1
|
Luo J, Wang Z, Tang C, Yin Z, Huang J, Ruan D, Fei Y, Wang C, Mo X, Li J, Zhang J, Fang C, Li J, Chen X, Shen W. Animal model for tendinopathy. J Orthop Translat 2023; 42:43-56. [PMID: 37637777 PMCID: PMC10450357 DOI: 10.1016/j.jot.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Background Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zetao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zi Yin
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xianan Mo
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiajin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Department of Orthopedics, Longquan People's Hospital, Zhejiang, 323799, China
| | - Cailian Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
| | - Jianyou Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, 313000, Huzhou, Zhejiang, China
| | - Xiao Chen
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Leiphart RJ, Weiss SN, DiStefano MS, Mavridis AA, Adams SA, Dyment NA, Soslowsky LJ. Collagen V deficiency during murine tendon healing results in distinct healing outcomes based on knockdown severity. J Biomech 2022; 144:111315. [PMID: 36201909 PMCID: PMC10108665 DOI: 10.1016/j.jbiomech.2022.111315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Tendon function is dependent on proper organization and maintenance of the collagen I tissue matrix. Collagen V is a critical regulator of collagen I fibrils, and while prior studies have shown a negative impact of collagen V deficiency on tendon healing outcomes, these studies are confounded by collagen V deficiency through tendon development. The specific role of collagen V in regulating healing tendon properties is therefore unknown. By using inducible Col5a1 knockdown models and analyzing gene expression, fibril and histological tendon morphology, and tendon mechanical properties, this study defines the isolated role of collagen V through tendon healing. Patellar tendon injury caused large changes in tendon gene expression, and Col5a1 knockdown resulted in dysregulated expression of several genes through tendon healing. Col5a1 knockdown also impacted collagen fibril size and shape without observable changes in scar tissue formation. Surprisingly, heterozygous Col5a1 knockdown resulted in improved stiffness of healing tendons that was not observed with homozygous Col5a1 knockdown. Together, these results present an unexpected and dynamic role of collagen V deficiency on tendon healing outcomes following injury. This work suggests a model of tendon healing in which quasi-static mechanics may be improved through titration of collagen fibril size and shape with modulation of collagen V expression and activity.
Collapse
Affiliation(s)
- R J Leiphart
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S N Weiss
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M S DiStefano
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A A Mavridis
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S A Adams
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - N A Dyment
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - L J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Rezvani SN, Nichols AEC, Grange RW, Dahlgren LA, Brolinson PG, Wang VM. A novel murine muscle loading model to investigate Achilles musculotendinous adaptation. J Appl Physiol (1985) 2021; 130:1043-1051. [PMID: 33571057 DOI: 10.1152/japplphysiol.00638.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Achilles tendinopathy is a debilitating condition affecting the entire spectrum of society and a condition that increases the risk of tendon rupture. Effective therapies remain elusive, as anti-inflammatory drugs and surgical interventions show poor long-term outcomes. Eccentric loading of the Achilles muscle-tendon unit is an effective physical therapy for treatment of symptomatic human tendinopathy. Here, we introduce a novel mouse model of hindlimb muscle loading designed to achieve a tissue-targeted therapeutic exercise. This model includes the application of tissue (muscle and tendon)-loading "doses," coupled with ankle dorsiflexion and plantarflexion, inspired by human clinical protocols. Under computer control, the foot was rotated through the entire ankle joint range of motion while the plantar flexors simultaneously contracted to simulate body mass loading, consistent with human therapeutic exercises. This approach achieved two key components of the heel drop and raise movement: ankle range of motion coupled with body mass loading. Model development entailed the tuning of parameters such as footplate speed, number of repetitions, number of sets of repetitions, treatment frequency, treatment duration, and treatment timing. Initial model development was carried out on uninjured mice to define a protocol that was well tolerated and nondeleterious to tendon biomechanical function. When applied to a murine Achilles tendinopathy model, muscle loading led to a significant improvement in biomechanical outcome measures, with a decrease in cross-sectional area and an increase in material properties, compared with untreated animals. Our model facilitates the future investigation of mechanisms whereby rehabilitative muscle loading promotes healing of Achilles tendon injuries.NEW & NOTEWORTHY We introduce a novel mouse model of hindlimb muscle loading designed to achieve a tissue-targeted therapeutic exercise. This innovative model allows for application of muscle loading "doses," coupled with ankle dorsiflexion and plantarflexion, inspired by human loading clinical treatment. Our model facilitates future investigation of mechanisms whereby rehabilitative muscle loading promotes healing of Achilles tendon injuries.
