1
|
Pineda Guzman RA, Naughton N, Majumdar S, Damon B, Kersh ME. Assessment of Mechanically Induced Changes in Helical Fiber Microstructure Using Diffusion Tensor Imaging. Ann Biomed Eng 2024; 52:832-844. [PMID: 38151645 DOI: 10.1007/s10439-023-03420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
Noninvasive methods to detect microstructural changes in collagen-based fibrous tissues are necessary to differentiate healthy from damaged tissues in vivo but are sparse. Diffusion Tensor Imaging (DTI) is a noninvasive imaging technique used to quantitatively infer tissue microstructure with previous work primarily focused in neuroimaging applications. Yet, it is still unclear how DTI metrics relate to fiber microstructure and function in musculoskeletal tissues such as ligament and tendon, in part because of the high heterogeneity inherent to such tissues. To address this limitation, we assessed the ability of DTI to detect microstructural changes caused by mechanical loading in tissue-mimicking helical fiber constructs of known structure. Using high-resolution optical and micro-computed tomography imaging, we found that static and fatigue loading resulted in decreased sample diameter and a re-alignment of the macro-scale fiber twist angle similar with the direction of loading. However, DTI and micro-computed tomography measurements suggest microstructural differences in the effect of static versus fatigue loading that were not apparent at the bulk level. Specifically, static load resulted in an increase in diffusion anisotropy and a decrease in radial diffusivity suggesting radially uniform fiber compaction. In contrast, fatigue loads resulted in increased diffusivity in all directions and a change in the alignment of the principal diffusion direction away from the constructs' main axis suggesting fiber compaction and microstructural disruptions in fiber architecture. These results provide quantitative evidence of the ability of DTI to detect mechanically induced changes in tissue microstructure that are not apparent at the bulk level, thus confirming its potential as a noninvasive measure of microstructure in helically architected collagen-based tissues, such as ligaments and tendons.
Collapse
Affiliation(s)
| | - Noel Naughton
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shreyan Majumdar
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Bruce Damon
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carle Clinical Imaging Research Program, Stephens Family Clinical Research Institute, Carle Health, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Science, Vanderbilt University, Nashville, TN, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Mariana E Kersh
- Department of Mechanical Science & Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science & Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Lee PY, Fryc G, Gnalian J, Wang B, Hua Y, Waxman S, Zhong F, Yang B, Sigal IA. Direct measurements of collagen fiber recruitment in the posterior pole of the eye. Acta Biomater 2024; 173:135-147. [PMID: 37967694 PMCID: PMC10843755 DOI: 10.1016/j.actbio.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Collagen is the main load-bearing component of the peripapillary sclera (PPS) and lamina cribrosa (LC) in the eye. Whilst it has been shown that uncrimping and recruitment of the PPS and LC collagen fibers underlies the macro-scale nonlinear stiffening of both tissues with increased intraocular pressure (IOP), the uncrimping and recruitment as a function of local stretch have not been directly measured. This knowledge is crucial to understanding their functions in bearing loads and maintaining tissue integrity. In this project we measured local stretch-induced collagen fiber bundle uncrimping and recruitment curves of the PPS and LC. Thin coronal samples of PPS and LC of sheep eyes were mounted and stretched biaxially quasi-statically using a custom system. At each step, we imaged the PPS and LC with instant polarized light microscopy and quantified pixel-level (1.5 μm/pixel) collagen fiber orientations. We used digital image correlation to measure the local stretch and quantified collagen crimp by the circular standard deviation of fiber orientations, or waviness. Local stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers than the LC at the low levels of stretch. At 10% stretch the curves crossed with 75% bundles recruited. The PPS had higher uncrimping rate and waviness remaining after recruitment than the LC: 0.9º vs. 0.6º and 3.1º vs. 2.7º. Altogether our findings support describing fiber recruitment of both PPS and LC with sigmoid curves, with the PPS recruiting faster and at lower stretch than the LC, consistent with a stiffer tissue. STATEMENT OF SIGNIFICANCE: Peripapillary sclera (PPS) and lamina cribrosa (LC) collagen recruitment behaviors are central to the nonlinear mechanical behavior of the posterior pole of the eye. How PPS and LC collagen fibers recruit under stretch is crucial to develop constitutive models of the tissues but remains unclear. We used image-based stretch testing to characterize PPS and LC collagen fiber bundle recruitment under local stretch. We found that fiber-level stretch-recruitment curves of PPS and LC approximated sigmoid functions. PPS recruited more fibers at a low stretch, but at 10% bundle stretch the two curves crossed with 75% bundles recruited. We also found that PPS and LC fibers had different uncrimping rates and non-zero waviness's when recruited.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gosia Fryc
- Department of Chemistry, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Gnalian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bingrui Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biomedical Engineering, University of Mississippi, University, MS, USA; Department of Mechanical Engineering, University of Mississippi, University, MS, USA
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fuqiang Zhong
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Review of human supraspinatus tendon mechanics. Part I: fatigue damage accumulation and failure. J Shoulder Elbow Surg 2022; 31:2671-2677. [PMID: 35931330 DOI: 10.1016/j.jse.2022.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023]
Abstract
Repetitive stress injuries to the rotator cuff, and particularly the supraspinatus tendon (SST), are highly prevalent and debilitating. These injuries typically occur through the application of cyclic load below the threshold necessary to cause acute tears, leading to accumulation of incremental damage that exceeds the body's ability to heal, resulting in decreased mechanical strength and increased risk of frank rupture at lower loads. Consistent progression of fatigue damage across multiple model systems suggests a generalized tendon response to overuse. This finding may allow for interventions before gross injury of the SST occurs. Further research into the human SST response to fatigue loading is necessary to characterize the fatigue life of the tendon, which will help determine the frequency, duration, and magnitude of load spectra the SST may experience before injury. Future studies may allow in vivo SST strain analysis during specific activities, generation of a human SST stress-cycle curve, and characterization of damage and repair related to repetitive tasks.
