1
|
Eftekhari BS, Song D, Janmey PA. Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive Substrates Promotes Neural Priming. Macromol Biosci 2023; 23:e2300149. [PMID: 37571815 PMCID: PMC10880582 DOI: 10.1002/mabi.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Indexed: 08/13/2023]
Abstract
Electrical stimulation (ES) within a conductive scaffold is potentially beneficial in encouraging the differentiation of stem cells toward a neuronal phenotype. To improve stem cell-based regenerative therapies, it is essential to use electroconductive scaffolds with appropriate stiffnesses to regulate the amount and location of ES delivery. Herein, biodegradable electroconductive substrates with different stiffnesses are fabricated from chitosan-grafted-polyaniline (CS-g-PANI) copolymers. Human mesenchymal stem cells (hMSCs) cultured on soft conductive scaffolds show a morphological change with significant filopodial elongation after electrically stimulated culture along with upregulation of neuronal markers and downregulation of glial markers. Compared to stiff conductive scaffolds and non-conductive CS scaffolds, soft conductive CS-g-PANI scaffolds promote increased expression of microtubule-associated protein 2 (MAP2) and neurofilament heavy chain (NF-H) after application of ES. At the same time, there is a decrease in the expression of the glial markers glial fibrillary acidic protein (GFAP) and vimentin after ES. Furthermore, the elevation of intracellular calcium [Ca2+ ] during spontaneous, cell-generated Ca2+ transients further suggests that electric field stimulation of hMSCs cultured on conductive substrates can promote a neural-like phenotype. The findings suggest that the combination of the soft conductive CS-g-PANI substrate and ES is a promising new tool for enhancing neuronal tissue engineering outcomes.
Collapse
Affiliation(s)
| | - Dawei Song
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A. Janmey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Wen Z, Chen Y, Liao P, Wang F, Zeng W, Liu S, Wu H, Wang N, Moroni L, Zhang M, Duan Y, Chen H. In Situ Precision Cell Electrospinning as an Efficient Stem Cell Delivery Approach for Cutaneous Wound Healing. Adv Healthc Mater 2023; 12:e2300970. [PMID: 37379527 DOI: 10.1002/adhm.202300970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/10/2023] [Indexed: 06/30/2023]
Abstract
Mesenchymal stem cell (MSC) therapies have been brought forward as a promising treatment modality for cutaneous wound healing. However, current approaches for stem cell delivery have many drawbacks, such as lack of targetability and cell loss, leading to poor efficacy of stem cell therapy. To overcome these problems, in the present study, an in situ cell electrospinning system is developed as an attractive approach for stem cell delivery. MSCs have a high cell viability of over 90% even with a high applied voltage of 15 kV post-cell electrospinning process. In addition, cell electrospinning does not show any negative effect on the surface marker expression and differentiation capacity of MSCs. In vivo studies demonstrate that in situ cell electrospinning treatment can promote cutaneous wound healing through direct deposition of bioactive fish gelatin fibers and MSCs onto wound sites, leading to a synergic therapeutic effect. The approach enhances extracellular matrix remodeling by increasing collagen deposition, promotes angiogenesis by increasing the expression of vascular endothelial growth factor (VEGF) and forming small blood vessels, and dramatically reduces the expression of interleukin-6 (IL-6) during wound healing. The use of in situ cell electrospinning system potentially provides a rapid, no touch, personalized treatment for cutaneous wound healing.
Collapse
Affiliation(s)
- Zhengbo Wen
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yuxin Chen
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Peilin Liao
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Fengyu Wang
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Weiping Zeng
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Haibing Wu
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Minmin Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
3
|
Henning P, Köster T, Haack F, Burrage K, Uhrmacher AM. Implications of different membrane compartmentalization models in particle-based in silico studies. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221177. [PMID: 37416823 PMCID: PMC10320350 DOI: 10.1098/rsos.221177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Studying membrane dynamics is important to understand the cellular response to environmental stimuli. A decisive spatial characteristic of the plasma membrane is its compartmental structure created by the actin-based membrane-skeleton (fences) and anchored transmembrane proteins (pickets). Particle-based reaction-diffusion simulation of the membrane offers a suitable temporal and spatial resolution to analyse its spatially heterogeneous and stochastic dynamics. Fences have been modelled via hop probabilities, potentials or explicit picket fences. Our study analyses the different approaches' constraints and their impact on simulation results and performance. Each of the methods comes with its own constraints; the picket fences require small timesteps, potential fences might induce a bias in diffusion in crowded systems, and probabilistic fences, in addition to carefully scaling the probability with the timesteps, induce higher computational costs for each propagation step.
