1
|
Zou X, Zhang X, Han S, Wei L, Zheng Z, Wang Y, Xin J, Zhang S. Pathogenesis and therapeutic implications of matrix metalloproteinases in intervertebral disc degeneration: A comprehensive review. Biochimie 2023; 214:27-48. [PMID: 37268183 DOI: 10.1016/j.biochi.2023.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a common disorder that affects the spine and is a major cause of lower back pain (LBP). The extracellular matrix (ECM) is the structural foundation of the biomechanical properties of IVD, and its degradation is the main pathological characteristic of IDD. Matrix metalloproteinases (MMPs) are a group of endopeptidases that play an important role in the degradation and remodeling of the ECM. Several recent studies have shown that the expression and activity of many MMP subgroups are significantly upregulated in degenerated IVD tissue. This upregulation of MMPs results in an imbalance of ECM anabolism and catabolism, leading to the degradation of the ECM and the development of IDD. Therefore, the regulation of MMP expression is a potential therapeutic target for the treatment of IDD. Recent research has focused on identifying the mechanisms by which MMPs cause ECM degradation and promote IDD, as well as on developing therapies that target MMPs. In summary, MMP dysregulation is a crucial factor in the development of IDD, and a deeper understanding of the mechanisms involved is needed to develop effective biological therapies that target MMPs to treat IDD.
Collapse
Affiliation(s)
- Xiaosong Zou
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Xingmin Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Song Han
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Lin Wei
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Zhi Zheng
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Yongjie Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Jingguo Xin
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China
| | - Shaokun Zhang
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Engineering Research Center for Spine and Spinal Cord Injury, Changchun, 130021, China.
| |
Collapse
|
2
|
Cartilage Oligomeric Matrix Protein, Diseases, and Therapeutic Opportunities. Int J Mol Sci 2022; 23:ijms23169253. [PMID: 36012514 PMCID: PMC9408827 DOI: 10.3390/ijms23169253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) is an extracellular matrix (ECM) glycoprotein that is critical for collagen assembly and ECM stability. Mutations of COMP cause endoplasmic reticulum stress and chondrocyte apoptosis, resulting in rare skeleton diseases. The bouquet-like structure of COMP allows it to act as a bridging molecule that regulates cellular phenotype and function. COMP is able to interact with many other ECM components and binds directly to a variety of cellular receptors and growth factors. The roles of COMP in other skeleton diseases, such as osteoarthritis, have been implied. As a well-established biochemical marker, COMP indicates cartilage turnover associated with destruction. Recent exciting achievements indicate its involvement in other diseases, such as malignancy, cardiovascular diseases, and tissue fibrosis. Here, we review the basic concepts of COMP and summarize its novel functions in the regulation of signaling events. These findings renew our understanding that COMP has a notable function in cell behavior and disease progression as a signaling regulator. Interestingly, COMP shows distinct functions in different diseases. Targeting COMP in malignancy may withdraw its beneficial effects on the vascular system and induce or aggravate cardiovascular diseases. COMP supplementation is a promising treatment for OA and aortic aneurysms while it may induce tissue fibrosis or cancer metastasis.
Collapse
|
3
|
Guan J, Yuan C, Tian X, Cheng L, Gao H, Yao Q, Wang X, Wu H, Chen Z, Jian F. SPECT Imaging of Acute Disc Herniation by Targeting Integrin α5β1 in Rat Models. Front Neurol 2022; 13:782967. [PMID: 35614922 PMCID: PMC9124789 DOI: 10.3389/fneur.2022.782967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Traditional morphological imaging of intervertebral disc herniation (IVDH) is challenging in early disease diagnosis. Aiming at the early diagnosis of IVD by non-invasive molecular imaging targeting of integrin α5β1, we performed novel imaging in rats with acute IVDH for the first time. Methods Animal models were prepared by conducting an established needle puncture procedure through the normal intervertebral disc (IVD). The disc-injured rats underwent SPECT/CT imaging of the 99mTc-3PisoDGR2 peptide at 1 day to 2 months postinjury. The expression change of integrin α5β1 was determined by anti-integrin α5 and anti-integrin α5β1 immunohistochemistry (IHC). Magnetic resonance imaging (MRI) was performed for comparison during disease progression. The morphological changes of the disc were determined by safranin-O staining. Results Rats with acute IVDH showed gradually increased disc uptake of 99mTc-3PisoDGR2 from 1 to 7 days posttreatment, which was a significantly higher level than that of the normal disks in degenerative diseases. IHC results showed the expression of integrin α5β1 on the surface of annulus fibrosus (AF) cells and nucleus pulposus (NP) cells, which agreed with the uptake data. MRI showed a progressively decreased T2 density and MRI index throughout the investigation. Hematoxylin and eosin (HE) staining and safranin-O staining revealed a disorganized structure of the IVD as well as loss of proteoglycans after puncture. Conclusions The present study demonstrated a good correlation between integrin α5β1 expression and acute disc herniation. The SPECT/CT imaging of 99mTc-3PisoDGR2 targeting integrin α5β1 may diagnose IVDH in an acute phase for early disease management.
Collapse
Affiliation(s)
- Jian Guan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Chenghua Yuan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Xin Tian
- Center for Experimental Animals, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lei Cheng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qingyu Yao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Xinyu Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
- *Correspondence: Zan Chen
| | - Fengzeng Jian
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Spine Center, China International Neuroscience Institute (CHINA-INI), Beijing, China
- Research Center of Spine and Spinal Cord, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- National Center for Neurological Disorders, Xuanwu Hospital, Beijing, China
- Fengzeng Jian
| |
Collapse
|
4
|
COMP and TSP-4: Functional Roles in Articular Cartilage and Relevance in Osteoarthritis. Int J Mol Sci 2021; 22:ijms22052242. [PMID: 33668140 PMCID: PMC7956748 DOI: 10.3390/ijms22052242] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a slow-progressing joint disease, leading to the degradation and remodeling of the cartilage extracellular matrix (ECM). The usually quiescent chondrocytes become reactivated and accumulate in cell clusters, become hypertrophic, and intensively produce not only degrading enzymes, but also ECM proteins, like the cartilage oligomeric matrix protein (COMP) and thrombospondin-4 (TSP-4). To date, the functional roles of these newly synthesized proteins in articular cartilage are still elusive. Therefore, we analyzed the involvement of both proteins in OA specific processes in in vitro studies, using porcine chondrocytes, isolated from femoral condyles. The effect of COMP and TSP-4 on chondrocyte migration was investigated in transwell assays and their potential to modulate the chondrocyte phenotype, protein synthesis and matrix formation by immunofluorescence staining and immunoblot. Our results demonstrate that COMP could attract chondrocytes and may contribute to a repopulation of damaged cartilage areas, while TSP-4 did not affect this process. In contrast, both proteins similarly promoted the synthesis and matrix formation of collagen II, IX, XII and proteoglycans, but inhibited that of collagen I and X, resulting in a stabilized chondrocyte phenotype. These data suggest that COMP and TSP-4 activate mechanisms to protect and repair the ECM in articular cartilage.
Collapse
|
5
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
6
|
Yao LW, Wu LL, Zhang LH, Zhou W, Wu L, He K, Ren JC, Deng YC, Yang DM, Wang J, Mu GG, Xu M, Zhou J, Xiang GA, Ding QS, Yang YN, Yu HG. MFAP2 is overexpressed in gastric cancer and promotes motility via the MFAP2/integrin α5β1/FAK/ERK pathway. Oncogenesis 2020; 9:17. [PMID: 32054827 PMCID: PMC7018958 DOI: 10.1038/s41389-020-0198-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 12/23/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies and its prognosis is extremely poor. This study identifies a novel oncogene, microfibrillar-associated protein 2 (MFAP2) in GC. With integrative reanalysis of transcriptomic data, we found MFAP2 as a GC prognosis-related gene. And the aberrant expression of MFAP2 was explored in GC samples. Subsequent experiments indicated that silencing and exogenous MFAP2 could affect motility of cancer cells. The inhibition of silencing MFAP2 could be rescued by another FAK activator, fibronectin. This process is probably through affecting the activation of focal adhesion process via modulating ITGB1 and ITGA5. MFAP2 regulated integrin expression through ERK1/2 activation. Silencing MFAP2 by shRNA inhibited tumorigenicity and metastasis in nude mice. We also revealed that MFAP2 is a novel target of microRNA-29, and miR-29/MFAP2/integrin α5β1/FAK/ERK1/2 could be an important oncogenic pathway in GC progression. In conclusion, our data identified MFAP2 as a novel oncogene in GC and revealed that miR-29/MFAP2/integrin α5β1/FAK/ERK1/2 could be an important oncogenic pathway in GC progression.