Collapse
Affiliation(s)
- Sabah N Rezvani
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Anne E C Nichols
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise, and Metabolism Core, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Linda A Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | | | - Vincent M Wang
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
4
|
Santamaria S. ADAMTS-5: A difficult teenager turning 20. Int J Exp Pathol 2020; 101:4-20. [PMID: 32219922 DOI: 10.1111/iep.12344] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/28/2019] [Accepted: 01/19/2020] [Indexed: 12/13/2022] Open
Abstract
A Disintegrin And Metalloproteinase with ThromboSpondin motif (ADAMTS)-5 was identified in 1999 as one of the enzymes responsible for cleaving aggrecan, the major proteoglycan in articular cartilage. Studies in vitro, ex vivo and in vivo have validated ADAMTS-5 as a target in osteoarthritis (OA), a disease characterized by extensive degradation of aggrecan. For this reason, it attracted the interest of many research groups aiming to develop a therapeutic treatment for OA patients. However, ADAMTS-5 proteoglycanase activity is not only involved in the dysregulated aggrecan proteolysis, which occurs in OA, but also in the physiological turnover of other related proteoglycans. In particular, versican, a major ADAMTS-5 substrate, plays an important structural role in heart and blood vessels and its proteolytic processing by ADAMTS-5 must be tightly regulated. On the occasion of the 20th anniversary of the discovery of ADAMTS-5, this review looks at the evidence for its detrimental role in OA, as well as its physiological turnover of cardiovascular proteoglycans. Moreover, the other potential functions of this enzyme are highlighted. Finally, challenges and emerging trends in ADAMTS-5 research are discussed.
Collapse
|
5
|
Rezvani SN, Chen J, Li J, Midura R, Cali V, Sandy JD, Plaas A, Wang VM. In-Vivo Efficacy of Recombinant Human Hyaluronidase (rHuPH20) Injection for Accelerated Healing of Murine Retrocalcaneal Bursitis and Tendinopathy. J Orthop Res 2020; 38:59-69. [PMID: 31478241 PMCID: PMC6917826 DOI: 10.1002/jor.24459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
The deposition of aggrecan/hyaluronan (HA)-rich matrix within the tendon body and surrounding peritenon impede tendon healing and result in compromised biomechanical properties. Hence, the development of novel strategies to achieve targeted removal of the aggrecan-HA pericellular matrix may be effective in treating tendinopathy. The current study examined the therapeutic potential of a recombinant human hyaluronidase, rHuPH20 (FDA approved for reducing HA accumulation in tumors) for treating murine Achilles tendinopathy. The 12-week-old C57Bl/6 male mice were injected with two doses of rHuTGF-β1 into the retrocalcaneal bursa (RCB) to induce a combined bursitis and tendinopathy. Twenty-four hours following induction of injury, treatment groups were administered rHuPH20 Hyaluronidase (rHuPH20; Halozyme Therapeutics) into the RCB. At either 6 h (acute), 9 days, or 25 days following hyaluronidase treatment, Achilles tendons were analyzed for gene expression, histology and immunohistochemistry, fluorophore-assisted carbohydrate electrophoresis, and biomechanical properties. The rHuPH20 treatment was effective, particularly at the acute and 9-day time points, in (a) removing HA deposits from the Achilles tendon and surrounding tissues, (b) improving biomechanical properties of the healing tendon, and (c) eliciting targeted increases in expression of specific cell fate, extracellular matrix metabolism, and inflammatory genes. The potential of rHuPH20 to effectively clear the pro-inflammatory, HA-rich matrix within the RCB and tendon strongly supports the future refinement of injectable glycosidase preparations as potential treatments to protect or regenerate tendon tissue by reducing inflammation and scarring in the presence of bursitis or other inducers of damage such as mechanical overuse. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:59-69, 2020.