Collapse
Affiliation(s)
- Philipp Henning
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Till Köster
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Fiete Haack
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- Visiting Professor, Department of Computer Science, University of Oxford, Oxford, UK
| | - Adelinde M. Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Yamashita M. Integrin-mediated electric axon guidance underlying optic nerve formation in the embryonic chick retina. Commun Biol 2023; 6:680. [PMID: 37391492 PMCID: PMC10313674 DOI: 10.1038/s42003-023-05056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Retinal ganglion cell (RGC) axons converge on the optic disc to form an optic nerve. However, the mechanism of RGC axon convergence remains elusive. In the embryonic retina, an electric field (EF) exists and this EF converges on the future optic disc. EFs have been demonstrated in vitro to orient axons toward the cathode. Here, I show that the EF directs RGC axons through integrin in an extracellular Ca2+-dependent manner. The cathodal growth of embryonic chick RGC axons, which express integrin α6β1, was enhanced by monoclonal anti-chicken integrin β1 antibodies. Mn2+ abolished these EF effects, as Mn2+ occupies the Ca2+-dependent negative regulatory site in the β1 subunit to eliminate Ca2+ inhibition. The present study proposes an integrin-mediated electric axon steering model, which involves directional Ca2+ movements and asymmetric microtubule stabilization. Since neuroepithelial cells generate EFs during neurogenesis, electric axon guidance may primarily be used in central nervous system development.
Collapse
|
5
|
Katoh K. Effects of Electrical Stimulation of the Cell: Wound Healing, Cell Proliferation, Apoptosis, and Signal Transduction. Med Sci (Basel) 2023; 11:medsci11010011. [PMID: 36810478 PMCID: PMC9944882 DOI: 10.3390/medsci11010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
Electrical stimulation of the cell can have a number of different effects depending on the type of cell being stimulated. In general, electrical stimulation can cause the cell to become more active, increase its metabolism, and change its gene expression. For example, if the electrical stimulation is of low intensity and short duration, it may simply cause the cell to depolarize. However, if the electrical stimulation is of high intensity or long duration, it may cause the cell to become hyperpolarized. The electrical stimulation of cells is a process by which an electrical current is applied to cells in order to change their function or behavior. This process can be used to treat various medical conditions and has been shown to be effective in a number of studies. In this perspective, the effects of electrical stimulation on the cell are summarized.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba 305-8521, Japan
| |
Collapse
|
6
|
Sha Y, Zhang B, Chen L, Hong H, Chi Q. Mechano Growth Factor Accelerates ACL Repair and Improves Cell Mobility of Mechanically Injured Human ACL Fibroblasts by Targeting Rac1-PAK1/2 and RhoA-ROCK1 Pathways. Int J Mol Sci 2022; 23:ijms23084331. [PMID: 35457148 PMCID: PMC9026312 DOI: 10.3390/ijms23084331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Exceeded mechanical stress leads to a sublethal injury to anterior cruciate ligament (ACL) fibroblasts, and it will hinder cell mobility and ACL regeneration, and even induce osteoarthritis. The mechano growth factor (MGF) could be responsible for mechanical stress and weakening its negative effects on cell physiological behaviors. In this study, effects of MGF on cell mobility and relevant molecules expression in injured ACL fibroblasts were detected. After an injurious mechanical stretch, the analysis carried out, at 0 and 24 h, respectively, showed that the cell area, roundness, migration, and adhesion of ACL fibroblasts were reduced. MGF (10, 100 ng/mL) treatment could improve cell area, roundness and promote cell migration and adhesion capacity compared with the injured group without MGF. Further study indicated that cell mobility-relevant molecules (PAK1/2, Cdc42, Rac1, RhoA, and ROCK1) expression in ACL fibroblasts was down-regulated at 0 or 24 h after injurious stretch (except Rac1 and RhoA at 0 h). Similarly, MGF improved cell mobility-relevant molecule expression, especially the ROCK1 expression level in ACL fibroblasts at 0 or 24 h after injurious stretch. Protein expression of ROCK1 in injured ACL fibroblasts was also reduced and could be recovered by MGF treatment. In a rabbit partial ACL transection (ACLT) model, ACL exhibited poor regenerative capacity in collagen and extracellular matrix (ECM) synthesis after partial ACLT for 2 or 4 weeks, and MGF remarkably accelerated ACL regeneration and restored its mechanical loading capacity after partial ACLT for four weeks. Our findings suggest that MGF weakens the effects of pathological stress on cell mobility of ACL fibroblasts and accelerates ACL repair, and might be applied as a future treatment approach to ACL rupture in the clinic.