Collapse
Affiliation(s)
- Li-Wen Yao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Lian-Lian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Li-Hui Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Lu Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Ke He
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong, 510317, P.R. China.,Department of Biochemistry, Zhongshan Medical College, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jia-Cai Ren
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Yun-Chao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Dong-Mei Yang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Jing Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Gang-Gang Mu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Jie Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China
| | - Guo-An Xiang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, Guangdong, 510317, P.R. China
| | - Qian-Shan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China. .,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| | - Yan-Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| | - Hong-Gang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China. .,Hubei Key laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P.R. China.
| |
Collapse
|
7
|
Song EK, Jeon J, Jang DG, Kim HE, Sim HJ, Kwon KY, Medina-Ruiz S, Jang HJ, Lee AR, Rho JG, Lee HS, Kim SJ, Park CY, Myung K, Kim W, Kwon T, Yang S, Park TJ. ITGBL1 modulates integrin activity to promote cartilage formation and protect against arthritis. Sci Transl Med 2019; 10:10/462/eaam7486. [PMID: 30305454 DOI: 10.1126/scitranslmed.aam7486] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 09/20/2018] [Indexed: 11/02/2022]
Abstract
Developing and mature chondrocytes constantly interact with and remodel the surrounding extracellular matrix (ECM). Recent research indicates that integrin-ECM interaction is differentially regulated during cartilage formation (chondrogenesis). Integrin signaling is also a key source of the catabolic reactions responsible for joint destruction in both rheumatoid arthritis and osteoarthritis. However, we do not understand how chondrocytes dynamically regulate integrin signaling in such an ECM-rich environment. Here, we found that developing chondrocytes express integrin-β-like 1 (Itgbl1) at specific stages, inhibiting integrin signaling and promoting chondrogenesis. Unlike cytosolic integrin inhibitors, ITGBL1 is secreted and physically interacts with integrins to down-regulate activity. We observed that Itgbl1 expression was strongly reduced in the damaged articular cartilage of patients with osteoarthritis (OA). Ectopic expression of Itgbl1 protected joint cartilage against OA development in the destabilization of the medial meniscus-induced OA mouse model. Our results reveal ITGBL1 signaling as an underlying mechanism of protection against destructive cartilage disorders and suggest the potential therapeutic utility of targeting ITGBL1 to modulate integrin signaling in human disease.
Collapse
Affiliation(s)
- Eun Kyung Song
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Jimin Jeon
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea.,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Gil Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ha Eun Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyo Jung Sim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Keun Yeong Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sofia Medina-Ruiz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Hyun-Jun Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ah Reum Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jun Gi Rho
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chan Young Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea. .,Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea.,CIRNO, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea. .,Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
8
|
Zhang Y, Wang F, Bao L, Li J, Shi Z, Wang J. Cyclic hydrostatic compress force regulates apoptosis of meniscus fibrochondrocytes via integrin α5β1. Physiol Res 2019; 68:639-649. [DOI: 10.33549/physiolres.934088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Meniscus is a semilunar fibrocartilaginous tissue, serving important roles in load buffering, stability, lubrication, proprioception, and nutrition of the knee joint. The degeneration and damage of meniscus has been proved to be a risk factor of knee osteoarthritis. Mechanical stimulus is a critical factor of the development, maintenance and repair of the meniscus fibrochondrocytes. However, the mechanism of the mechano-transduction process remains elusive. Here we reported that cyclic hydrostatic compress force (CHCF) treatment promotes proliferation and inhibits apoptosis of the isolated primary meniscus fibrochondrocytes (PMFs), via upregulating the expression level of integrin α5β1. Consequently, increased phosphorylated-ERK1/2 and phosphorylated-PI3K, and decreased caspase-3 were detected. These effects of CHCF treatment can be abolished by integrin α5β1 inhibitor or specific siRNA transfection. These data indicate that CHCF regulates apoptosis of PMFs via integrin α5β1-FAK-PI3K/ERK pathway, which may be an important candidate approach during meniscus degeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Wang
- Department of orthopedic surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Zhao X, Li Z, Liang S, Li S, Ren J, Li B, Zhu Y, Xia M. Different epidermal growth factor receptor signaling pathways in neurons and astrocytes activated by extracellular matrix after spinal cord injury. Neurochem Int 2019; 129:104500. [PMID: 31295509 DOI: 10.1016/j.neuint.2019.104500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/25/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) is a serious central nervous system (CNS) trauma that results in permanent and severe disability. The extracellular matrix (ECM) can affect the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) by interacting with the ERK integrin subunits. In this study, we built a model of SCI with glial fibrillary acidic protein-green fluorescent protein (GFAP-GFP) and thymus cell antigen 1-yellow fluorescent protein-H (Thy1-YFPH) in mice that express specific transgenes in their astrocytes or neurons. Then, we collected spinal cord neurons or astrocytes by fluorescence-activated cell sorting (FACS). In this way, we investigated the SCI-induced phosphorylation of ERK1/2 and epidermal growth factor receptor (EGFR) in neurons and astrocytes, and we discovered that the SCI-induced EGFR signaling pathways differed between neurons and astrocytes. In the present study, we found that the Src-dependent phosphorylation of EGFR induced by SCI occurred only in neurons, not in astrocytes. This phenomenon may be due to the involvement of Thy-1, which promoted the binding between Src and EGFR in neurons after SCI. In addition, the expression of the integrin subunits after SCI differed between neurons and astrocytes. Our present study shows that the EGFR signaling pathway triggered by SCI in neurons differed from the EGFR signaling pathway triggered in astrocytes, a finding that may help to pave the way for clinical trials of therapies that inhibit EGFR signaling pathways after SCI.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China; Department of Operating Room, First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Zexiong Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Shanshan Liang
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Shuai Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Jiaan Ren
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Baoman Li
- Practical Teaching Center, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China. http://
| | - Yue Zhu
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China. http://
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
10
|
Computed tomography-guided sub-end plate injection of pingyangmycin for a novel rabbit model of slowly progressive disc degeneration. Spine J 2019; 19:e6-e18. [PMID: 25862504 DOI: 10.1016/j.spinee.2015.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/06/2015] [Accepted: 04/02/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Different animal models are used in disc degenerative disease research by now. To our knowledge, a functional animal model that mimics ischemic and slowly progressive disc degeneration of humans does not exist. STUDY DESIGN This is an experimental animal study of disc degeneration. PURPOSE The purpose of this study was to establish an ischemic and slowly progressive intervertebral disc (IVD) degeneration model with an injection of pingyangmycin (PYM) into subchondral bone adjacent to the disc, using bone marrow needle guided by computed tomography (CT) scan. METHODS The subchondral bone adjacent to the lumbar IVDs (from L3-L4 to L5-L6) of 18 rabbits was randomly injected with 3 mL PYM solution (1.5 mg/mL PYM), 3 mL phosphate-buffered saline (vehicle control), or exteriorized but not injected with anything (sham), with using bone marrow needle guided by CT scan. The degenerative process was investigated by using radiography and magnetic resonance imaging at 1, 3, and 6 months postoperatively, combined with histological scoring, immunohistochemistry, and real-time polymerase chain reaction analysis. RESULTS Significant disc space narrowing was observed at 6 months in the discs adjacent to the subchondral bone injected with PYM, compared with the control groups (p<.05). The magnetic resonance imaging assessment also demonstrated a progressive loss of T2-weighted signal intensity postoperatively. The histological score increased significantly compared with that of the control groups from 3 months to the end point (p<.05). The bone tissue area of the end plate increased significantly at the end point, compared with that of the control groups (p<.05). The results of molecular analysis showed significant increase of matrix metalloproteinase-3, a disintegrin and metalloproteinase with thrombospondin motif-5, and marked reduction of aggrecan and Type II collagen after 3 months at the messenger RNA levels in the discs of PYM group (p<.05). The von Willebrand factor expression of PYM group also showed a significant reduction after 1 month (p<.05). CONCLUSIONS Percutaneous injection of PYM into the subchondral bone adjacent to the lumbar IVDs of rabbits, using bone marrow needle guided by CT scan, can result in ischemic and slowly progressive disc degeneration model, which mimics the onset of human disc degeneration.