Collapse
Affiliation(s)
- Sabah N. Rezvani
- Department of Biomedical Engineering and Mechanics, Virginia Tech (Blacksburg, VA)
| | - Jinnan Chen
- Department of Internal Medicine (Rheumatology), Rush University (Chicago, IL)
| | - Jun Li
- Department of Internal Medicine (Rheumatology), Rush University (Chicago, IL)
| | - Ron Midura
- Lerner Research Institute, The Cleveland Clinic Foundation (Cleveland, Ohio)
| | - Valbona Cali
- Lerner Research Institute, The Cleveland Clinic Foundation (Cleveland, Ohio)
| | - John D. Sandy
- Department of Orthopedic Surgery, Rush University (Chicago, IL)
| | - Anna Plaas
- Department of Internal Medicine (Rheumatology), Rush University (Chicago, IL)
| | - Vincent M. Wang
- Department of Biomedical Engineering and Mechanics, Virginia Tech (Blacksburg, VA)
| |
Collapse
|
6
|
Dupuis LE, Nelson EL, Hozik B, Porto SC, Rogers-DeCotes A, Fosang A, Kern CB. Adamts5-/- Mice Exhibit Altered Aggrecan Proteolytic Profiles That Correlate With Ascending Aortic Anomalies. Arterioscler Thromb Vasc Biol 2019; 39:2067-2081. [PMID: 31366218 PMCID: PMC6761016 DOI: 10.1161/atvbaha.119.313077] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Investigate the requirement of Aggrecan (Acan) cleavage during aortic wall development in a murine model with ADAMTS (a disintegrin-like and metalloprotease domain with thrombospondin-type motifs) 5 deficiency and bicuspid aortic valves. APPROACH Mice with altered extracellular matrix remodeling of proteoglycans will be examined for anomalies in ascending aortic wall development. Neo-epitope antibodies that recognize ADAMTS cleaved Acan fragments will be used to investigate the mechanistic requirement of Acan turnover, in aortic wall development. RESULTS Adamts5-/-;Smad2+/- mice exhibited a high penetrance of aortic anomalies (n=17/17); Adamts5-/-;Smad2+/- mice with bicuspid aortic valves (7/17) showed a higher number of anomalies than Adamts5-/-;Smad2+/- mice with tricuspid aortic valves. Single mutant Adamts5-/- mice also displayed a high penetrance of aortic anomalies (n=19/19) compared with wild type (n=1/11). Aortic anomalies correlated with Acan accumulation that was apparent at the onset of elastogenesis in Adamts5-/- mice. Neo-epitope antibodies that recognize the initial amino acids in the Acan cleaved fragments neo-FREEE, neo-GLGS, and neo-SSELE were increased in the Adamts5-/- aortas compared with WT. Conversely, neo-TEGE, which recognizes highly digested Acan core fragments, was reduced in Adamts5-/- mice. However, mice containing a mutation in the TEGE373↓374ALGSV site, rendering it noncleavable, had low penetrance of aortic anomalies (n=2/4). Acan neo-DIPEN and neo-FFGVG fragments were observed in the aortic adventitia; Acan neo-FFGVG was increased abnormally in the medial layer and overlapped with smooth muscle cell loss in Adamts5-/- aortas. CONCLUSIONS Disruption of ADAMTS5 Acan cleavage during development correlates with ascending aortic anomalies. These data indicate that the mechanism of ADAMTS5 Acan cleavage may be critical for normal aortic wall development.