Collapse
|
4
|
Griffith KM, Hammer LC, Iannuzzi NP, Takatani KC, Hsu JE, Cotton JD, Gee AO, Gardner RJ, Lack WD. Review of human supraspinatus tendon mechanics. Part II: tendon healing response and characterization of tendon health. J Shoulder Elbow Surg 2022; 31:2678-2682. [PMID: 35803551 DOI: 10.1016/j.jse.2022.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023]
Abstract
Overuse injuries of the rotator cuff, particularly of the supraspinatus tendon (SST), are highly prevalent and debilitating in work, sport, and daily activities. Despite the clinical significance of these injuries, there remains a large degree of uncertainty regarding the pathophysiology of injury, optimal methods of nonoperative and operative repair, and how to adequately assess tendon injury and healing. The tendon response to fatigue damage resulting from overuse is different from that of acute rupture and results in either an adaptive (healing) or a maladaptive (degenerative) response. Factors associated with the degenerative response include increasing age, smoking, hypercholesterolemia, biological sex (variable by tendon), diabetes mellitus, and excessive load post fatigue damage. After injury, the average healing rate of tendon is approximately 1% per day and may be significantly influenced by biologic sex (females have lower collagen synthesis rates) and excessive load after damage. Although magnetic resonance imaging (MRI) is considered the gold standard in assessing acute tears as well as tendinopathic change in the SST, ultrasonography has proven to be a valuable tool to measure tendinopathic change in real time. Ultrasonography can determine multiple mechanical and structural parameters of the SST that are altered in fatigue loading. Thus, ultrasonography may be utilized to understand how these parameters change in response to SST overuse, and may aid in determining the activity level that places the SST at greater risk of rupture.
Collapse
Affiliation(s)
- Kyle M Griffith
- University of Washington School of Medicine, Seattle, WA, USA.
| | | | - Nicholas P Iannuzzi
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Orthopedics Section S-112-ORT, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Karen C Takatani
- Boeing Research & Technology, The Boeing Company, Seattle, WA, USA
| | - Jason Edward Hsu
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | | | - Albert O Gee
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | | | - William D Lack
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Orthopedics Section S-112-ORT, VA Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
5
|
Freedman BR, Adu-Berchie K, Barnum C, Fryhofer GW, Salka NS, Shetye S, Soslowsky LJ. Nonsurgical treatment reduces tendon inflammation and elevates tendon markers in early healing. J Orthop Res 2022; 40:2308-2319. [PMID: 34935170 PMCID: PMC9209559 DOI: 10.1002/jor.25251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/07/2021] [Accepted: 12/19/2021] [Indexed: 02/04/2023]
Abstract
Operative treatment is assumed to provide superior outcomes to nonoperative (conservative) treatment following Achilles tendon rupture, however, this remains controversial. This study explores the effect of surgical repair on Achilles tendon healing. Rat Achilles tendons (n = 101) were bluntly transected and were randomized into groups receiving repair or non-repair treatments. By 1 week after injury, repaired tendons had inferior mechanical properties, which continued to 3- and 6-week post-injury, evidenced by decreased dynamic modulus and failure stress. Transcriptomics analysis revealed >7000 differentially expressed genes between repaired and non-repaired tendons after 1-week post-injury. While repaired tendons showed enriched inflammatory gene signatures, non-repaired tendons showed increased tenogenic, myogenic, and mechanosensitive gene signatures, with >200-fold enrichment in Tnmd expression. Analysis of gastrocnemius muscle revealed elevated MMP activity in tendons receiving repair treatment, despite no differences in muscle fiber morphology. Transcriptional regulation analysis highlighted that the highest expressed transcription factors in repaired tendons were associated with inflammation (Nfκb, SpI1, RelA, and Stat1), whereas non-repaired tendons expressed markers associated with tissue development and mechano-activation (Smarca1, Bnc2, Znf521, Fbn1, and Gli3). Taken together, these data highlight distinct differences in healing mechanism occurring immediately following injury and provide insights for new therapies to further augment tendons receiving repaired and non-repaired treatments.
Collapse
Affiliation(s)
- Benjamin R Freedman
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Kwasi Adu-Berchie
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts, USA
| | - Carrie Barnum
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George W Fryhofer
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nabeel S Salka
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Snehal Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Freedman BR, Kuttler A, Beckmann N, Nam S, Kent D, Schuleit M, Ramazani F, Accart N, Rock A, Li J, Kurz M, Fisch A, Ullrich T, Hast MW, Tinguely Y, Weber E, Mooney DJ. Enhanced tendon healing by a tough hydrogel with an adhesive side and high drug-loading capacity. Nat Biomed Eng 2022; 6:1167-1179. [PMID: 34980903 PMCID: PMC9250555 DOI: 10.1038/s41551-021-00810-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Hydrogels that provide mechanical support and sustainably release therapeutics have been used to treat tendon injuries. However, most hydrogels are insufficiently tough, release drugs in bursts, and require cell infiltration or suturing to integrate with surrounding tissue. Here we report that a hydrogel serving as a high-capacity drug depot and combining a dissipative tough matrix on one side and a chitosan adhesive surface on the other side supports tendon gliding and strong adhesion (larger than 1,000 J m-2) to tendon on opposite surfaces of the hydrogel, as we show with porcine and human tendon preparations during cyclic-friction loadings. The hydrogel is biocompatible, strongly adheres to patellar, supraspinatus and Achilles tendons of live rats, boosted healing and reduced scar formation in a rat model of Achilles-tendon rupture, and sustainably released the corticosteroid triamcinolone acetonide in a rat model of patellar tendon injury, reducing inflammation, modulating chemokine secretion, recruiting tendon stem and progenitor cells, and promoting macrophage polarization to the M2 phenotype. Hydrogels with 'Janus' surfaces and sustained-drug-release functionality could be designed for a range of biomedical applications.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Andreas Kuttler
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Kent
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | | | | | - Nathalie Accart
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Anna Rock
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Markus Kurz
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Andreas Fisch
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Ullrich
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael W Hast
- Biedermann Lab for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Yann Tinguely
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Eckhard Weber
- Novartis Institutes for Biomedical Research, Basel, Switzerland.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
7
|
Al Makhzoomi AK, Kirk TB, Allison GT. A multiscale study of morphological changes in tendons following repeated cyclic loading. J Biomech 2021; 128:110790. [PMID: 34634539 DOI: 10.1016/j.jbiomech.2021.110790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022]
Abstract
The response of white New Zealand rabbit Achilles tendons to load was assessed using mechanical measures and confocal arthroscopy (CA). The progression of fatigue-loading-induced damage of the macro- (tenocyte morphology, fiber anisotropy and waviness), as well as the mechanical profile, were assessed within the same non-viable intact tendon in response to prolonged cyclic and static loading (up to four hours) at different strain levels (3%, 6% and 9%). Strain-mediated repeated loading induced a significant decline in mechanical function (p < 0.05) with increased strain and cycles. Mechanical and structural resilience was lost with repeated loading (p < 0.05) at macroscales. The lengthening of D-periodicity correlated strongly with the overall tendon mechanical changes and loss of spindle shape in tenocytes. This is the first study to provide a clear concurrent assessment of form (morphology) and function (mechanics) of tendons undergoing different strain-mediated repeated loading at multiple-scale assessments. This study identifies a variety of multiscale properties that may contribute to the understanding of mechanisms of tendon pathology.