Collapse
|
11
|
MicroRNA-132 upregulation promotes matrix degradation in intervertebral disc degeneration. Exp Cell Res 2017; 359:39-49. [DOI: 10.1016/j.yexcr.2017.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 08/05/2017] [Indexed: 11/24/2022]
|
12
|
The role of angiopoietin-2 in nucleus pulposus cells during human intervertebral disc degeneration. J Transl Med 2017; 97:971-982. [PMID: 28394321 DOI: 10.1038/labinvest.2017.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/31/2022] Open
Abstract
Although evidence shows that intervertebral disc degeneration is generally characterized by angiogenesis, the role of angiopoietin has not been investigated. This study examined the presence of angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) within the native intervertebral disc (IVD) and elucidated their functions in the regulation of nucleus pulposus (NP) cells. Initial investigation of uncultured NP tissue revealed that Ang-1 and Ang-2 were expressed by native NP cells. Ang-2 expression was significantly increased in infiltrated and degenerate samples relative to normal samples. The ratio of Ang-2/Ang-1 in tissues from patients increased markedly with increasing age and level of degeneration of the IVD. The ratio of both Ang-2/Ang-1 mRNA and protein increased over time when cells were subjected to constant pressure at 1 Mpa in vitro. Our findings indicate that Ang-2 plays a role in suppressing cell adhesion and viability, and promotes the apoptosis of NP cells and that Ang-2 can inhibit the pathways stimulated by Ang-1 and fibronectin. Ang-2 release during IVD degeneration causes higher ratio of Ang-2 to Ang-1, further inhibits NP cell viability and adhesion, promoting apoptosis by blocking PI3K/Akt signaling. The present study therefore provides new insights into the role of the angiopoietin-Tie system in the pathogenesis of IVD degeneration.
Collapse
|
13
|
Tsukahara T, Hamouda N, Utsumi D, Matsumoto K, Amagase K, Kato S. G protein-coupled receptor 35 contributes to mucosal repair in mice via migration of colonic epithelial cells. Pharmacol Res 2017. [PMID: 28648739 DOI: 10.1016/j.phrs.2017.06.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptor 35 (GPR35), a receptor for lysophosphatidic acid, is highly expressed in the gastrointestinal tract. Recently, GPR35 has been implicated in the onset of inflammatory bowel disease (IBD), but its role in physiological and pathological processes in the colon remains undefined. In this study, we investigated the contribution of GPR35-mediated signalling to mucosal repair of colonic epithelium in IBD. GPR35 function was examined in a wound healing model, using young adult mouse colon epithelium (YAMC) cells, and in a dextran sulphate sodium (DSS)-induced mouse model of colitis. Cell proliferation, mRNA expression, extracellular signal-regulated kinase (ERK) activation, and protein localization were determined by MTT assay, quantitative RT-PCR, western blotting, and immunohistochemistry, respectively. GPR35 agonists (YE120, zaprinast, and pamoic acid) promoted wound repair in a concentration-dependent manner independently of cell proliferation, whereas a specific GPR35 antagonist CID2745687, forskolin, and pertussis toxin reversed the YE120-induced effect. YE120 increased the mRNA expression of fibronectin and its receptor integrin α5, and ERK1/2 phosphorylation, but these responses were attenuated by CID2745687 and forskolin. Furthermore, the severity of DSS-induced colitis was significantly reduced by daily injections of pamoic acid via upregulation of fibronectin and integrin α5 in the colonic epithelium. GPR35 signalling promotes mucosal repair by inducing fibronectin and integrin α5 expression, coupling to Gi protein, and activating ERK1/2 in colonic epithelial cells. These findings define GPR35 as a candidate therapeutic target in IBD.
Collapse
Affiliation(s)
- Takuya Tsukahara
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho Misasagi Yamashina-ku, Kyoto, Japan.
| | - Nahla Hamouda
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho Misasagi Yamashina-ku, Kyoto, Japan.
| | - Daichi Utsumi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho Misasagi Yamashina-ku, Kyoto, Japan.
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho Misasagi Yamashina-ku, Kyoto, Japan.
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho Misasagi Yamashina-ku, Kyoto, Japan.
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, 5 Nakauchi-cho Misasagi Yamashina-ku, Kyoto, Japan.
| |
Collapse
|
14
|
|
15
|
Regulation of human nucleus pulposus cells by peptide-coupled substrates. Acta Biomater 2017; 55:100-108. [PMID: 28433788 DOI: 10.1016/j.actbio.2017.04.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/20/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
Nucleus pulposus (NP) cells are derived from the notochord and differ from neighboring cells of the intervertebral disc in phenotypic marker expression and morphology. Adult human NP cells lose this phenotype and morphology with age in a pattern that contributes to progressive disc degeneration and pathology. Select laminin-mimetic peptide ligands and substrate stiffnesses were examined for their ability to regulate human NP cell phenotype and biosynthesis through the expression of NP-specific markers aggrecan, N-cadherin, collagen types I and II, and GLUT1. Peptide-conjugated substrates demonstrated an ability to promote expression of healthy NP-specific markers, as well as increased biosynthetic activity. We show an ability to re-express markers of the juvenile NP cell and morphology through control of peptide presentation and stiffness on well-characterized polyacrylamide substrates. NP cells cultured on surfaces conjugated with α3 integrin receptor peptides P4 and P678, and on α2, α5, α6, β1 integrin-recognizing peptide AG10, show increased expression of aggrecan, N-cadherin, and types I and II collagen, suggesting a healthier, more juvenile-like phenotype. Multi-cell cluster formation was also observed to be more prominent on peptide-conjugated substrates. These findings indicate a critical role for cell-matrix interactions with specific ECM-mimetic peptides in supporting and maintaining a healthy NP cell phenotype and bioactivity. STATEMENT OF SIGNIFICANCE NP cells reside in a laminin-rich environment that deteriorates with age, including a loss of water content and changes in the extracellular matrix (ECM) structure that may lead to the development of a degenerated IVD. There is great interest in methods to re-express healthy, biosynthetically active NP cells using laminin-derived biomimetic peptides toward the goal of using autologous cell sources for tissue regeneration. Here, we describe a novel study utilizing several laminin mimetic peptides conjugated to polyacrylamide gels that are able to support an immature, healthy NP phenotype after culture on "soft" peptide gels. These findings can support future studies in tissue regeneration where cells may be directed to a desired regenerative phenotype using niche-specific ECM peptides.
Collapse
|
16
|
Gao G, He J, Nong L, Xie H, Huang Y, Xu N, Zhou D. Periodic mechanical stress induces the extracellular matrix expression and migration of rat nucleus pulposus cells by upregulating the expression of intergrin α1 and phosphorylation of downstream phospholipase Cγ1. Mol Med Rep 2016; 14:2457-64. [PMID: 27484337 PMCID: PMC4991676 DOI: 10.3892/mmr.2016.5549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 07/08/2016] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disk degeneration (IDD) is a major cause of low back pain and an important socioeconomic burden. Degradation of the extracellular matrix (ECM) of nucleus pulposus (NP) cells in the interverterbal disk is important for IDD. Stress of a suitable frequency and amplitude promotes the synthesis of the ECM of NP cells, however, the associated mechanisms remain to be fully elucidated The present study aimed to investigate the effect of integrin α1 on the migration and ECM synthesis of NP cells under soft periodic mechanical stress. Rat NP cells were isolated and plated onto slides, and were then treated with or without the use of a periodic mechanical stress system. The expression levels of integrin α1, α5 and αv, ECM collagen 2A1 (Col2A1) and aggrecan, and the phosphorylation of phospholipase C-γ1 (PLCγ1) were measured using reverse transcription-quantitative polymerase chain reaction and western blot analyses. Cell migration was assayed using a scratch experiment. The results showed that exposure to periodic mechanical stress significantly induced the mRNA expression levels of Col2A1 and aggrecan, cell migration, mRNA expression of integrin α1 and phosphorylation of PLC-γ1 of the NP, compared with the control (P<0.05). Inhibition of the PLCγ1 protein by U73122 significantly decreased the ECM expression under periodic mechanical stress (P<0.05). Small interfering RNA-mediated integrin α1 gene knockdown suppressed the mRNA expression levels of Col2A1 and aggrecan, and suppressed the migration and phosphorylation of PLCγ1 of the NP cells under periodic mechanical stress, compared with the control (P<0.05). In conclusion, periodic mechanical stress induced ECM expression and the migration of NP cells via upregulating the expression of integrin α1 and the phosphorylation of downstream PLCγ1. These findings provide novel information to aid the understanding of the pathogenesis and development of IDD.