Collapse
Affiliation(s)
- Loren E. Dupuis
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29464, Australia
| | - E. Lockett Nelson
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29464, Australia
| | - Brittany Hozik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29464, Australia
| | - Sarah C. Porto
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29464, Australia
| | - Alexandra Rogers-DeCotes
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29464, Australia
| | - Amanda Fosang
- Department of Paediatrics, University of Melbourne, the Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville 3052, Australia
| | - Christine B. Kern
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29464, Australia
| |
Collapse
|
7
|
Sikes KJ, Li J, Shen Q, Gao SG, Sandy JD, Plaas A, Wang VM. TGF-b1 or hypoxia enhance glucose metabolism and lactate production via HIF1A signaling in tendon cells. Connect Tissue Res 2018; 59:458-471. [PMID: 29447016 PMCID: PMC6175639 DOI: 10.1080/03008207.2018.1439483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Purpose/Aim of the study: Healthy tendons are maintained in homeostasis through controlled usage of glucose for energy and redox equilibrium. Tendon cell stress imposed by overuse injury or vascular insufficiency is accompanied by activation of wound healing pathways which facilitate an adaptive response and the restoration of homeostasis. To understand this response at the gene expression level we have studied the in vivo effects of injected TGF-β1 in a murine model of tendinopathy, as well as treatment of murine tendon explants with either TGF-β1 or hypoxia in vitro. METHODS AND RESULTS We provide evidence (from expression patterns and immunohistochemistry) that both in vivo and in vitro, the stress response in tendon cells may be metabolically controlled in part by glycolytic reprogramming. A major feature of the response to TGF-β1 or hypoxia is activation of the Warburg pathway which generates lactate from glucose under normoxia and thereby inhibits mitochondrial energy production. CONCLUSIONS We discuss the likely outcome of this major metabolic shift in terms of the potential benefits and damage to tendon and suggest how incorporation of this metabolic response into our understanding of initiation and progression of tendinopathies may offer new opportunities for diagnosis and the monitoring of therapies.
Collapse
Affiliation(s)
- Katie J Sikes
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W. Harrison Street, Suite 510, Chicago, IL 60612,Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607
| | - Jun Li
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, 1611 W. Harrison Street, Suite 510, Chicago, IL 60612
| | - Quan Shen
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, 1611 W. Harrison Street, Suite 510, Chicago, IL 60612,Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China 410008
| | - Shu-Guang Gao
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, 1611 W. Harrison Street, Suite 510, Chicago, IL 60612,Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China 410008
| | - John D Sandy
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, 1611 W. Harrison Street, Suite 510, Chicago, IL 60612
| | - Anna Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, 1611 W. Harrison Street, Suite 510, Chicago, IL 60612
| | - Vincent M Wang
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 339 Kelly Hall, 325 Stanger Street MC 0298, Blacksburg, VA, 24061,Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607
| |
Collapse
|
8
|
Bittermann A, Gao S, Rezvani S, Li J, Sikes KJ, Sandy J, Wang V, Lee S, Holmes G, Lin J, Plaas A. Oral Ibuprofen Interferes with Cellular Healing Responses in a Murine Model of Achilles Tendinopathy. ACTA ACUST UNITED AC 2018; 4. [PMID: 30687812 PMCID: PMC6347402 DOI: 10.23937/2572-3243.1510049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: The attempted healing of tendon after acute injury (overloading, partial tear or complete rupture) proceeds via the normal wound healing cascade involving hemostasis, inflammation, matrix synthesis and matrix remodeling. Depending on the degree of trauma and the nature of the post-injury milieu, a variable degree of healing and recovery of function occurs. Post-injury analgesia is often achieved with NSAIDs such as Ibuprofen, however there is increasing evidence that NSAID usage may interfere with the healing process. This study aimed to investigate the cellular mechanism by which IBU therapy might lead to a worsening of tendon pathology. Methods: We have examined the effect of oral Ibuprofen, on Achilles tendon healing in a