Collapse
Affiliation(s)
- Yongqiang Sha
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China;
- Correspondence:
| | - Beibei Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
| | - Liping Chen
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
| | - Huhai Hong
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China; (B.Z.); (L.C.); (H.H.)
| | - Qingjia Chi
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China;
- Department of Mechanics and Engineering Structure, Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
7
|
Casella A, Panitch A, Leach JK. Endogenous Electric Signaling as a Blueprint for Conductive Materials in Tissue Engineering. Bioelectricity 2021; 3:27-41. [PMID: 34476376 PMCID: PMC8370482 DOI: 10.1089/bioe.2020.0027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bioelectricity plays an important role in cell behavior and tissue modulation, but is understudied in tissue engineering research. Endogenous electrical signaling arises from the transmembrane potential inherent to all cells and contributes to many cell behaviors, including migration, adhesion, proliferation, and differentiation. Electrical signals are also involved in tissue development and repair. Synthetic and natural conductive materials are under investigation for leveraging endogenous electrical signaling cues in tissue engineering applications due to their ability to direct cell differentiation, aid in maturing electroactive cell types, and promote tissue functionality. In this review, we provide a brief overview of bioelectricity and its impact on cell behavior, report recent literature using conductive materials for tissue engineering, and discuss opportunities within the field to improve experimental design when using conductive substrates.
Collapse
Affiliation(s)
- Alena Casella
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
- Department of Surgery and UC Davis Health, Sacramento, California, USA
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
| |
Collapse
|
8
|
Panda AK, K R, Gebrekrstos A, Bose S, Markandeya YS, Mehta B, Basu B. Tunable Substrate Functionalities Direct Stem Cell Fate toward Electrophysiologically Distinguishable Neuron-like and Glial-like Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:164-185. [PMID: 33356098 DOI: 10.1021/acsami.0c17257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineering cellular microenvironment on a functional platform using various biophysical cues to modulate stem cell fate has been the central theme in regenerative engineering. Among the various biophysical cues to direct stem cell differentiation, the critical role of physiologically relevant electric field (EF) stimulation was established in the recent past. The present study is the first to report the strategy to switch EF-mediated differentiation of human mesenchymal stem cells (hMSCs) between neuronal and glial pathways, using tailored functional properties of the biomaterial substrate. We have examined the combinatorial effect of substrate functionalities (conductivity, electroactivity, and topography) on the EF-mediated stem cell differentiation on polyvinylidene-difluoride (PVDF) nanocomposites in vitro, without any biochemical inducers. The functionalities of PVDF have been tailored using conducting nanofiller (multiwall-carbon nanotube, MWNT) and piezoceramic (BaTiO3, BT) by an optimized processing approach (melt mixing-compression molding-rolling). The DC conductivity of PVDF nanocomposites was tuned from ∼10-11 to ∼10-4 S/cm and the dielectric constant from ∼10 to ∼300. The phenotypical changes and genotypical expression of hMSCs revealed the signatures of early differentiation toward neuronal pathway on rolled-PVDF/MWNT and late differentiation toward glial lineage on rolled-PVDF/BT/MWNT. Moreover, we were able to distinguish the physiological properties of differentiated neuron-like and glial-like cells using membrane depolarization and mechanical stimulation. The excitability of the EF-stimulated hMSCs was also determined using whole-cell patch-clamp recordings. Mechanistically, the roles of intracellular reactive oxygen species (ROS), Ca2+ oscillations, and synaptic and gap junction proteins in directing the cellular fate have been established. Therefore, the present work critically unveils complex yet synergistic interaction of substrate functional properties to direct EF-mediated differentiation toward neuron-like and glial-like cells, with distinguishable electrophysiological responses.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Ravikumar K
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Amanuel Gebrekrstos
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Ryan CNM, Doulgkeroglou MN, Zeugolis DI. Electric field stimulation for tissue engineering applications. BMC Biomed Eng 2021; 3:1. [PMID: 33397515 PMCID: PMC7784019 DOI: 10.1186/s42490-020-00046-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023] Open
Abstract
Electric fields are involved in numerous physiological processes, including directional embryonic development and wound healing following injury. To study these processes in vitro and/or to harness electric field stimulation as a biophysical environmental cue for organised tissue engineering strategies various electric field stimulation systems have been developed. These systems are overall similar in design and have been shown to influence morphology, orientation, migration and phenotype of several different cell types. This review discusses different electric field stimulation setups and their effect on cell response.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Meletios N Doulgkeroglou
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland. .,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland. .,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland.