Collapse
Affiliation(s)
- Anas K Al Makhzoomi
- School of Allied Health, Faculty of Health Science, Curtin University, Perth, Western Australia, Australia.
| | - Thomas B Kirk
- School of Science, Engineering and Technology, RMIT University Vietnam, Ho Chi Minh City, Vietnam
| | - Garry T Allison
- Research Office, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
8
|
Williamson PM, Freedman BR, Kwok N, Beeram I, Pennings J, Johnson J, Hamparian D, Cohen E, Galloway JL, Ramappa AJ, DeAngelis JP, Nazarian A. Tendinopathy and tendon material response to load: What we can learn from small animal studies. Acta Biomater 2021; 134:43-56. [PMID: 34325074 DOI: 10.1016/j.actbio.2021.07.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022]
Abstract
Tendinopathy is a debilitating disease that causes as much as 30% of all musculoskeletal consultations. Existing treatments for tendinopathy have variable efficacy, possibly due to incomplete characterization of the underlying pathophysiology. Mechanical load can have both beneficial and detrimental effects on tendon, as the overall tendon response depends on the degree, frequency, timing, and magnitude of the load. The clinical continuum model of tendinopathy offers insight into the late stages of tendinopathy, but it does not capture the subclinical tendinopathic changes that begin before pain or loss of function. Small animal models that use high tendon loading to mimic human tendinopathy may be able to fill this knowledge gap. The goal of this review is to summarize the insights from in-vivo animal studies of mechanically-induced tendinopathy and higher loading regimens into the mechanical, microstructural, and biological features that help characterize the continuum between normal tendon and tendinopathy. STATEMENT OF SIGNIFICANCE: This review summarizes the insights gained from in-vivo animal studies of mechanically-induced tendinopathy by evaluating the effect high loading regimens have on the mechanical, structural, and biological features of tendinopathy. A better understanding of the interplay between these realms could lead to improved patient management, especially in the presence of painful tendon.
Collapse
|
9
|
Al Makhzoomi AK, Kirk TB, Allison GT. An AFM study of the nanostructural response of New Zealand white rabbit Achilles tendons to cyclic loading. Microsc Res Tech 2021; 85:728-737. [PMID: 34632676 DOI: 10.1002/jemt.23944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023]
Abstract
The nanostructural response of New Zealand white rabbit Achilles tendons to a fatigue damage model was assessed quantitatively and qualitatively using the endpoint of dose assessments of each tendon from our previous study. The change in mechanical properties was assessed concurrently with nanostructural change in the same non-viable intact tendon. Atomic force microscopy was used to study the elongation of D-periodicities, and the changes were compared both within the same fibril bundle and between fibril bundles. D-periodicities increased due to both increased strain and increasing numbers of fatigue cycles. Although no significant difference in D-periodicity lengthening was found between fibril bundles, the lengthening of D-periodicity correlated strongly with the overall tendon mechanical changes. The accurate quantification of fibril elongation in response to macroscopic applied strain assisted in assessing the complex structure-function relationship in Achilles tendons.
Collapse
Affiliation(s)
- Anas K Al Makhzoomi
- School of Allied Health, Faculty of Health Science, Curtin University, Perth, Western Australia, Australia
| | - Thomas B Kirk
- School of Science, Engineering and Technology, RMIT University Vietnam, Ho Chi Minh City, Vietnam
| | - Garry T Allison
- Associate Deputy Vice-Chancellor, Research Excellence, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Quantifying supraspinatus tendon responses to exposures emulative of human physiological levels in an animal model. J Biomech 2021; 122:110476. [PMID: 33933860 DOI: 10.1016/j.jbiomech.2021.110476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Rotator cuff pathology typically originates in the supraspinatus tendon, but uncertainty exists on how combinations of glenohumeral elevation angle and load intensity influence responses of the intact, functional supraspinatus unit. This study exposed the supraspinatus tendon to mechanical loading scenarios emulative of derived muscle force and postural conditions measured in vivo to document its responses. Right shoulders from 48 Sprague-Dawley rats were placed into one of eight testing groups combining glenohumeral elevation angles (0/30/60/75°) and a high or low load intensity for 1500 cycles at 0.25 Hz using a custom mounting apparatus attached to a tensile testing system. Load intensities were derived from in vivo human partitional muscular activation levels collected previously and scaled to the animal model. Mechanical response variables examined included tangent stiffness and hysteresis, in addition to localized surface stretch ratios calculated via virtual tracking points. A significant three-way interaction (p = 0.0009) between elevation angle, load magnitude and cycle number occurred for tangent stiffness, with increasing angles, loads and cycles increasing stiffness by up to 49%. Longitudinal stretch ratios had significant interactions (p = 0.0396) with increasing elevation angles, load intensities and cycle numbers, and differences existed between the articular and bursal sides of the tendon. Complex interactions between angle, load and cycle number suggest higher abduction angles, increased load magnitude and higher loading cycles increase tangent stiffness, stretch ratios and hysteresis within the tendon.