Collapse
Affiliation(s)
- Gongming Gao
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Jin He
- Department of Orthopedics, Jintan People's Hospital Affiliated to Jiangsu University, Jintan, Jiangsu 213200, P.R. China
| | - Luming Nong
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hua Xie
- Department of Orthopedics, Jintan People's Hospital Affiliated to Jiangsu University, Jintan, Jiangsu 213200, P.R. China
| | - Yongjing Huang
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Nanwei Xu
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Dong Zhou
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
17
|
The Involvement of Protease Nexin-1 (PN1) in the Pathogenesis of Intervertebral Disc (IVD) Degeneration. Sci Rep 2016; 6:30563. [PMID: 27460424 PMCID: PMC4962060 DOI: 10.1038/srep30563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
Protease nexin-1 (PN-1) is a serine protease inhibitor belonging to the serpin superfamily. This study was undertaken to investigate the regulatory role of PN-1 in the pathogenesis of intervertebral disk (IVD) degeneration. Expression of PN-1 was detected in human IVD tissue of varying grades. Expression of both PN-1 mRNA and protein was significantly decreased in degenerated IVD, and the expression levels of PN-1 were correlated with the grade of disc degeneration. Moreover, a decrease in PN-1 expression in primary NP cells was confirmed. On induction by IL-1β, the expression of PN-1 in NP cells was decreased at day 7, 14, and 21, as shown by western blot analysis and immunofluorescence staining. PN-1 administration decreased IL-1β-induced MMPs and ADAMTS production and the loss of Agg and Col II in NP cell cultures through the ERK1/2/NF-kB signaling pathway. The changes in PN-1 expression are involved in the pathogenesis of IVD degeneration. Our findings indicate that PN-1 administration could antagonize IL-1β-induced MMPs and ADAMTS, potentially preventing degeneration of IVD tissue. This study also revealed new insights into the regulation of PN-1 expression via the ERK1/2/NF-kB signaling pathway and the role of PN-1 in the pathogenesis of IVD degeneration.
Collapse
|
18
|
Takahashi T, Uehara H, Ogawa H, Umemoto H, Bando Y, Izumi K. Inhibition of EP2/EP4 signaling abrogates IGF-1R-mediated cancer cell growth: involvement of protein kinase C-θ activation. Oncotarget 2016; 6:4829-44. [PMID: 25638159 PMCID: PMC4467118 DOI: 10.18632/oncotarget.3104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/28/2014] [Indexed: 01/08/2023] Open
Abstract
Associations between growth factor receptor-mediated cell signaling and cancer cell growth have been previously characterized. Receptors for prostaglandin E2, such as EP2, and EP4, play roles in cancer growth, progression and invasion. Thus, we examined the interactions between EP2/EP4- and IGF-1R-mediated cellular signaling in human pancreatic cancer cells. Selective antagonists against EP2 and EP4 abrogated IGF-1-stimulated cell growth and suppressed MEK/ERK phosphorylation. In subsequent experiments, phospho-antibody arrays indicated increased phosphorylation levels of protein kinase C-θ (PKC-θ) at the Thr538 position following the inhibition of EP2/EP4-mediated signaling. Inhibition of PKC-θ activity impaired cell viability compared with EP2/EP4-antagonized IGF-1-stimulated cells. PKC-θ kinase MAP4K3, which plays a pivotal role in PKC-θ activation, also affected growth signaling in the presence of EP2/EP4 antagonists. Administration of EP2 and EP4 antagonists significantly inhibited the growth of an orthotopic xenograft of IGF-1-secreting pancreatic cancer cells, with increased phospho-PKC-θ and decreased phospho-ERK. Clinico-pathological analyses showed that 17.4% of surgical pancreatic cancer specimens were quadruple-positive for IGF-1R, EP2 (or EP4), MAP4K3, and PKC-θ. These results indicate a novel signaling crosstalk between EP2/EP4 and IGF-1R in cancer cells, and suggest that the MAP4K3-PKC-θ axis is central and could be exploited as a molecular target for cancer therapy.
Collapse
Affiliation(s)
- Tetsuyuki Takahashi
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Hisanori Uehara
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Hitomi Umemoto
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Yoshimi Bando
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Keisuke Izumi
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| |
Collapse
|
19
|
Heme oxygenase-1 attenuates IL-1β induced alteration of anabolic and catabolic activities in intervertebral disc degeneration. Sci Rep 2016; 6:21190. [PMID: 26877238 PMCID: PMC4753421 DOI: 10.1038/srep21190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/19/2016] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is characterized by disordered extracellular matrix (ECM) metabolism, implicating subdued anabolism and enhanced catabolic activities in the nucleus pulposus (NP) of discs. Pro-inflammatory cytokines such as interleukin-1β (IL-1β) are considered to be potent mediators of ECM breakdown. Hemeoxygenase-1 (HO-1) has been reported to participate in cellular anti-inflammatory processes. The purpose of this study was to investigate HO-1 modulation of ECM metabolism in human NP cells under IL-1β stimulation. Our results revealed that expression of HO-1 decreased considerably during IDD progression. Induction of HO-1 by cobalt protoporphyrin IX attenuated the inhibition of sulfate glycosaminoglycan and collagen type II (COL-II) synthesis and ameliorated the reduced expressions of aggrecan, COL-II, SOX-6 and SOX-9 mediated by IL-1β. Induction of HO-1 also reversed the effect of IL-1β on expression of the catabolic markers matrix metalloproteinases-1, 3, 9 and 13. This was combined with inhibition of the activation of mitogen-activated protein kinase signaling. These findings suggest that HO-1 might play a pivotal role in IDD, and that manipulating HO-1 expression might mitigate the impairment of ECM metabolism in NP, thus potentially offering a novel therapeutic approach to the treatment of IDD.
Collapse
|
20
|
Wang WJ, Yu XH, Wang C, Yang W, He WS, Zhang SJ, Yan YG, Zhang J. MMPs and ADAMTSs in intervertebral disc degeneration. Clin Chim Acta 2015; 448:238-46. [PMID: 26162271 DOI: 10.1016/j.cca.2015.06.023] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 12/22/2022]
Abstract
Intervertebral disc degeneration (IDD) is the most common diagnosis in patients with low back pain, a leading cause of musculoskeletal disability worldwide. The major components of extracellular matrix (ECM) within the discs are type II collagen (Col II) and aggrecan. Excessive destruction of ECM, especially loss of Col II and aggrecan, plays a critical role in promoting the occurrence and development of IDD. Matrix metalloproteinases (MMPs) and a disintegrin and metalloprotease with thrombospondin motifs (ADAMTSs) are primary enzymes that degrade collagens and aggrecan. There is a large and growing body of evidence that many members of MMPs and ADAMTSs are highly expressed in degenerative IVD tissue and cells, and are closely involved in ECM breakdown and the process of disc degeneration. In contrast, targeting these enzymes has shown promise for promoting ECM repair and mitigating disc regeneration. In the current review, after a brief description regarding the biology of MMPs and ADAMTSs, we mainly focus on their expression profiles, roles and therapeutic potential in IDD. A greater understanding of the catabolic pathways involved in IDD will help to develop potential prophylactic or regenerative biological treatment for degenerative disc disease in the future.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China.
| | - Xiao-Hua Yu
- Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Wang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wei Yang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Si He
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Shu-Jun Zhang
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Guo Yan
- Department of Spine Surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jian Zhang
- Department of Hand and Micro-surgery, the First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
21
|
Liu Z, Zhou W, Tangl S, Liu S, Xu X, Rausch-Fan X. Potential mechanism for osseointegration of dental implants in Zucker diabetic fatty rats. Br J Oral Maxillofac Surg 2015; 53:748-53. [PMID: 26093969 DOI: 10.1016/j.bjoms.2015.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 05/28/2015] [Indexed: 11/15/2022]
Abstract
Our aim was to investigate the impact of diabetes mellitus and different durations of glycaemic control on early osseointegration of dental implants, and to explore possible mechanisms by measuring the expression of integrin α5β1 and fibronectin in bone around the implant. We divided 33 male Zucker diabetic fatty (ZDF) rats aged 3 months into 3 groups. The first group comprised diabetic rats with dental implants (controls); the second group was treated with insulin and implants were placed simultaneously (exenatide alone group); and the third group was treated with insulin until the serum glucose was at a constant concentration (< 16 mmol/L), and implants were then inserted (exenatide+normal glucose group). Rats were killed 7, 14, 30, and 60 days after implants had been inserted. The expression of integrin α5β1 and fibronectin in bone around the implants was detected by immunohistochemical analysis in each group. The expression in the exenatide+normal glucose group was stronger than in the other 2 groups. Fourteen days after implantation, expression of integrin α5β1 in the exenatide alone group was significantly stronger than that in the control group (p=0.027), and 60 days after implantation the expression of fibronectin in the exenatide alone group was also significantly stronger than that among the controls (p=0.001). Both fibronectin and integrin α5β1 participate in the adhesion of osteoblasts and act as signals at the bone/implant interface. Diabetes interferes with the osseointegration of implants by deferring expression of fibronectin and integrin α5β1.