| |
Collapse
|
10
|
Massaro EK, Goswami I, Verbridge SS, von Spakovsky MR. Electro-chemo-mechanical model to investigate multi-pulse electric-field-driven integrin clustering. Bioelectrochemistry 2020; 137:107638. [PMID: 33160180 DOI: 10.1016/j.bioelechem.2020.107638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
The effect of pulsed electric fields (PEFs) on transmembrane proteins is not fully understood; how do chemo-mechanical cues in the microenvironment mediate the electric field sensing by these proteins? To answer this key gap in knowledge, we have developed a kinetic Monte Carlo statistical model of the integrin proteins that integrates three components of the morphogenetic field (i.e., chemical, mechanical, and electrical cues). Specifically, the model incorporates the mechanical stiffness of the cell membrane, the ligand density of the extracellular environment, the glycocalyx stiffness, thermal Brownian motion, and electric field induced diffusion. The effects of both steady-state electric fields and transient PEF pulse trains on integrin clustering are studied. Our results reveal that electric-field-driven integrin clustering is mediated by membrane stiffness and ligand density. In addition, we explore the effects of PEF pulse-train parameters (amplitude, polarity, and pulse-width) on integrin clustering. In summary, we demonstrate a computational methodology to incorporate experimental data and simulate integrin clustering when exposed to PEFs for time-scales comparable to experiments (seconds-minutes). Thus, we propose a blueprint for understanding PEF/electric field effects on protein induced signaling and highlight key impediments to incorporating experimental values into computational models such as the kinetic Monte Carlo method.
Collapse
Affiliation(s)
- Evan K Massaro
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, MA, USA
| | - Ishan Goswami
- California Institute for Quantitative Biosciences, University of California Berkeley, CA, USA.
| | - Scott S Verbridge
- Department of Biomedical Engineering and Applied Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michael R von Spakovsky
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
11
|
Leppik L, Oliveira KMC, Bhavsar MB, Barker JH. Electrical stimulation in bone tissue engineering treatments. Eur J Trauma Emerg Surg 2020; 46:231-244. [PMID: 32078704 PMCID: PMC7113220 DOI: 10.1007/s00068-020-01324-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Electrical stimulation (EStim) has been shown to promote bone healing and regeneration both in animal experiments and clinical treatments. Therefore, incorporating EStim into promising new bone tissue engineering (BTE) therapies is a logical next step. The goal of current BTE research is to develop combinations of cells, scaffolds, and chemical and physical stimuli that optimize treatment outcomes. Recent studies demonstrating EStim's positive osteogenic effects at the cellular and molecular level provide intriguing clues to the underlying mechanisms by which it promotes bone healing. In this review, we discuss results of recent in vitro and in vivo research focused on using EStim to promote bone healing and regeneration and consider possible strategies for its application to improve outcomes in BTE treatments. Technical aspects of exposing cells and tissues to EStim in in vitro and in vivo model systems are also discussed.
Collapse
Affiliation(s)
- Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany.
| | - Karla Mychellyne Costa Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - Mit Balvantray Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
12
|
Electrospinning Live Cells Using Gelatin and Pullulan. Bioengineering (Basel) 2020; 7:bioengineering7010021. [PMID: 32098366 PMCID: PMC7148470 DOI: 10.3390/bioengineering7010021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/30/2022] Open
Abstract
Electrospinning is a scaffold production method that utilizes electric force to draw a polymer solution into nanometer-sized fibers. By optimizing the polymer and electrospinning parameters, a scaffold is created with the desired thickness, alignment, and pore size. Traditionally, cells and biological constitutes are implanted into the matrix of the three-dimensional scaffold following electrospinning. Our design simultaneously introduces cells into the scaffold during the electrospinning process at 8 kV. In this study, we achieved 90% viability of adipose tissue-derived stem cells through electrospinning.