Collapse
|
11
|
Mechanical properties of the different rotator cuff tendons in the rat are similarly and adversely affected by age. J Biomech 2021; 117:110249. [PMID: 33486263 DOI: 10.1016/j.jbiomech.2021.110249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
Rotator cuff tendon tears and tendinopathies are common injuries affecting a large portion of the population and can result in pain and joint dysfunction. Incidence of rotator cuff tears significantly increases with advancing age, and up to 90% of these tears involve the supraspinatus. Previous literature has shown that aging can lead to inferior mechanics, altered composition, and changes in structural properties of the supraspinatus. However, there is little known about changes in supraspinatus mechanical properties in context of other rotator cuff tendons. Alterations in tendon mechanical properties may indicate damage and an increased risk of rupture, and thus, the purpose of this study was to use a rat model to define age-related alterations in rotator cuff tendon mechanics to determine why the supraspinatus is more susceptible to tears due to aging than the infraspinatus, subscapularis, and teres minor. Fatigue, viscoelastic, and quasi-static properties were evaluated in juvenile, adult, aged, and geriatric rats. Aging ubiquitously and adversely affected all rotator cuff tendons tested, particularly leading to increased stiffness, decreased stress relaxation, and decreased fatigue secant and tangent moduli in geriatric animals, suggesting a common intrinsic mechanism due to aging in all rotator cuff tendons. This study demonstrates that aging has a significant effect on rotator cuff tendon mechanical properties, though the supraspinatus was not preferentially affected. Thus, we are unable to attribute the aging-associated increase in supraspinatus tears to its mechanical response alone.
Collapse
|
12
|
Zitnay JL, Jung GS, Lin AH, Qin Z, Li Y, Yu SM, Buehler MJ, Weiss JA. Accumulation of collagen molecular unfolding is the mechanism of cyclic fatigue damage and failure in collagenous tissues. SCIENCE ADVANCES 2020; 6:eaba2795. [PMID: 32923623 PMCID: PMC7455178 DOI: 10.1126/sciadv.aba2795] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/14/2020] [Indexed: 05/04/2023]
Abstract
Overuse injuries to dense collagenous tissues are common, but their etiology is poorly understood. The predominant hypothesis that micro-damage accumulation exceeds the rate of biological repair is missing a mechanistic explanation. Here, we used collagen hybridizing peptides to measure collagen molecular damage during tendon cyclic fatigue loading and computational simulations to identify potential explanations for our findings. Our results revealed that triple-helical collagen denaturation accumulates with increasing cycles of fatigue loading, and damage is correlated with creep strain independent of the cyclic strain rate. Finite-element simulations demonstrated that biphasic fluid flow is a possible fascicle-level mechanism to explain the rate dependence of the number of cycles and time to failure. Molecular dynamics simulations demonstrated that triple-helical unfolding is rate dependent, revealing rate-dependent mechanisms at multiple length scales in the tissue. The accumulation of collagen molecular denaturation during cyclic loading provides a long-sought "micro-damage" mechanism for the development of overuse injuries.
Collapse
Affiliation(s)
- Jared L. Zitnay
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Allen H. Lin
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yang Li
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - S. Michael Yu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey A. Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Orthopaedics and School of Computing, University of Utah, Salt Lake City, UT 84112, USA
- Corresponding author.
| |
Collapse
|
13
|
Zuskov A, Freedman BR, Gordon JA, Sarver JJ, Buckley MR, Soslowsky LJ. Tendon Biomechanics and Crimp Properties Following Fatigue Loading Are Influenced by Tendon Type and Age in Mice. J Orthop Res 2020; 38:36-42. [PMID: 31286548 PMCID: PMC6917867 DOI: 10.1002/jor.24407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/25/2019] [Indexed: 02/04/2023]
Abstract
In tendon, type-I collagen assembles together into fibrils, fibers, and fascicles that exhibit a wavy or crimped pattern that uncrimps with applied tensile loading. This structural property has been observed across multiple tendons throughout aging and may play an important role in tendon viscoelasticity, response to fatigue loading, healing, and development. Previous work has shown that crimp is permanently altered with the application of fatigue loading. This opens the possibility of evaluating tendon crimp as a clinical surrogate of tissue damage. The purpose of this study was to determine how fatigue loading in tendon affects crimp and mechanical properties throughout aging and between tendon types. Mouse patellar tendons (PT) and flexor digitorum longus (FDL) tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties at P150 and P570 days of age to model mature and aged tendon phenotypes (N = 10-11/group). Tendon type, fatigue loading, and aging were found to differentially affect tendon mechanical and crimp properties. FDL tendons had higher modulus and hysteresis, whereas the PT showed more laxity and toe region strain throughout aging. Crimp frequency was consistently higher in FDL compared with PT throughout fatigue loading, whereas the crimp amplitude was cycle dependent. This differential response based on tendon type and age further suggests that the FDL and the PT respond differently to fatigue loading and that this response is age-dependent. Together, our findings suggest that the mechanical and structural effects of fatigue loading are specific to tendon type and age in mice. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:36-42, 2020.
Collapse
Affiliation(s)
- Andrey Zuskov
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Benjamin R Freedman
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Joshua A Gordon
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph J Sarver
- Department of Biomedical Engineering, Drexel University, Philadelphia, Pennsylvania
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Lee AH, Elliott DM. Multi-Scale Loading and Damage Mechanisms of Plantaris and Rat Tail Tendons. J Orthop Res 2019; 37:1827-1837. [PMID: 30977538 PMCID: PMC6790141 DOI: 10.1002/jor.24309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/21/2019] [Accepted: 03/13/2019] [Indexed: 02/04/2023]
Abstract
Tendinopathy, degeneration of the tendon that leads to pain and dysfunction, is common in both sports and occupational settings, but multi-scale mechanisms for tendinopathy are still unknown. We recently showed that micro-scale sliding (shear) is responsible for both load transfer and damage mechanisms in the rat tail tendon; however, the rat tail tendon is a specialized non-load-bearing tendon, and thus the load transfer and damage mechanisms are still unknown for load-bearing tendons. The objective of this study was to investigate the load transfer and damage mechanisms of load-bearing tendons using the rat plantaris tendon. We demonstrated that micro-scale sliding is a key component for both mechanisms in the plantaris tendon, similar to the tail tendon. Namely, the micro-scale sliding was correlated with applied strain, demonstrating that load was transferred via micro-scale sliding in the plantaris and tail tendons. In addition, while the micro-scale strain fully recovered, the micro-scale sliding was non-recoverable and strain-dependent, and correlated with tissue-scale mechanical parameters. When the applied strain was normalized, the % magnitudes of non-recoverable sliding was similar between the plantaris and tail tendons. Statement of clinical significance: Understanding the mechanisms responsible for the pathogenesis and progression of tendinopathy can improve prevention and rehabilitation strategies and guide therapies and the design of engineered constructs. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1827-1837, 2019.