Collapse
Affiliation(s)
- Zhonghao Liu
- Department of Implant Dentistry, School of Stomatology, Shandong University, No.44-1 West culture road, Lixia District, Jinan 250012, P.R. China; Department of Dental Implantology, Yantai Stomatological Hospital, No. 142, North Great Str., Zhifu District, Yantai 264008, P.R. China
| | - Wenjuan Zhou
- Department of Dental Implantology, Yantai Stomatological Hospital, No. 142, North Great Str., Zhifu District, Yantai 264008, P.R. China; Orthodontics & Periodontology Research Unit, Bernhard-Gottlieb-University Clinic of Dentistry, Sensengasse 2a-1090 Vienna, Austria
| | - Stefan Tangl
- Department of Oral Surgery, Medical University of Vienna, Sensengasse 2a-1090 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Shutai Liu
- Department of Dental Implantology, Yantai Stomatological Hospital, No. 142, North Great Str., Zhifu District, Yantai 264008, P.R. China
| | - Xin Xu
- Department of Implant Dentistry, School of Stomatology, Shandong University, No.44-1 West culture road, Lixia District, Jinan 250012, P.R. China.
| | - Xiaohui Rausch-Fan
- Department of Dental Implantology, Yantai Stomatological Hospital, No. 142, North Great Str., Zhifu District, Yantai 264008, P.R. China; Orthodontics & Periodontology Research Unit, Bernhard-Gottlieb-University Clinic of Dentistry, Sensengasse 2a-1090 Vienna, Austria
| |
Collapse
|
22
|
Liu H, Pan H, Yang H, Wang J, Zhang K, Li X, Wang H, Ding W, Li B, Zheng Z. LIM mineralization protein-1 suppresses TNF-α induced intervertebral disc degeneration by maintaining nucleus pulposus extracellular matrix production and inhibiting matrix metalloproteinases expression. J Orthop Res 2015; 33:294-303. [PMID: 25336289 DOI: 10.1002/jor.22732] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/20/2014] [Indexed: 02/04/2023]
Abstract
Imbalanced metabolism of Nucleus pulposus (NP) extracellular matrix (ECM) is closely correlated to Intervertebral Disc Degenerative Disease. LIM mineralization protein-1 (LMP-1) has been proven to induce sulfated glycosaminoglycan (sGAG) production in NP and have an anti-inflammatory effect in pre-osteoclast. However, whether it has any effect on the NP ECM production and degradation under inflammatory stimulation has not been studied. In the current study, a TNF-α induced cell model was established in vitro. Lentivirus encoding LMP-1 (LV-LMP-1) and short heparin LMP-1 (LV-shLMP-1) were constructed to overexpress and knockdown LMP-1 expression in NP cells. LMP-1 mRNA level was regulated in a dose-dependent manner after transfection. LV-LMP-1 increased whereas LV-shLMP-1 decreased collagen II, aggrecan, versican expression, and sGAG production. LV-LMP-1 abolished while LV-shLMP-1 aggravated TNF-α mediated down-regulation of the above matrix genes via ERK1/2 activation. Moreover, LV-LMP-1 abrogated TNF-α induced MMP-3 and MMP-13 expression via inhibiting p65 translocation and MMP-3 and MMP-13 promoter activity. These results indicated that LMP-1 had an ECM production maintenance effect under inflammatory stimulation. This effect was via up-regulation of matrix genes expression at least partially through ERK1/2 activation, and down-regulation of MMPs expression through NF-κB inhibition.
Collapse
Affiliation(s)
- Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58, Zhongshan 2nd Road, 510080, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
STUDY DESIGN IL-1β (interleukin-1β) can activate human nucleus pulposus cells with or without nuclear factor kappa B (NF-κB) inhibition. We undertook a descriptive and mechanistic investigation of catabolic effects of NF-κB signaling pathway in intervertebral disc degenerative changes. OBJECTIVE To clarify the mediatory role of NF-κB signaling pathway in human intervertebral disc degeneration (IDD). SUMMARY OF BACKGROUND DATA IDD is a major cause of lower back pain, but the molecular mechanism behind this process is poorly understood. NF-κB is a family of transcription factors that play a central role in mediating cellular response to damage, stress, and inflammation. Growing evidence implicates chronic activation of NF-κB in many degenerative diseases, but its role in IDD has not been adequately explored. METHODS Human nucleus pulposus cells in monolayer culture were exposed to IL-1β, which increases matrix-degrading enzyme activity in the nucleus pulposus, with or without NF-κB inhibition by BAY11-7082; ribonucleic acid was isolated for real-time polymerase chain reaction analysis of gene expression, Western blot analysis was performed to detect the changes of protein expression. RESULTS NF-κB specific inhibitor BAY11-7082 significantly inhibited IL-1β-induced NF-κB activation. IL-1β-dependent gene upregulation of matrix metalloproteinase (MMP)-3, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and ADAMTS-5 was significantly reduced by NF-κB inhibition. The decreased gene expression of aggrecan and type II collagen, induced by IL-1β was also reversed by BAY11-7082. NF-κB inhibition reversed the IL-1β-induced changes of protein expression of MMP-3, MMP-9, MMP-13, ADAMTS-4, ADAMTS-5, aggrecan, and type II collagen. CONCLUSION These findings demonstrate that the NF-κB signaling pathway is a key mediator of IDD and represents a therapeutic target for mitigating disc degenerative diseases. LEVEL OF EVIDENCE N/A.