TGFb1-induced murine tendinopathy model. Dosing was started 3 days after initial injury (acute cellular response phase) and continued for 22 days or started at 9 days after injury (transition to matrix regeneration phase) and given for 16 days. Cellular changes in tendon and surrounding peritenon were assessed using Hematoxylin/Eosin, chondroid accumulation with Safranin O and anti-aggrecan immunohistochemistry, and neo-vessel formation with GSI Lectin histochemistry. Markers of inflammation included histochemical localization of hyaluronan, immunohistochemistry of heavy chain 1 and TNFα-stimulated glycoprotein-6 (TSG6). Cell responses were further examined by RT-qPCR of 84 NFκB target genes and 84 wound healing genes. Biomechanical properties of tendons were evaluated by tensile testing. Results: At a clinically-relevant dosage, Ibuprofen prevented the process of remodeling/removal of the inflammatory matrix components, hyaluronan, HC1 and TSG6. Furthermore, the aberrant matrix remodeling was accompanied by activation at day 28 of genes (Col1a2, Col5a3, Plat, Ccl12, Itga4, Stat3, Vegfa, Mif, Col4a1, Rhoa, Relb, F8, Cxcl9, Lta, Ltb, Ccl12, Cdkn1a, Ccl22, Sele, Cd80), which were not activated at any time without the drug, and so appear most likely to be involved in the pathology. Of these, Vegfa, Col4a1, F8, Cxcl9 and Sele, have been shown to play a role in vascular remodeling, consistent with the appearance at 25 days of vasculogenic cell groups in the peritenon and fat pad stroma surrounding the Achilles of the drug-dosed mice. Tensile stiffness (p = 0.004) and elastic modulus (p = 0.012) were both decreased (relative to age-matched uninjured and non-dosed mice) in mice dosed with Ibuprofen from day 3 to day 25, whether injured or not. Conclusion: We conclude that the use of Ibuprofen for pain relief during inflammatory phases of tendinopathy, might interfere with the normal processes of extracellular matrix remodeling and cellular control of expression of inflammatory and wound healing genes. It is proposed that the known COX2-mediated anti-inflammatory effect of ibuprofen has detrimental effects on the turnover of a pro-inflammatory HA matrix produced in response to soft-tissue injury, thus preventing the switch to cellular responses associated with functional matrix remodeling and eventual healing.
Collapse
Affiliation(s)
- Adam Bittermann
- Department of Orthopaedic Surgery, Rush University Medical Center, USA.,Department of Orthopaedic Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, USA
| | - Shuguang Gao
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| | - Sabah Rezvani
- Department of Biomedical Engineering, Virginia Tech, USA
| | - Jun Li
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| | - Katie J Sikes
- Department of Clinical Sciences, Colorado State University, USA
| | - John Sandy
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Vincent Wang
- Department of Biomedical Engineering, Virginia Tech, USA
| | - Simon Lee
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - George Holmes
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Johnny Lin
- Department of Orthopaedic Surgery, Rush University Medical Center, USA
| | - Anna Plaas
- Department of Orthopaedic Surgery, Rush University Medical Center, USA.,Department of Internal Medicine (Rheumatology), Rush University Medical Center, USA
| |
Collapse
|
9
|
Thampatty BP, Wang JHC. Mechanobiology of young and aging tendons: In vivo studies with treadmill running. J Orthop Res 2018; 36:557-565. [PMID: 28976604 PMCID: PMC5839954 DOI: 10.1002/jor.23761] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/13/2017] [Indexed: 02/04/2023]
Abstract
Tendons are unique in the sense that they are constantly subjected to large mechanical loads and that they contain tendon-specific cells, including tenocytes and tendon stem/progenitor cells. The responses of these cells to mechanical loads can be anabolic or catabolic and as a result, change the biological properties of the tendon itself that may be beneficial or detrimental. On the other hand, aging also induces aberrant changes in cellular expression of various genes and production of various types of matrix proteins in the tendon, and consequently lead to tendon degeneration and impaired healing in aging tendons; both could be improved by moderate physiological mechanical loading such as treadmill running. This article gives an overview on the mechanobiology research of young and aging animal tendons using treadmill running model. The challenges in such treadmill running studies are also discussed. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:557-565, 2018.