Collapse
Affiliation(s)
- Andrea H. Lee
- Department of Biomedical Engineering, University of Delaware
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware
| |
Collapse
|
15
|
Freedman BR, Rodriguez AB, Hillin CD, Weiss SN, Han B, Han L, Soslowsky LJ. Tendon healing affects the multiscale mechanical, structural and compositional response of tendon to quasi-static tensile loading. J R Soc Interface 2019; 15:rsif.2017.0880. [PMID: 29467258 DOI: 10.1098/rsif.2017.0880] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
Tendon experiences a variety of multiscale changes to its extracellular matrix during mechanical loading at the fascicle, fibre and fibril levels. For example, tensile loading of tendon increases its stiffness, with organization of collagen fibres, and increases cell strain in the direction of loading. Although applied macroscale strains correlate to cell and nuclear strains in uninjured tendon, the multiscale response during tendon healing remains unknown and may affect cell mechanosensing and response. Therefore, this study evaluated multiscale structure-function mechanisms in response to quasi-static tensile loading in uninjured and healing tendons. We found that tendon healing affected the macroscale mechanical and structural response to mechanical loading, evidenced by decreases in strain stiffening and collagen fibre realignment. At the micro- and nanoscales, healing resulted in increased collagen fibre disorganization, nuclear disorganization, decreased change in nuclear aspect ratio with loading, and decreased indentation modulus compared to uninjured tendons. Taken together, this work supports a new concept of nuclear strain transfer attenuation during tendon healing and identifies several multiscale properties that may contribute. Our work also provides benchmarks for the biomechanical microenvironments that tendon cells may experience following cell delivery therapies.
Collapse
Affiliation(s)
- Benjamin R Freedman
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Ashley B Rodriguez
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Cody D Hillin
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Stephanie N Weiss
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | - Biao Han
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Lin Han
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, 110 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA
| |
Collapse
|
16
|
Freedman BR, Mooney DJ. Biomaterials to Mimic and Heal Connective Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806695. [PMID: 30908806 PMCID: PMC6504615 DOI: 10.1002/adma.201806695] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/27/2019] [Indexed: 05/11/2023]
Abstract
Connective tissue is one of the four major types of animal tissue and plays essential roles throughout the human body. Genetic factors, aging, and trauma all contribute to connective tissue dysfunction and motivate the need for strategies to promote healing and regeneration. The goal here is to link a fundamental understanding of connective tissues and their multiscale properties to better inform the design and translation of novel biomaterials to promote their regeneration. Major clinical problems in adipose tissue, cartilage, dermis, and tendon are discussed that inspire the need to replace native connective tissue with biomaterials. Then, multiscale structure-function relationships in native soft connective tissues that may be used to guide material design are detailed. Several biomaterials strategies to improve healing of these tissues that incorporate biologics and are biologic-free are reviewed. Finally, important guidance documents and standards (ASTM, FDA, and EMA) that are important to consider for translating new biomaterials into clinical practice are highligted.
Collapse
Affiliation(s)
- Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
17
|
Hillin CD, Fryhofer GW, Freedman BR, Choi DS, Weiss SN, Huegel J, Soslowsky LJ. Effects of immobilization angle on tendon healing after achilles rupture in a rat model. J Orthop Res 2019; 37:562-573. [PMID: 30720208 PMCID: PMC6534419 DOI: 10.1002/jor.24241] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/29/2019] [Indexed: 02/04/2023]
Abstract
Conservative (non-operative) treatment of Achilles tendon ruptures is a common alternative to operative treatment. Following rupture, ankle immobilization in plantarflexion is thought to aid healing by restoring tendon end-to-end apposition. However, early activity may improve limb function, challenging the role of immobilization position on tendon healing, as it may affect loading across the injury site. This study investigated the effects of ankle immobilization angle in a rat model of Achilles tendon rupture. We hypothesized that manipulating the ankle from full plantarflexion into a more dorsiflexed position during the immobilization period would result in superior hindlimb function and tendon properties, but that prolonged casting in dorsiflexion would result in inferior outcomes. After Achilles tendon transection, animals were randomized into eight immobilization groups ranging from full plantarflexion (160°) to mid-point (90°) to full dorsiflexion (20°), with or without angle manipulation. Tendon properties and ankle function were influenced by ankle immobilization position and time. Tendon lengthening occurred after 1 week at 20° compared to more plantarflexed angles, and was associated with loss of propulsion force. Dorsiflexing the ankle during immobilization from 160° to 90° produced a stiffer, more aligned tendon, but did not lead to functional changes compared to immobilization at 160°. Although more dorsiflexed immobilization can enhance tissue properties and function of healing Achilles tendon following rupture, full dorsiflexion creates significant tendon elongation regardless of application time. This study suggests that the use of moderate plantarflexion and earlier return to activity can provide improved clinical outcomes. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Cody D. Hillin
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - George W. Fryhofer
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - Benjamin R. Freedman
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - Daniel S. Choi
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - Stephanie N. Weiss
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - Julianne Huegel
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| | - Louis J. Soslowsky
- McKay Orthopaedic LaboratoryUniversity of Pennsylvania110 Stemmler Hall, 3450 Hamilton WalkPhiladelphiaPennsylvania19104‐6081
| |
Collapse
|
18
|
Freedman BR, Rodriguez AB, Leiphart RJ, Newton JB, Ban E, Sarver JJ, Mauck RL, Shenoy VB, Soslowsky LJ. Dynamic Loading and Tendon Healing Affect Multiscale Tendon Properties and ECM Stress Transmission. Sci Rep 2018; 8:10854. [PMID: 30022076 PMCID: PMC6052000 DOI: 10.1038/s41598-018-29060-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is the primary biomechanical environment that interacts with tendon cells (tenocytes). Stresses applied via muscle contraction during skeletal movement transfer across structural hierarchies to the tenocyte nucleus in native uninjured tendons. Alterations to ECM structural and mechanical properties due to mechanical loading and tissue healing may affect this multiscale strain transfer and stress transmission through the ECM. This study explores the interface between dynamic loading and tendon healing across multiple length scales using living tendon explants. Results show that macroscale mechanical and structural properties are inferior following high magnitude dynamic loading (fatigue) in uninjured living tendon and that these effects propagate to the microscale. Although similar macroscale mechanical effects of dynamic loading are present in healing tendon compared to uninjured tendon, the microscale properties differed greatly during early healing. Regression analysis identified several variables (collagen and nuclear disorganization, cellularity, and F-actin) that directly predict nuclear deformation under loading. Finite element modeling predicted deficits in ECM stress transmission following fatigue loading and during healing. Together, this work identifies the multiscale response of tendon to dynamic loading and healing, and provides new insight into microenvironmental features that tenocytes may experience following injury and after cell delivery therapies.