Collapse
|
24
|
Abstract
STUDY DESIGN Animal experimental study. OBJECTIVE To establish a slowly progressive and reproducible intervertebral disc degeneration model and determine the performance of T1ρ magnetic resonance imaging in the evaluation of disc degeneration. SUMMARY OF BACKGROUND DATA Recently, one of the hotspots of research efforts was related to management of early stage of disc degeneration. To our knowledge, a functional animal model that mimics ischemic and slowly progressive disc degeneration of humans does not exist. METHODS The subchondral bone adjacent to the lumbar intervertebral discs (from L3-L4 to L6-L7) of 8 rhesus monkeys was randomly injected with 4 mL of Pingyangmycin (PYM) solution (1.5 mg/mL, PYM), or 4 mL of phosphate buffered saline (Vehicle control), or exteriorized but not injected anything (Sham), respectively. The degenerative process was investigated by using radiography and T1ρ magnetic resonance imaging at 1, 3, 6, 9, 12, and 15 months postoperatively. Histological scoring, immunohistochemistry, and real-time polymerase chain reaction were performed at 15 months. RESULTS The mean T1ρ values of nucleus pulposus and annulus fibrosus in the PYM group significantly decreased after 3 and 6 months, respectively, followed by slow decrease, and the histological score was significantly higher at 15 months, compared with the control groups. The results of molecular analysis revealed a significant increase matrix metalloprotease-3, A disintegrin and metalloproteinase with thrombospondin motifs -5, tumor necrosis factor α, interleukin-1β, interleukin-6 expressions, and marked reduction in aggrecan, type II collagen, von Willebrand factor expressions at the messenger RNA levels in the PYM group. Spearman correlation analysis of Pfirrmann grades showed significantly inverse correlation with T1ρ values of nucleus pulposus and annulus fibrosus (r = -0.634, -0.617, respectively, P < 0.01). CONCLUSION Injection of PYM into the subchondral bone adjacent to the lumbar intervertebral discs of rhesus monkeys can results in mild, slowly progressive disc degeneration, which mimics the onset of human disc degeneration, and the T1ρ magnetic resonance imaging is suited for evaluating intervertebral disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
25
|
Wei F, Zhong R, Zhou Z, Wang L, Pan X, Cui S, Zou X, Gao M, Sun H, Chen W, Liu S. In vivo experimental intervertebral disc degeneration induced by bleomycin in the rhesus monkey. BMC Musculoskelet Disord 2014; 15:340. [PMID: 25298000 PMCID: PMC4210630 DOI: 10.1186/1471-2474-15-340] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 10/03/2014] [Indexed: 11/23/2022] Open
Abstract
Background Recently, biological therapies for early intervention of degenerative disc disease have been introduced and developed; however, a functional animal model that mimics slowly progressive disc degeneration of humans does not exist. The objective of this study was to establish a slowly progressive and reproducible intervertebral disc (IVD) degeneration model. Methods The subchondral bone adjacent to the lumbar IVDs (L3/4 and L5/6) of ten rhesus monkeys was randomly injected with 4 ml bleomycin solution (1.5 mg/ml), or 4 ml phosphate buffer saline (PBS) per segment as control, respectively. The degenerative process was investigated by using radiography and T1ρ MR imaging at 1, 3, 6, 9, 12 and 15 months postoperatively. Histological scoring, Sulfated Glycosaminoglycans (GAGs) analysis and real-time PCR were performed at 15 months. The correlation between histological score, GAGs and T1ρ values were also analyzed. Results The results showed that the mean T1ρ values of nucleus pulposus (NP) and annulus fibrosus (AF) in the bleomycin group significantly decreased after 3 and 6 months respectively, followed by slowly decrease until at 15 months. At 15 months, the histological scores was significantly higher, and the GAGs of NP was significantly lower in the bleomycin group, compared with the control group (P < 0.05). The results of real-time PCR revealed a significant increase in matrix metalloprotease (MMP)-3, A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5, tumor necrosis factor α, interleukin-1β, interleukin-6 expressions, transforming growth factor (TGF-β1) and marked reduction in aggrecan, type II collagen, von willebrand factor (vWF) expressions at the mRNA levels in the bleomycin group. Spearman correlation analysis showed a strong positive correlation between GAGs and T1ρ values of NP (r =0.740, P < 0.01), and a significant inverse correlation between histological score and T1ρ values of NP and AF (r = -0.761, r = -0.729, respectively, P < 0.01). Conclusions Injection of bleomycin into the subchondral bone adjacent to the lumbar IVDs of rhesus monkeys can results in mild, slowly progressive disc degeneration, which mimics the onset of human disc degeneration. T1ρ MR imaging is an effective and noninvasive technique for assessment of early stage disc degeneration. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-340) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shaoyu Liu
- Department of Spine Surgery, the First Affiliated Hospital and Orthopedic Research Institute of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
26
|
Almonte-Becerril M, Costell M, Kouri JB. Changes in the integrins expression are related with the osteoarthritis severity in an experimental animal model in rats. J Orthop Res 2014; 32:1161-6. [PMID: 24839051 DOI: 10.1002/jor.22649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/24/2014] [Indexed: 02/04/2023]
Abstract
We identify changes in the expression and localization of α5, α4, and α2 integrins during osteoarthritis (OA) pathogenesis in a rat experimental model. The changes were concomitant with variations in the extracellular matrix (ECM) content and the increase of metalloproteinases (MMPs) activity during OA pathogenesis, which were analyzed by immunofluorescence and Western blot assays. Our results showed an increased expression of α5 and α2 integrins at OA late stages, which was co-related with changes in the ECM content, as a consequence of the MMPs activity. In addition, this is the first report that has shown the presence of α4 integrin since OA early stages, which was co-related with the loss of proteoglycans and clusters formation. However, at late OA stages, the increased expression of α4 integrin in the middle and deep zones of the cartilage was also co-related with the abnormal endochondral ossification of the cartilage through its interaction with osteopontin. Finally, we conclude that ECM-chondrocytes interaction through specific cell receptors is essential to maintain the cartilage homeostasis. However, due to integrins cell signaling is ligand-dependent; changes in the ECM contents could induce activation of either anabolic or catabolic processes, which limits the reparative capacity of chondrocytes, favoring OA severity.
Collapse
Affiliation(s)
- Maylin Almonte-Becerril
- Departamento de Infectómica y Patogénesis Molecular, Centro de investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, DF, México
| | | | | |
Collapse
|
27
|
Targeting the extracellular matrix: Matricellular proteins regulate cell–extracellular matrix communication within distinct niches of the intervertebral disc. Matrix Biol 2014; 37:124-30. [DOI: 10.1016/j.matbio.2014.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 01/01/2023]
|
28
|
Xia M, Zhu Y. Fibronectin enhances spinal cord astrocyte proliferation by elevating P2Y1 receptor expression. J Neurosci Res 2014; 92:1078-90. [PMID: 24687862 DOI: 10.1002/jnr.23384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 02/16/2014] [Accepted: 02/19/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Maosheng Xia
- Department of Orthopaedics; The First Hospital of China Medical University; Shengyang People's Republic of China
| | - Yue Zhu
- Department of Orthopaedics; The First Hospital of China Medical University; Shengyang People's Republic of China
| |
Collapse
|
29
|
Tran CM, Schoepflin ZR, Markova DZ, Kepler CK, Anderson DG, Shapiro IM, Risbud MV. CCN2 suppresses catabolic effects of interleukin-1β through α5β1 and αVβ3 integrins in nucleus pulposus cells: implications in intervertebral disc degeneration. J Biol Chem 2014; 289:7374-87. [PMID: 24464580 DOI: 10.1074/jbc.m113.526111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The objective of the study was to examine the regulation of CCN2 by inflammatory cytokines, IL-1β, and TNF-α and to determine whether CCN2 modulates IL-1β-dependent catabolic gene expression in nucleus pulposus (NP) cells. IL-1β and TNF-α suppress CCN2 mRNA and protein expression in an NF-κB-dependent but MAPK-independent manner. The conserved κB sites located at -93/-86 and -546/-537 bp in the CCN2 promoter mediated this suppression. On the other hand, treatment of NP cells with IL-1β in combination with CCN2 suppressed the inductive effect of IL-1β on catabolic genes, including MMP-3, ADAMTS-5, syndecan 4, and prolyl hydroxylase 3. Likewise, silencing of CCN2 in human NP cells resulted in elevated basal expression of several catabolic genes and inflammatory cytokines like IL-6, IL-4, and IL-12 as measured by gene expression and cytokine protein array, respectively. Interestingly, the suppressive effect of CCN2 on IL-1β was independent of modulation of NF-κB signaling. Using disintegrins, echistatin, and VLO4, peptide inhibitors to αvβ3 and α5β1 integrins, we showed that CCN2 binding to both integrins was required for the inhibition of IL-1β-induced catabolic gene expression. It is noteworthy that analysis of human tissues showed a trend of altered expression of these integrins during degeneration. Taken together, these results suggest that CCN2 and inflammatory cytokines form a functional negative feedback loop in NP cells that may be important in the pathogenesis of disc disease.
Collapse
Affiliation(s)
- Cassie M Tran
- From the Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | | | | | |
Collapse
|
30
|
Tsirimonaki E, Fedonidis C, Pneumaticos SG, Tragas AA, Michalopoulos I, Mangoura D. PKCε signalling activates ERK1/2, and regulates aggrecan, ADAMTS5, and miR377 gene expression in human nucleus pulposus cells. PLoS One 2013; 8:e82045. [PMID: 24312401 PMCID: PMC3842981 DOI: 10.1371/journal.pone.0082045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 10/29/2013] [Indexed: 12/25/2022] Open
Abstract
The protein kinase C (PKC) signaling, a major regulator of chondrocytic differentiation, has been also implicated in pathological extracellular matrix remodeling, and here we investigate the mechanism of PKCε-dependent regulation of the chondrocytic phenotype in human nucleus pulposus (NP) cells derived from herniated disks. NP cells from each donor were successfully propagated for 25+ culture passages, with remarkable tolerance to repeated freeze-and-thaw cycles throughout long-term culturing. More specifically, after an initial downregulation of COL2A1, a stable chondrocytic phenotype was attested by the levels of mRNA expression for aggrecan, biglycan, fibromodulin, and lumican, while higher expression of SOX-trio and Patched-1 witnessed further differentiation potential. NP cells in culture also exhibited a stable molecular profile of PKC isoforms: throughout patient samples and passages, mRNAs for PKC α, δ, ε, ζ, η, ι, and µ were steadily detected, whereas β, γ, and θ were not. Focusing on the signalling of PKCε, an isoform that may confer protection against degeneration, we found that activation with the PKCε-specific activator small peptide ψεRACK led sequentially to a prolonged activation of ERK1/2, increased abundance of the early gene products ATF, CREB1, and Fos with concurrent silencing of transcription for Ki67, and increases in mRNA expression for aggrecan. More importantly, ψεRACK induced upregulation of hsa-miR-377 expression, coupled to decreases in ADAMTS5 and cleaved aggrecan. Therefore, PKCε activation in late passage NP cells may represent a molecular basis for aggrecan availability, as part of an PKCε/ERK/CREB/AP-1-dependent transcriptional program that includes upregulation of both chondrogenic genes and microRNAs. Moreover, this pathway should be considered as a target for understanding the molecular mechanism of IVD degeneration and for therapeutic restoration of degenerated disks.