Collapse
|
13
|
Naskar S, Kumaran V, Markandeya YS, Mehta B, Basu B. Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials 2019; 226:119522. [PMID: 31669894 DOI: 10.1016/j.biomaterials.2019.119522] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
A number of bioengineering strategies, using biophysical stimulation, are being explored to guide the human mesenchymal stem cells (hMScs) into different lineages. In this context, we have limited understanding on the transdifferentiation of matured cells to another functional-cell type, when grown with stem cells, in a constrained cellular microenvironment under biophysical stimulation. While addressing such aspects, the present work reports the influence of the electric field (EF) stimulation on the phenotypic and functionality modulation of the coculture of murine myoblasts (C2C12) with hMScs [hMSc:C2C12=1:10] in a custom designed polymethylmethacrylate (PMMA) based microfluidic device with in-built metal electrodes. The quantitative and qualitative analysis of the immunofluorescence study confirms that the cocultured cells in the conditioned medium with astrocytic feed, exhibit differentiation towards neural-committed cells under biophysical stimulation in the range of the endogenous physiological electric field strength (8 ± 0.06 mV/mm). The control experiments using similar culture protocols revealed that while C2C12 monoculture exhibited myotube-like fused structures, the hMScs exhibited the neurosphere-like clusters with SOX2, nestin, βIII-tubulin expression. The electrophysiological study indicates the significant role of intercellular calcium signalling among the differentiated cells towards transdifferentiation. Furthermore, the depolarization induced calcium influx strongly supports neural-like behaviour for the electric field stimulated cells in coculture. The intriguing results are explained in terms of the paracrine signalling among the transdifferentiated cells in the electric field stimulated cellular microenvironment. In summary, the present study establishes the potential for neurogenesis on-chip for the coculture of hMSc and C2C12 cells under tailored electric field stimulation, in vitro.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India
| | - Viswanathan Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India.
| |
Collapse
|
14
|
Zhu K, Takada Y, Nakajima K, Sun Y, Jiang J, Zhang Y, Zeng Q, Takada Y, Zhao M. Expression of integrins to control migration direction of electrotaxis. FASEB J 2019; 33:9131-9141. [PMID: 31116572 PMCID: PMC6662972 DOI: 10.1096/fj.201802657r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/15/2019] [Indexed: 02/05/2023]
Abstract
Proper control of cell migration is critically important in many biologic processes, such as wound healing, immune surveillance, and development. Much progress has been made in the initiation of cell migration; however, little is known about termination and sometimes directional reversal. During active cell migration, as in wound healing, development, and immune surveillance, the integrin expression profile undergoes drastic changes. Here, we uncovered the extensive regulatory and even opposing roles of integrins in directional cell migration in electric fields (EFs), a potentially important endogenous guidance mechanism. We established cell lines that stably express specific integrins and determined their responses to applied EFs with a high throughput screen. Expression of specific integrins drove cells to migrate to the cathode or to the anode or to lose migration direction. Cells expressing αMβ2, β1, α2, αIIbβ3, and α5 migrated to the cathode, whereas cells expressing β3, α6, and α9 migrated to the anode. Cells expressing α4, αV, and α6β4 lost directional electrotaxis. Manipulation of α9 molecules, one of the molecular directional switches, suggested that the intracellular domain is critical for the directional reversal. These data revealed an unreported role for integrins in controlling stop, go, and reversal activity of directional migration of mammalian cells in EFs, which might ensure that cells reach their final destination with well-controlled speed and direction.-Zhu, K., Takada, Y., Nakajima, K., Sun, Y., Jiang, J., Zhang, Y., Zeng, Q., Takada, Y., Zhao, M. Expression of integrins to control migration direction of electrotaxis.