Collapse
Affiliation(s)
- Benjamin R Freedman
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ashley B Rodriguez
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan J Leiphart
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph B Newton
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Ehsan Ban
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph J Sarver
- Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - Robert L Mauck
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Lee AH, Elliott DM. Freezing does not alter multiscale tendon mechanics and damage mechanisms in tension. Ann N Y Acad Sci 2017; 1409:85-94. [PMID: 29068534 DOI: 10.1111/nyas.13460] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022]
Abstract
It is common in biomechanics to use previously frozen tissues, where it is assumed that the freeze-thaw process does not cause consequential mechanical or structural changes. We have recently quantified multiscale tendon mechanics and damage mechanisms using previously frozen tissue, where damage was defined as an irreversible change in the microstructure that alters the macroscopic mechanical parameters. Because freezing has been shown to alter tendon microstructures, the objective of this study was to determine if freezing alters tendon multiscale mechanics and damage mechanisms. Multiscale testing using a protocol that was designed to evaluate tendon damage (tensile stress-relaxation followed by unloaded recovery) was performed on fresh and previously frozen rat tail tendon fascicles. At both the fascicle and fibril levels, there was no difference between the fresh and frozen groups for any of the parameters, suggesting that there is no effect of freezing on tendon mechanics. After unloading, the microscale fibril strain fully recovered, and interfibrillar sliding only partially recovered, suggesting that the tendon damage is localized to the interfibrillar structures and that mechanisms of damage are the same in both fresh and previously frozen tendons.
Collapse
Affiliation(s)
- Andrea H Lee
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| |
Collapse
|
20
|
Temporal Healing of Achilles Tendons After Injury in Rodents Depends on Surgical Treatment and Activity. J Am Acad Orthop Surg 2017; 25:635-647. [PMID: 28837456 PMCID: PMC5603242 DOI: 10.5435/jaaos-d-16-00620] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Achilles tendon ruptures affect 15 of 100,000 women and 55 of 100,000 men each year. Controversy continues to exist regarding optimal treatment and rehabilitation protocols. The objective of this study was to investigate the temporal effects of surgical repair and immobilization or activity on Achilles tendon healing and limb function after complete transection in rodents. METHODS Injured tendons were repaired (n = 64) or left nonrepaired (n = 64). The animals in both cohorts were further randomized into groups immobilized in plantar flexion for 1, 3, or 6 weeks that later resumed cage and treadmill activity for 5, 3, or 0 weeks, respectively (n = 36 for each regimen), which were euthanized at 6 weeks after injury, or into groups immobilized for 1 week and then euthanized (n = 20). RESULTS At 6 weeks after injury, the groups that had 1 week of immobilization and 5 weeks of activity had increased range of motion and decreased ankle joint toe stiffness compared with the groups that had 3 weeks of immobilization and 3 weeks of activity. The groups with 6 weeks of immobilization and no activity period had decreased tendon cross-sectional area but increased tendon echogenicity and collagen alignment. Surgical treatment dramatically decreased fatigue cycles to failure in repaired tendons from groups with 1 week of immobilization and 5 weeks of activity. Normalized comparisons between 1-week and 6-week postinjury data demonstrated that changes in tendon healing properties (area, alignment, and echogenicity) were maximized by 1 week of immobilization and 5 weeks of activity, compared with 6 weeks of immobilization and no activity period. DISCUSSION This study builds on an earlier study of Achilles tendon fatigue mechanics and functional outcomes during early healing by examining the temporal effects of different immobilization and/or activity regimens after initial postinjury immobilization. CONCLUSION This study demonstrates how the temporal postinjury healing response of rodent Achilles tendons depends on both surgical treatment and the timing of immobilization/activity timing. The different pattern of healing and qualities of repaired and nonrepaired tendons suggest that two very different healing processes may occur, depending on the chosen immobilization/activity regimen.
Collapse
|
21
|
Lee AH, Szczesny SE, Santare MH, Elliott DM. Investigating mechanisms of tendon damage by measuring multi-scale recovery following tensile loading. Acta Biomater 2017; 57:363-372. [PMID: 28435080 PMCID: PMC6688648 DOI: 10.1016/j.actbio.2017.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/28/2023]
Abstract
Tendon pathology is associated with damage. While tendon damage is likely initiated by mechanical loading, little is known about the specific etiology. Damage is defined as an irreversible change in the microstructure that alters the macroscopic mechanical parameters. In tendon, the link between mechanical loading and microstructural damage, resulting in macroscopic changes, is not fully elucidated. In addition, tendon damage at the macroscale has been proposed to initiate when tendon is loaded beyond a strain threshold, yet the metrics to define the damage threshold are not determined. We conducted multi-scale mechanical testing to investigate the mechanism of tendon damage by simultaneously quantifying macroscale mechanical and microstructural changes. At the microscale, we observe full recovery of the fibril strain and only partial recovery of the interfibrillar sliding, indicating that the damage initiates at the interfibrillar structures. We show that non-recoverable sliding is a mechanism for tendon damage and is responsible for the macroscale decreased linear modulus and elongated toe-region observed at the fascicle-level, and these macroscale properties are appropriate metrics that reflect tendon damage. We concluded that the inflection point of the stress-strain curve represents the damage threshold and, therefore, may be a useful parameter for future studies. Establishing the mechanism of damage at multiple length scales can improve prevention and rehabilitation strategies for tendon pathology. STATEMENT OF SIGNIFICANCE Tendon pathology is associated with mechanically induced damage. Damage, as defined in engineering, is an irreversible change in microstructure that alters the macroscopic mechanical properties. Although microstructural damage and changes to macroscale mechanics are likely, this link to microstructural change was not yet established. We conducted multiscale mechanical testing to investigate the mechanism of tendon damage by simultaneously quantifying macroscale mechanical and microstructural changes. We showed that non-recoverable sliding between collagen fibrils is a mechanism for tendon damage. Establishing the mechanism of damage at multiple length scales can improve prevention and rehabilitation strategies for tendon pathology.