Collapse
Affiliation(s)
- Bhavani P. Thampatty
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 210 Lothrop street, BST, E1640, Pittsburgh, PA 15213, USA
| | - James H-C. Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 210 Lothrop street, BST, E1640, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Fang F, Lake SP. Experimental evaluation of multiscale tendon mechanics. J Orthop Res 2017; 35:1353-1365. [PMID: 27878999 DOI: 10.1002/jor.23488] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/16/2016] [Indexed: 02/04/2023]
Abstract
Tendon's primary function is a mechanical link between muscle and bone. The hierarchical structure of tendon and specific compositional constituents are believed to be critical for proper mechanical function. With increased appreciation for tendon importance and the development of various technological advances, this review paper summarizes recent experimental approaches that have been used to study multiscale tendon mechanics, includes an overview of studies that have evaluated the role of specific tissue constituents, and also proposes challenges/opportunities facing tendon study. Tendon has been demonstrated to have specific structural characteristics (e.g., multi-level hierarchy, crimp pattern, helix) and complex mechanical properties (e.g., non-linearity, anisotropy, viscoelasticity). Physical mechanisms including uncrimping, fiber sliding, and collagen reorganization have been shown to govern tendon mechanical responses under both static and dynamic loading. Several tendon constituents with relatively small quantities have been suggested to play a role in its mechanics, although some results are conflicting. Further research should be performed to understand the interplay and communication of tendon mechanical properties across levels of the hierarchical structure, and further show how each of these components contribute to tendon mechanics. The studies summarized and discussed in this review have helped elucidate important aspects of multiscale tendon mechanics, which is a prerequisite for analyzing stress/strain transfer between multiple scales and identifying key principles of mechanotransduction. This information could further facilitate interpreting the functional diversity of tendons from different species, different locations, and even different developmental stages, and then better understand and identify fundamental concepts related to tendon degeneration, disease, and healing. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1353-1365, 2017.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130.,Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130.,Department of Orthopaedic Surgery, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130
| |
Collapse
|
11
|
The ADAMTS hyalectanase family: biological insights from diverse species. Biochem J 2017; 473:2011-22. [PMID: 27407170 DOI: 10.1042/bcj20160148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs (ADAMTS) family of metzincins are complex secreted proteins that have diverse functions during development. The hyalectanases (ADAMTS1, 4, 5, 8, 9, 15 and 20) are a subset of this family that have enzymatic activity against hyalectan proteoglycans, the processing of which has important implications during development. This review explores the evolution, expression and developmental functions of the ADAMTS family, focusing on the ADAMTS hyalectanases and their substrates in diverse species. This review gives an overview of how the family and their substrates evolved from non-vertebrates to mammals, the expression of the hyalectanases and substrates in different species and their functions during development, and how these functions are conserved across species.
Collapse
|
12
|
Mehdizadeh A, Gardiner BS, Lavagnino M, Smith DW. Predicting tenocyte expression profiles and average molecular concentrations in Achilles tendon ECM from tissue strain and fiber damage. Biomech Model Mechanobiol 2017; 16:1329-1348. [DOI: 10.1007/s10237-017-0890-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/18/2017] [Indexed: 11/28/2022]
|
13
|
Choi RK, Smith MM, Martin JH, Clarke JL, Dart AJ, Little CB, Clarke EC. Chondroitin sulphate glycosaminoglycans contribute to widespread inferior biomechanics in tendon after focal injury. J Biomech 2016; 49:2694-2701. [PMID: 27316761 DOI: 10.1016/j.jbiomech.2016.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/28/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022]
Abstract
Both mechanical and structural properties of tendon change after injury however the causal relationship between these properties is presently unclear. This study aimed to determine the extent of biomechanical change in post-injury tendon pathology and whether the sulphated glycosaminoglycans (glycosaminoglycans) present are a causal factor in these changes. Equine superficial digital flexor tendons (SDF tendons) were surgically-injured in vivo (n=6 injured, n=6 control). Six weeks later they were harvested and regionally dissected into twelve regions around the lesion (equal medial/lateral, proximal/distal). Glycosaminoglycans were removed by enzymatic (chondroitinase) treatment. Elastic modulus (modulus) and ultimate tensile strength (UTS) were measured under uniaxial tension to failure, and tendon glycosaminoglycan content was measured by spectrophotometry. Compared to healthy tendons, pathology induced by the injury decreased modulus (-38%; 95%CI -49% to -28%; P<0.001) and UTS (-38%; 95%CI -48% to -28%; P<0.001) and increased glycosaminoglycan content (+52%; 95%CI 39% - 64%; P<0.001) throughout the tendon. Chondroitinase-mediated glycosaminoglycan removal (50%; 95%CI 21-79%; P<0.001) in surgically-injured pathological tendons caused a significant increase in modulus (5.6MPa/µg removed; 95%CI 0.31-11; P=0.038) and UTS (1.0MPa per µg removed; 95%CI 0.043-2; P=0.041). These results demonstrate that the chondroitin/dermatan sulphate glycosaminoglycans that accumulate in pathological tendon post-injury are partly responsible for the altered biomechanical properties.