Collapse
Affiliation(s)
- Kan Zhu
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Yoko Takada
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
| | - Kenichi Nakajima
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
| | - Yaohui Sun
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Yan Zhang
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
| | - Min Zhao
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
- Department of Ophthalmology and Vision Science, School of Medicine, University of California–Davis, Sacramento, California, USA
| |
Collapse
|
15
|
Yao L, Li Y. The Role of Direct Current Electric Field-Guided Stem Cell Migration in Neural Regeneration. Stem Cell Rev Rep 2017; 12:365-75. [PMID: 27108005 DOI: 10.1007/s12015-016-9654-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Effective directional axonal growth and neural cell migration are crucial in the neural regeneration of the central nervous system (CNS). Endogenous currents have been detected in many developing nervous systems. Experiments have demonstrated that applied direct current (DC) electric fields (EFs) can guide axonal growth in vitro, and attempts have been made to enhance the regrowth of damaged spinal cord axons using DC EFs in in vivo experiments. Recent work has revealed that the migration of stem cells and stem cell-derived neural cells can be guided by DC EFs. These studies have raised the possibility that endogenous and applied DC EFs can be used to direct neural tissue regeneration. Although the mechanism of EF-directed axonal growth and cell migration has not been fully understood, studies have shown that the polarization of cell membrane proteins and the activation of intracellular signaling molecules are involved in the process. The application of EFs is a promising biotechnology for regeneration of the CNS.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, Wichita, KS, 67260, USA.
| | - Yongchao Li
- Department of Biological Sciences, Wichita State University, Wichita, KS, 67260, USA
| |
Collapse
|
16
|
Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 2017; 150:60-86. [PMID: 29032331 DOI: 10.1016/j.biomaterials.2017.10.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
Electric field (EF) stimulation can play a vital role in eliciting appropriate stem cell response. Such an approach is recently being established to guide stem cell differentiation through osteogenesis/neurogenesis/cardiomyogenesis. Despite significant recent efforts, the biophysical mechanisms by which stem cells sense, interpret and transform electrical cues into biochemical and biological signals still remain unclear. The present review critically analyses the variety of EF stimulation approaches that can be employed to evoke appropriate stem cell response and also makes an attempt to summarize the underlying concepts of this notion, placing special emphasis on stem cell based tissue engineering and regenerative medicine. This review also discusses the major signaling pathways and cellular responses that are elicited by electric stimulation, including the participation of reactive oxygen species and heat shock proteins, modulation of intracellular calcium ion concentration, ATP production and numerous other events involving the clustering or reassembling of cell surface receptors, cytoskeletal remodeling and so on. The specific advantages of using external electric stimulation in different modalities to regulate stem cell fate processes are highlighted with explicit examples, in vitro and in vivo.
Collapse
|
17
|
Abstract
Endogenous electric fields (EFs) are involved in developmental regulation and wound healing. Although the phenomenon is known for more than a century, it is not clear how cells perceive the external EF. Membrane proteins, responding to electrophoretic and electroosmotic forces, have long been proposed as the sensing molecules. However, specific charge modification of surface proteins did not change cell migration motility nor directionality in EFs. Moreover, symmetric alternating current (AC) EF directs cell migration in a frequency-dependent manner. Due to their charge and ability to coalesce, glycolipids are therefore the likely primary EF sensor driving polarization of membrane proteins and intracellular signaling. We demonstrate that detergent-resistant membrane nanodomains, also known as lipid rafts, are the primary response element in EF sensing. The clustering and activation of caveolin and signaling proteins further stabilize raft structure and feed-forward downstream signaling events, such as rho and PI3K activation. Theoretical modeling supports the experimental results and predicts AC frequency-dependent cell and raft migration. Our results establish a fundamental mechanism for cell electrosensing and provide a role in lipid raft mechanotransduction.
Collapse
|
18
|
Zhang G, Gu Y, Begum R, Chen H, Gao X, McGrath JA, Parsons M, Song B. Kindlin-1 Regulates Keratinocyte Electrotaxis. J Invest Dermatol 2016; 136:2229-2239. [PMID: 27427485 PMCID: PMC5756539 DOI: 10.1016/j.jid.2016.05.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/18/2016] [Accepted: 05/10/2016] [Indexed: 12/05/2022]
Abstract
Kindler syndrome (KS) is an autosomal recessive blistering skin disease resulting from pathogenic mutations in FERMT1. This gene encodes kindlin-1, a focal adhesion protein involved in activation of the integrin family of extracellular matrix receptors. Most cases of KS show a marked reduction or complete absence of the kindlin-1 protein in keratinocytes, resulting in defective cell adhesion and migration. Electric fields also act as intrinsic regulators of adhesion and migration in the skin, but the molecular mechanisms by which this occurs are poorly understood. Here we show that keratinocytes derived from KS patients are unable to undergo electrotaxis, and this defect is restored by overexpression of wild-type kindlin-1 but not a W612A mutation that prevents kindlin-integrin binding. Moreover, deletion of the pleckstrin homology domain of kindlin-1 also failed to rescue electrotaxis in KS cells, indicating that both integrin and lipid binding are required for this function. Kindlin-1 was also required for the maintenance of lamellipodial protrusions during electrotaxis via electric field-activated β1 integrin. Indeed, inhibition of β1 integrins also leads to loss of electrotaxis in keratinocytes. Our data suggest that loss of kindlin-1 function may therefore result in epithelial insensitivity to electric fields and contribute to KS disease pathology.