Collapse
Affiliation(s)
- Andrea H Lee
- Department of Biomedical Engineering, University of Delaware, United States
| | - Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, United States
| | - Michael H Santare
- Department of Mechanical Engineering, University of Delaware, United States
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, United States.
| |
Collapse
|
22
|
Freedman BR, Fryhofer GW, Salka NS, Raja HA, Hillin CD, Nuss CA, Farber DC, Soslowsky LJ. Mechanical, histological, and functional properties remain inferior in conservatively treated Achilles tendons in rodents: Long term evaluation. J Biomech 2017; 56:55-60. [PMID: 28366437 PMCID: PMC5393933 DOI: 10.1016/j.jbiomech.2017.02.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/31/2022]
Abstract
Conservative treatment (non-operative) of Achilles tendon ruptures is suggested to produce equivalent capacity for return to function; however, long term results and the role of return to activity (RTA) for this treatment paradigm remain unclear. Therefore, the objective of this study was to evaluate the long term response of conservatively treated Achilles tendons in rodents with varied RTA. Sprague Dawley rats (n=32) received unilateral blunt transection of the Achilles tendon followed by randomization into groups that returned to activity after 1-week (RTA1) or 3-weeks (RTA3) of limb casting in plantarflexion, before being euthanized at 16-weeks post-injury. Uninjured age-matched control animals were used as a control group (n=10). Limb function, passive joint mechanics, tendon properties (mechanical, histological), and muscle properties (histological, immunohistochemical) were evaluated. Results showed that although hindlimb ground reaction forces and range of motion returned to baseline levels by 16-weeks post-injury regardless of RTA, ankle joint stiffness remained altered. RTA1 and RTA3 groups both exhibited no differences in fatigue properties; however, the secant modulus, hysteresis, and laxity were inferior compared to uninjured age-matched control tendons. Despite these changes, tendons 16-weeks post-injury achieved secant stiffness levels of uninjured tendons. RTA1 and RTA3 groups had no differences in histological properties, but had higher cell numbers compared to control tendons. No changes in gastrocnemius fiber size or type in the superficial or deep regions were detected, except for type 2x fiber fraction. Together, this work highlights RTA-dependent deficits in limb function and tissue-level properties in long-term Achilles tendon and muscle healing.
Collapse
Affiliation(s)
| | - George W Fryhofer
- McKay Orthopedic Research Laboratory, Philadelphia, PA, United States
| | - Nabeel S Salka
- McKay Orthopedic Research Laboratory, Philadelphia, PA, United States
| | - Harina A Raja
- McKay Orthopedic Research Laboratory, Philadelphia, PA, United States
| | - Cody D Hillin
- McKay Orthopedic Research Laboratory, Philadelphia, PA, United States
| | - Courtney A Nuss
- McKay Orthopedic Research Laboratory, Philadelphia, PA, United States
| | - Daniel C Farber
- McKay Orthopedic Research Laboratory, Philadelphia, PA, United States
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, Philadelphia, PA, United States.
| |
Collapse
|
23
|
Lavagnino M, Brooks AE, Oslapas AN, Gardner KL, Arnoczky SP. Crimp length decreases in lax tendons due to cytoskeletal tension, but is restored with tensional homeostasis. J Orthop Res 2017; 35:573-579. [PMID: 27878991 DOI: 10.1002/jor.23489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/10/2016] [Indexed: 02/04/2023]
Abstract
Collagen crimp morphology is thought to contribute to the material behavior of tendons and may reflect the local mechanobiological environment of tendon cells. Following loss of collagen tension in tendons, tenocytes initiate a contraction response that shortens tendon length which, in turn, may alter crimp patterns. We hypothesized that changes in the crimp pattern of tendons are the result of cell-based contractions which are governed by relative tautness/laxity of the collagen matrix. To determine the relationship between crimp pattern and tensional homeostasis, rat tail tendon fascicles (RTTfs) were either allowed to freely contract or placed in clamps with 10% laxity for 7 days. The freely contracting RTTfs showed a significant decrease in percent crimp length on both day 5 (3.66%) and day 7 (7.70%). This decrease in crimp length significantly correlated with the decrease in freely contracting RTTf length. Clamped RTTfs demonstrated a significant decrease in percent crimp length on day 5 (1.7%), but no significant difference in percent crimp length on day 7 (0.57%). The results demonstrate that the tendon crimp pattern appears to be under cellular control and is a reflection of the local mechanobiological environment of the extracellular matrix. The ability of tenocytes to actively alter the crimp pattern of collagen fibers also suggests that tenocytes can influence the viscoelastic properties of tendon. Understanding the interactions between tenocytes and their extracellular matrix may lead to further insight into the role tendon cells play in maintaining tendon heath and homeostasis. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:573-579, 2017.