Collapse
Affiliation(s)
| | | | - Spiros G. Pneumaticos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Orthopedics, Athens Medical School, University of Athens, Athens, Greece
| | | | | | - Dimitra Mangoura
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
31
|
Stoffels JMJ, Zhao C, Baron W. Fibronectin in tissue regeneration: timely disassembly of the scaffold is necessary to complete the build. Cell Mol Life Sci 2013; 70:4243-53. [PMID: 23756580 PMCID: PMC11113129 DOI: 10.1007/s00018-013-1350-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 12/31/2022]
Abstract
Tissue injury initiates extracellular matrix molecule expression, including fibronectin production by local cells and fibronectin leakage from plasma. To benefit tissue regeneration, fibronectin promotes opsonization of tissue debris, migration, proliferation, and contraction of cells involved in the healing process, as well as angiogenesis. When regeneration proceeds, the fibronectin matrix is fully degraded. However, in a diseased environment, fibronectin clearance is often disturbed, allowing structural variants to persist and contribute to disease progression and failure of regeneration. Here, we discuss first how fibronectin helps tissue regeneration, with a focus on normal cutaneous wound healing as an example of complete tissue recovery. Then, we continue to argue that, although the fibronectin matrix generated following cartilage and central nervous system white matter (myelin) injury initially benefits regeneration, fibronectin clearance is incomplete in chronic wounds (skin), osteoarthritis (cartilage), and multiple sclerosis (myelin). Fibronectin fragments or aggregates persist, which impair tissue regeneration. The similarities in fibronectin-mediated mechanisms of frustrated regeneration indicate that complete fibronectin clearance is a prerequisite for recovery in any tissue. Also, they provide common targets for developing therapeutic strategies in regenerative medicine.
Collapse
Affiliation(s)
- Josephine M. J. Stoffels
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chao Zhao
- Wellcome Trust—Medical Research Council Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
| | - Wia Baron
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
32
|
Bridgen D, Gilchrist C, Richardson W, Isaacs R, Brown C, Yang K, Chen J, Setton L. Integrin-mediated interactions with extracellular matrix proteins for nucleus pulposus cells of the human intervertebral disc. J Orthop Res 2013; 31:1661-7. [PMID: 23737292 PMCID: PMC3826265 DOI: 10.1002/jor.22395] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 05/02/2013] [Indexed: 02/04/2023]
Abstract
The extracellular matrix (ECM) of the human intervertebral disc is rich in molecules that interact with cells through integrin-mediated attachments. Porcine nucleus pulposus (NP) cells have been shown to interact with laminin (LM) isoforms LM-111 and LM-511 through select integrins that regulate biosynthesis and cell attachment. Since human NP cells lose many phenotypic characteristics with age, attachment and interaction with the ECM may be altered. Expression of LM-binding integrins was quantified for human NP cells using flow cytometry. The cell-ECM attachment mechanism was determined by quantifying cell attachment to LM-111, LM-511, or type II collagen after functionally blocking specific integrin subunits. Human NP cells express integrins β1, α3, and α5, with over 70% of cells positive for each subunit. Blocking subunit β1 inhibited NP cell attachment to all substrates. Blocking subunits α1, α2, α3, and α5 simultaneously, but not individually, inhibits NP cell attachment to laminins. While integrin α6β1 mediated porcine NP cell attachment to LM-111, we found integrins α3, α5, and β1 instead contributed to human NP cell attachment. These findings identify integrin subunits that may mediate interactions with the ECM for human NP cells and could be used to promote cell attachment, survival, and biosynthesis in cell-based therapeutics.
Collapse
Affiliation(s)
- D.T. Bridgen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - C.L. Gilchrist
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - W.J. Richardson
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - R.E. Isaacs
- Department of Surgery, Duke University, Durham, NC, USA
| | - C.R. Brown
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - K.L. Yang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - J. Chen
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - L.A. Setton
- Department of Biomedical Engineering, Duke University, Durham, NC, USA,Department of Orthopaedic Surgery, Duke University, Durham, NC, USA,Corresponding Author, Lori A. Setton, Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, Phone: 919-660-5131, Fax: 919-681-5490,
| |
Collapse
|
33
|
Quero L, Klawitter M, Schmaus A, Rothley M, Sleeman J, Tiaden AN, Klasen J, Boos N, Hottiger MO, Wuertz K, Richards PJ. Hyaluronic acid fragments enhance the inflammatory and catabolic response in human intervertebral disc cells through modulation of toll-like receptor 2 signalling pathways. Arthritis Res Ther 2013; 15:R94. [PMID: 23968377 PMCID: PMC3978638 DOI: 10.1186/ar4274] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/22/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction Intervertebral disc (IVD) degeneration is characterized by extracellular matrix breakdown and is considered to be a primary cause of discogenic back pain. Although increases in pro-inflammatory cytokine levels within degenerating discs are associated with discogenic back pain, the mechanisms leading to their overproduction have not yet been elucidated. As fragmentation of matrix components occurs during IVD degeneration, we assessed the potential involvement of hyaluronic acid fragments (fHAs) in the induction of inflammatory and catabolic mediators. Methods Human IVD cells isolated from patient biopsies were stimulated with fHAs (6 to 12 disaccharides) and their effect on cytokine and matrix degrading enzyme production was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The involvement of specific cell surface receptors and signal transduction pathways in mediating the effects of fHAs was tested using small interfering RNA (siRNA) approaches and kinase inhibition assays. Results Treatment of IVD cells with fHAs significantly increased mRNA expression levels of interleukin (IL)-1β, IL-6, IL-8, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-1 and -13. The stimulatory effects of fHAs on IL-6 protein production were significantly impaired when added to IVD cells in combination with either Toll-like receptor (TLR)-2 siRNA or a TLR2 neutralizing antibody. Furthermore, the ability of fHAs to enhance IL-6 and MMP-3 protein production was found to be dependent on the mitogen-activated protein (MAP) kinase signaling pathway. Conclusions These findings suggest that fHAs may have the potential to mediate IVD degeneration and discogenic back pain through activation of the TLR2 signaling pathway in resident IVD cells.
Collapse
|
34
|
Hiyama A, Sakai D, Mochida J. Cell signaling pathways related to pain receptors in the degenerated disk. Global Spine J 2013; 3:165-74. [PMID: 24436867 PMCID: PMC3856443 DOI: 10.1055/s-0033-1345036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/01/2013] [Indexed: 01/07/2023] Open
Abstract
Many of the causes of low back pain are still unknown; sufficient evidence indicates that both degenerative and mechanical change within the intervertebral disk (IVD) is a relevant factor. This article reviews intracellular signaling pathways related to pain receptors in the degenerated IVD. Several reports have demonstrated the number of nerve fibers in the IVD was increased in degenerated disks. In recent years, some groups have reported that an increase in nerve fibers is associated with the presence of inflammatory mediators and/or neurotrophins in the IVD. Cell signaling events, which are regulated by inflammatory mediators and neurotrophins, must be identified to clarify the mechanism underlying low back pain. Major intracellular signaling pathways (nuclear factor kappa β, mitogen-activated protein kinases, and Wnts) potentially play vital roles in mediating the molecular events responsible for the initiation and progression of IVD degeneration. These signaling pathways may represent therapeutic targets for the treatment of IVD degeneration and its associated back pain.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Joji Mochida
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
35
|
Abstract
Syndecans are transmembrane heparan sulphate proteoglycans (HSPGs) that have gained increasing interest as regulators of a variety of tissue responses, including cartilage development and remodelling. These proteoglycans are composed of a core protein to which extracellular glycosaminoglycan (GAG) chains are attached. Through these GAG chains, syndecans can interact with a variety of extracellular matrix molecules and bind to a number of soluble mediators including morphogens, growth factors, chemokines and cytokines. The structure and post-translational modification of syndecan GAG chains seem to differ not only from cell to cell, but also during different stages of cellular differentiation, leading to a complexity of syndecan function that is unique among membrane-bound HSPGs. Unlike other membrane-bound HSPGs, syndecans contain intracellular signalling motifs that can initiate signalling mainly through protein kinase C. This Review summarizes our knowledge of the biology of syndecans and the mechanisms by which binding of molecules to syndecans exert different biological effects, particularly in the joints. On the basis of the structural and functional peculiarities of syndecans, we discuss the regulation of syndecans and their roles in the developing joint as well as during degenerative and inflammatory cartilage remodelling as understood from expression studies and functional analyses involving syndecan-deficient mice.