Collapse
Affiliation(s)
- Gaofeng Zhang
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China; School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Yu Gu
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Rumena Begum
- Randall Division of Cell and Molecular Biophysics, Kings College London, London, UK
| | - Hongduo Chen
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China
| | - John A McGrath
- St. Johns Institute of Dermatology, King's College London, Guys Campus, London, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, Kings College London, London, UK.
| | - Bing Song
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, China; School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
19
|
Pulsed electrical stimulation benefits wound healing by activating skin fibroblasts through the TGFβ1/ERK/NF-κB axis. Biochim Biophys Acta Gen Subj 2016; 1860:1551-9. [DOI: 10.1016/j.bbagen.2016.03.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/26/2016] [Accepted: 03/20/2016] [Indexed: 02/06/2023]
|
20
|
Chang HF, Lee YS, Tang TK, Cheng JY. Pulsed DC Electric Field-Induced Differentiation of Cortical Neural Precursor Cells. PLoS One 2016; 11:e0158133. [PMID: 27352251 PMCID: PMC4924866 DOI: 10.1371/journal.pone.0158133] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/10/2016] [Indexed: 01/11/2023] Open
Abstract
We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders.
Collapse
Affiliation(s)
- Hui-Fang Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Ying-Shan Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tang K. Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
- Department of Mechanical and Mechantronic Engineering, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Tan AR, Alegre-Aguarón E, O’Connell GD, VandenBerg CD, Aaron RK, Vunjak-Novakovic G, Bulinski JC, Ateshian GA, Hung CT. Passage-dependent relationship between mesenchymal stem cell mobilization and chondrogenic potential. Osteoarthritis Cartilage 2015; 23:319-27. [PMID: 25452155 PMCID: PMC4369922 DOI: 10.1016/j.joca.2014.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Galvanotaxis, the migratory response of cells in response to electrical stimulation, has been implicated in development and wound healing. The use of mesenchymal stem cells (MSCs) from the synovium (synovium-derived stem cells, SDSCs) has been investigated for repair strategies. Expansion of SDSCs is necessary to achieve clinically relevant cell numbers; however, the effects of culture passage on their subsequent cartilaginous extracellular matrix production are not well understood. METHODS Over four passages of SDSCs, we measured the expression of cell surface markers (CD31, CD34, CD49c, CD73) and assessed their migratory potential in response to applied direct current (DC) electric field. Cells from each passage were also used to form micropellets to assess the degree of cartilage-like tissue formation. RESULTS Expression of CD31, CD34, and CD49c remained constant throughout cell expansion; CD73 showed a transient increase through the first two passages. Correspondingly, we observed that early passage SDSCs exhibit anodal migration when subjected to applied DC electric field strength of 6 V/cm. By passage 3, CD73 expression significantly decreased; these cells exhibited cell migration toward the cathode, as previously observed for terminally differentiated chondrocytes. Only late passage cells (P4) were capable of developing cartilage-like tissue in micropellet culture. CONCLUSIONS Our results show cell priming protocols carried out for four passages selectively differentiate stem cells to behave like chondrocytes, both in their motility response to applied electric field and their production of cartilaginous tissue.
Collapse
Affiliation(s)
- Andrea R. Tan
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Elena Alegre-Aguarón
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Grace D. O’Connell
- Department of Mechanical Engineering, University of California, Berkeley, 5122 Etcheverry Hall, Berkeley, CA 94720, USA
| | - Curtis D. VandenBerg
- Department of Orthopaedic Surgery, St. Luke’s-Roosevelt Hospital Center, 1000 10th Ave, New York, NY 10019, USA
| | - Roy K. Aaron
- Department of Orthopaedic Surgery, Brown University, 100 Butler Drive, Providence, RI 02906, USA
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - J. Chloe Bulinski
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027, USA
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA,Department of Mechanical Engineering, Columbia University, 500 W. 120th St, New York, NY 10027, USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA,Corresponding author: . Phone: (212) 854-6542
| |
Collapse
|