Collapse
Affiliation(s)
- Rachel K Choi
- Murray Maxwell Biomechanics Laboratory (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia; Raymond Purves Bone and Joint Research Laboratories (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia
| | - Margaret M Smith
- Raymond Purves Bone and Joint Research Laboratories (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia
| | - Joshua H Martin
- Murray Maxwell Biomechanics Laboratory (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia
| | - Jillian L Clarke
- Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| | - Andrew J Dart
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, University of Sydney, Camden, New South Wales, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia.
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia
| |
Collapse
|
14
|
Han WM, Heo SJ, Driscoll TP, Delucca JF, McLeod CM, Smith LJ, Duncan RL, Mauck RL, Elliott DM. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage. NATURE MATERIALS 2016; 15:477-84. [PMID: 26726994 PMCID: PMC4805445 DOI: 10.1038/nmat4520] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/24/2015] [Indexed: 05/05/2023]
Abstract
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Collapse
Affiliation(s)
- Woojin M Han
- Department of Bioengineering, University of Pennsylvania
| | - Su-Jin Heo
- Department of Bioengineering, University of Pennsylvania
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania
| | - Tristan P Driscoll
- Department of Bioengineering, University of Pennsylvania
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania
| | - John F Delucca
- Department of Biomedical Engineering, University of Delaware
| | - Claire M McLeod
- Department of Bioengineering, University of Pennsylvania
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania
| | - Lachlan J Smith
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania
| | - Randall L Duncan
- Department of Biomedical Engineering, University of Delaware
- Department of Biological Sciences, University of Delaware
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania
- Addresses for Correspondence: Dawn M. Elliott, Ph.D., Professor and Director of Biomedical Engineering, Department of Biomedical Engineering, University of Delaware, 161 Colburn Laboratory, Newark, DE 19716, Phone: (302) 831-4578, . Robert L. Mauck, Ph.D., Associate Professor of Orthopaedic Surgery and Bioengineering, Director, McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36 Street and Hamilton Walk, Philadelphia, PA 19104, Phone: (215) 898-3294,
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware
- Addresses for Correspondence: Dawn M. Elliott, Ph.D., Professor and Director of Biomedical Engineering, Department of Biomedical Engineering, University of Delaware, 161 Colburn Laboratory, Newark, DE 19716, Phone: (302) 831-4578, . Robert L. Mauck, Ph.D., Associate Professor of Orthopaedic Surgery and Bioengineering, Director, McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, 36 Street and Hamilton Walk, Philadelphia, PA 19104, Phone: (215) 898-3294,
| |
Collapse
|
15
|
Gorski DJ, Xiao W, Li J, Luo W, Lauer M, Kisiday J, Plaas A, Sandy J. Deletion of ADAMTS5 does not affect aggrecan or versican degradation but promotes glucose uptake and proteoglycan synthesis in murine adipose derived stromal cells. Matrix Biol 2015; 47:66-84. [DOI: 10.1016/j.matbio.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 01/22/2023]
|