. Stem Cells 2013; 31:104-16. [PMID: 22948863 DOI: 10.1002/stem.1215] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Multipotential stromal cells or mesenchymal stem cells (MSCs) have been proposed as aids in regenerating bone and adipose tissues, as these cells form osteoblasts and adipocytes. A major obstacle to this use of MSC is the initial loss of cells postimplantation. This cell death in part is due to ubiquitous nonspecific inflammatory cytokines such as FasL generated in the implant site. Our group previously found that soluble epidermal growth factor (sEGF) promotes MSC expansion. Furthermore, tethering EGF (tEGF) onto a two-dimensional surface altered MSC responses, by restricting epidermal growth factor receptor (EGFR) to the cell surface, causing sustained activation of EGFR, and promoting survival from FasL-induced death. sEGF by causing internalization of EGFR does not support MSC survival. However, for tEGF to be useful in bone regeneration, it needs to allow for MSC differentiation into osteoblasts while also protecting emerging osteoblasts from apoptosis. tEGF did not block induced differentiation of MSCs into osteoblasts, or adipocytes, a common default MSC-differentiation pathway. MSC-derived preosteoblasts showed increased Fas levels and became more susceptible to FasL-induced death, which tEGF prevented. Differentiating adipocytes underwent a reduction in Fas expression and became resistant to FasL-induced death, with tEGF having no further survival effect. tEGF protected undifferentiated MSC from combined insults of FasL, serum deprivation, and physiologic hypoxia. Additionally, tEGF was dominant in the face of sEGF to protect MSC from FasL-induced death. Our results suggest that MSCs and differentiating osteoblasts need protective signals to survive in the inflammatory wound milieu and that tEGF can serve this function.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
49
|
Cheng S, Wang W, Lin Z, Zhou P, Zhang X, Zhang W, Chen Q, Kou D, Ying X, Shen Y, Cheng X, Yu Z, Peng L, Lu C. Effects of extracellular calcium on viability and osteogenic differentiation of bone marrow stromal cells in vitro. Hum Cell 2013; 26:114-20. [PMID: 23749732 DOI: 10.1007/s13577-012-0041-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 01/11/2012] [Indexed: 12/16/2022]
Abstract
Bone marrow stromal cells (BMSCs) have been extensively used for tissue engineering. However, the effect of Ca(2+) on the viability and osteogenic differentiation of BMSCs has yet to be evaluated. To determine the dose-dependent effect of Ca(2+) on viability and osteogenesis of BMSCs in vitro, BMSCs were cultured in calcium-free DMEM medium supplemented with various concentrations of Ca(2+) (0, 1, 2, 3, 4, and 5 mM) from calcium citrate. Cell viability was analyzed by MTT assay and osteogenic differentiation was evaluated by alkaline phosphatase (ALP) assay, Von Kossa staining, and real-time PCR. Ca(2+) stimulated BMSCs viability in a dose-dependent manner. At slightly higher concentrations (4 and 5 mM) in the culture, Ca(2+) significantly inhibited the activity of ALP on days 7 and 14 (P < 0.01 or P < 0.05), significantly suppressed collagen synthesis (P < 0.01 or P < 0.05), and significantly elevated calcium deposition (P < 0.01) and mRNA levels of osteocalcin (P < 0.01 or P < 0.05) and osteopontin (P < 0.01 or P < 0.05). Therefore, elevated concentrations of extracellular calcium may promote cell viability and late-stage osteogenic differentiation, but may suppress early-stage osteogenic differentiation in BMSCs.
Collapse
Affiliation(s)
- Shaowen Cheng
- Trauma Center of the Affiliated Hospital of Hainan Medical College, 31 Long Hua Road, Haikou, 571100, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hah YS, Kang HG, Cho HY, Shin SH, Kim UK, Park BW, Lee SI, Rho GJ, Kim JR, Byun JH. JNK signaling plays an important role in the effects of TNF-α and IL-1β on in vitro osteoblastic differentiation of cultured human periosteal-derived cells. Mol Biol Rep 2013; 40:4869-81. [PMID: 23657597 DOI: 10.1007/s11033-013-2586-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 04/29/2013] [Indexed: 01/25/2023]
Abstract
The purpose of this study was to examine the effects of TNF-α and IL-1β on in vitro osteoblastic differentiation of cultured human periosteal-derived cells. To examine the effects of TNF-α and IL-1β on in vitro osteoblastic differentiation of cultured human periosteal-derived cells, the cells cultured in the osteogenic induction medium were treated with 0.1-10 ng/ml TNF-α and 0.01-1 ng/ml IL-1β. TNF-α and IL-1β enhanced the alkaline phosphatase (ALP) activity and alizarin red S staining in cultured human periosteal-derived cells. However, these cytokines did not stimulate the Runt-related transcription factor (Runx) 2 activity and osteocalcin secretion. The ALP activity was decreased in the periosteal-derived cells pretreated with mitogen activated protein kinase (MAPK) inhibitors and then treated with TNF-α or IL-1β. Among the periosteal-derived cells pretreated with MAPK inhibitors, the ALP activity was markedly decreased in the cells pretreated with SP 600125, the specific inhibitor of C-Jun N-terminal kinase (JNK). The periosteal-derived cells treated with TNF-α and IL-1β showed an increase in extracellular signal-regulated kinase (ERK) and JNK phosphorylation. Among the ERK and JNK phosphorylation, JNK phosphorylation was strongly observed in the cells. These results suggest that TNF-α and IL-1β increased the in vitro osteoblastic differentiation of cultured human periosteal-derived cells by enhancing the ALP activity and mineralization process, but not by Runx2 activation. The functional role of TNF-α and IL-1β in increasing the ALP activity and mineralization of periosteal-derived cells primarily depends on the JNK signaling among the MAPK pathways.
Collapse
Affiliation(s)
- Young-Sool Hah
- Clinical Research Institute, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|