Collapse
Affiliation(s)
- Thomas Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Domagkstraße 3, D-48149 Münster, Germany.
| | | |
Collapse
|
36
|
Gruber HE, Hoelscher GL, Ingram JA, Hanley EN. Genome-wide analysis of pain-, nerve- and neurotrophin -related gene expression in the degenerating human annulus. Mol Pain 2012; 8:63. [PMID: 22963171 PMCID: PMC3495673 DOI: 10.1186/1744-8069-8-63] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/18/2012] [Indexed: 01/22/2023] Open
Abstract
Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and chemokines which also have significant relevance to disc biology. Since the degenerating human disc is primarily an avascular tissue site into which disc cells have contributed high levels of proinflammatory cytokines, these substances are not cleared from the tissue and remain there over time. We hypothesize that as nerves grow into the human annulus, they encounter a proinflammatory cytokine-rich milieu which may sensitize nociceptors and exacerbate pain production.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, NC 28232, USA.
| | | | | | | |
Collapse
|
37
|
Tiaden AN, Klawitter M, Lux V, Mirsaidi A, Bahrenberg G, Glanz S, Quero L, Liebscher T, Wuertz K, Ehrmann M, Richards PJ. Detrimental role for human high temperature requirement serine protease A1 (HTRA1) in the pathogenesis of intervertebral disc (IVD) degeneration. J Biol Chem 2012; 287:21335-45. [PMID: 22556410 PMCID: PMC3375554 DOI: 10.1074/jbc.m112.341032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 04/30/2012] [Indexed: 11/06/2022] Open
Abstract
Human HTRA1 is a highly conserved secreted serine protease that degrades numerous extracellular matrix proteins. We have previously identified HTRA1 as being up-regulated in osteoarthritic patients and as having the potential to regulate matrix metalloproteinase (MMP) expression in synovial fibroblasts through the generation of fibronectin fragments. In the present report, we have extended these studies and investigated the role of HTRA1 in the pathogenesis of intervertebral disc (IVD) degeneration. HTRA1 mRNA expression was significantly elevated in degenerated disc tissue and was associated with increased protein levels. However, these increases did not correlate with the appearance of rs11200638 single nucleotide polymorphism in the promoter region of the HTRA1 gene, as has previously been suggested. Recombinant HTRA1 induced MMP production in IVD cell cultures through a mechanism critically dependent on MEK but independent of IL-1β signaling. The use of a catalytically inactive mutant confirmed these effects to be primarily due to HTRA1 serine protease activity. HTRA1-induced fibronectin proteolysis resulted in the generation of various sized fragments, which when added to IVD cells in culture, caused a significant increase in MMP expression. Furthermore, one of these fragments was identified as being the amino-terminal fibrin- and heparin-binding domain and was also found to be increased within HTRA1-treated IVD cell cultures as well as in disc tissue from patients with IVD degeneration. Our results therefore support a scenario in which HTRA1 promotes IVD degeneration through the proteolytic cleavage of fibronectin and subsequent activation of resident disc cells.
Collapse
Affiliation(s)
| | - Marina Klawitter
- From the Bone and Stem Cell Research Group and
- the Spine Research Group, Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Vanda Lux
- the Centre for Medical Biotechnology, Faculty of Biology and Geography, University Duisburg-Essen, 45117 Essen, Germany
| | - Ali Mirsaidi
- From the Bone and Stem Cell Research Group and
- the Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Gregor Bahrenberg
- From the Bone and Stem Cell Research Group and
- the Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Stephan Glanz
- From the Bone and Stem Cell Research Group and
- the Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Lilian Quero
- the Spine Research Group, Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Thomas Liebscher
- the Department of Spinal Surgery, SRH Klinikum Karlsbad-Langensteinbach, 76307 Karlsbad, Germany, and
| | - Karin Wuertz
- the Spine Research Group, Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland
- the Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- the AOSpine Research Network, 8600 Duebendorf, Switzerland
| | - Michael Ehrmann
- the Centre for Medical Biotechnology, Faculty of Biology and Geography, University Duisburg-Essen, 45117 Essen, Germany
| | - Peter J. Richards
- From the Bone and Stem Cell Research Group and
- the Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
38
|
Pratsinis H, Constantinou V, Pavlakis K, Sapkas G, Kletsas D. Exogenous and autocrine growth factors stimulate human intervertebral disc cell proliferation via the ERK and Akt pathways. J Orthop Res 2012; 30:958-64. [PMID: 22105580 DOI: 10.1002/jor.22017] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 10/31/2011] [Indexed: 02/04/2023]
Abstract
Intervertebral disc (IVD) degeneration is accompanied by growth factor-overexpression and increased cell proliferation, probably representing a tissue repair process. Accordingly, we studied the effect of exogenous and autocrine growth factors on the proliferation of human IVD cells. We observed that Platelet-Derived Growth Factor (PDGF), basic Fibroblast Growth Factor (bFGF), and Insulin-like Growth Factor-I (IGF-I) stimulate DNA synthesis of human IVD cells, through the activation of the MEK/ERK and the PI-3K/Akt signal transduction pathways. Furthermore, medium conditioned (CM) by IVD cells induced DNA synthesis in the same cells, indicating the secretion of autocrine growth factors. The MEK/ERK and PI-3K/Akt pathways were also induced by CM, while their inhibition reversed in large part the DNA synthesis induction by CM. These responses to the exogenous and autocrine growth factors were qualitatively similar in both nucleus pulposus (NP) and annulus fibrosus (AF) cell cultures. Immunohistochemical studies in human biopsies showed significant activation of both signaling pathways, which was most prominent in the clusters of proliferating cells. These in vitro and in vivo data indicate that the proliferation of human IVD cells is regulated by exogenous and autocrine growth factors mainly via the MEK/ERK and PI-3K/Akt pathways; this may contribute to the design of future interventional approaches.
Collapse
Affiliation(s)
- Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biology, NCSR Demokritos, 153 10 Athens, Greece
| | | | | | | | | |
Collapse
|
39
|
Agrawal V, Kelly J, Tottey S, Daly KA, Johnson SA, Siu BF, Reing J, Badylak SF. An isolated cryptic peptide influences osteogenesis and bone remodeling in an adult mammalian model of digit amputation. Tissue Eng Part A 2011; 17:3033-44. [PMID: 21740273 DOI: 10.1089/ten.tea.2011.0257] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biologic scaffolds composed of extracellular matrix (ECM) have been used successfully in preclinical models and humans for constructive remodeling of functional, site-appropriate tissue after injury. The mechanisms underlying ECM-mediated constructive remodeling are not completely understood, but scaffold degradation and site-directed recruitment of progenitor cells are thought to play critical roles. Previous studies have identified a cryptic peptide derived from the C-terminal telopeptide of collagen IIIα that has chemotactic activity for progenitor cells. The present study characterized the osteogenic activity of the same peptide in vitro and in vivo in an adult murine model of digit amputation. The present study showed that the cryptic peptide increased calcium deposition, alkaline phosphatase activity, and osteogenic gene expression in human perivascular stem cells in vitro. Treatment with the cryptic peptide in a murine model of mid-second phalanx digit amputation led to the formation of a bone nodule at the site of amputation. In addition to potential therapeutic implications for the treatment of bone injuries and facilitation of reconstructive surgical procedures, cryptic peptides with the ability to alter stem cell recruitment and differentiation at a site of injury may serve as powerful new tools for influencing stem cell fate in the local injury microenvironment.
Collapse
Affiliation(s)
- Vineet Agrawal
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|