Collapse
Affiliation(s)
- Michael Lavagnino
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, Michigan, 48824
| | - Andrew E Brooks
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, Michigan, 48824
| | - Anna N Oslapas
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, Michigan, 48824
| | - Keri L Gardner
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, Michigan, 48824
| | - Steven P Arnoczky
- Laboratory for Comparative Orthopaedic Research, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, Michigan, 48824
| |
Collapse
|
24
|
Szczesny SE, Driscoll TP, Tseng HY, Liu PC, Heo SJ, Mauck RL, Chao PHG. Crimped Nanofibrous Biomaterials Mimic Microstructure and Mechanics of Native Tissue and Alter Strain Transfer to Cells. ACS Biomater Sci Eng 2016; 3:2869-2876. [PMID: 29147681 DOI: 10.1021/acsbiomaterials.6b00646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To fully recapitulate tissue microstructure and mechanics, fiber crimping must exist within biomaterials used for tendon/ligament engineering. Existing crimped nanofibrous scaffolds produced via electrospinning are dense materials that prevent cellular infiltration into the scaffold interior. In this study, we used a sacrificial fiber population to increase the scaffold porosity and evaluated the effect on fiber crimping. We found that increasing scaffold porosity increased fiber crimping and ensured that the fibers properly uncrimped as the scaffolds were stretched by minimizing fiber-fiber interactions. Constitutive modeling demonstrated that the fiber uncrimping produced a nonlinear mechanical behavior similar to that of native tendon and ligament. Interestingly, fiber crimping altered strain transmission to the nuclei of cells seeded on the scaffolds, which may account for previously observed changes in gene expression. These crimped biomaterials are useful for developing functional fiber-reinforced tissues and for studying the effects of altered fiber crimping due to damage or degeneration.
Collapse
Affiliation(s)
- Spencer E Szczesny
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Tristan P Driscoll
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hsiao-Yun Tseng
- Institute of Biomedical Engineering, School of Medicine and School of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Pang-Ching Liu
- Institute of Biomedical Engineering, School of Medicine and School of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Pen-Hsiu G Chao
- Institute of Biomedical Engineering, School of Medicine and School of Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
25
|
Freedman BR, Gordon JA, Bhatt PB, Pardes AM, Thomas SJ, Sarver JJ, Riggin CN, Tucker JJ, Williams AW, Zanes RC, Hast MW, Farber DC, Silbernagel KG, Soslowsky LJ. Nonsurgical treatment and early return to activity leads to improved Achilles tendon fatigue mechanics and functional outcomes during early healing in an animal model. J Orthop Res 2016; 34:2172-2180. [PMID: 27038306 PMCID: PMC5047851 DOI: 10.1002/jor.23253] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/29/2016] [Indexed: 02/04/2023]
Abstract
Achilles tendon ruptures are common and devastating injuries; however, an optimized treatment and rehabilitation protocol has yet to be defined. Therefore, the objective of this study was to investigate the effects of surgical repair and return to activity on joint function and Achilles tendon properties after 3 weeks of healing. Sprague-Dawley rats (N = 100) received unilateral blunt transection of their Achilles tendon. Animals were then randomized into repaired or non-repaired treatments, and further randomized into groups that returned to activity after 1 week (RTA1) or after 3 weeks (RTA3) of limb casting in plantarflexion. Limb function, passive joint mechanics, and tendon properties (mechanical, organizational using high frequency ultrasound, histological, and compositional) were evaluated. Results showed that both treatment and return to activity collectively affected limb function, passive joint mechanics, and tendon properties. Functionally, RTA1 animals had increased dorsiflexion ROM and weight bearing of the injured limb compared to RTA3 animals 3-weeks post-injury. Such functional improvements in RTA1 tendons were evidenced in their mechanical fatigue properties and increased cross sectional area compared to RTA3 tendons. When RTA1 was coupled with nonsurgical treatment, superior fatigue properties were achieved compared to repaired tendons. No differences in cell shape, cellularity, GAG, collagen type I, or TGF-β staining were identified between groups, but collagen type III was elevated in RTA3 repaired tendons. The larger tissue area and increased fatigue resistance created in RTA1 tendons may prove critical for optimized outcomes in early Achilles tendon healing following complete rupture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2172-2180, 2016.
Collapse
Affiliation(s)
- BR Freedman
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - JA Gordon
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - PB Bhatt
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - AM Pardes
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - SJ Thomas
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Department of Kinesiology, Temple University, Philadelphia, PA, USA
| | - JJ Sarver
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Department of Biomedical Engineering, Drexel University, Philadelphia, PA, USA
| | - CN Riggin
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - JJ Tucker
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - AW Williams
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - RC Zanes
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - MW Hast
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - DC Farber
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - KG Silbernagel
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - LJ Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
26
|
Lavagnino M, Oslapas AN, Gardner KL, Arnoczky SP. Hypoxia inhibits primary cilia formation and reduces cell-mediated contraction in stress-deprived rat tail tendon fascicles. Muscles Ligaments Tendons J 2016; 6:193-197. [PMID: 27900292 DOI: 10.11138/mltj/2016.6.2.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hypoxia, which is associated with chronic tendinopathy, has recently been shown to decrease the mechanosensitivity of some cells. Therefore, the purpose of this study was to determine the effect of hypoxia on the formation of elongated primary cilia (a mechanosensing organelle of tendon cells) in vitro and to determine the effect of hypoxia on cell-mediated contraction of stress-deprived rat tail tendon fascicles (RTTfs). METHODS Tendon cells isolated from RTTfs were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions for 24 hours. The cells were then stained for tubulin and the number of cells with elongated cilia counted. RTTfs from 1-month-old male Sprague-Dawley rats were also cultured under hypoxic and normoxic conditions for three days and tendon length measured daily. RESULTS A significant (p=0.002) decrease in the percent of elongated cilia was found in cells maintained in hypoxic conditions (54.1%±12.2) when compared in normoxic conditions (71.7%±6.32). RTTfs in hypoxia showed a significant decrease in the amount of contraction compared to RTTfs in normoxia after two (p=0.007) and three (p=0.001) days. CONCLUSION The decreased incidence of elongated primary cilia in a hypoxic environment, as well as the decreased mechanoresponsiveness of tendon cells under these conditions may relate to the inability of some cases of chronic tendinopathy to respond to strain-based rehabilitation modalities (i.e. eccentric loading).
Collapse
Affiliation(s)
- Michael Lavagnino
- Laboratory for Comparative Orthopaedic Research, Michigan State University, East Lansing, USA
| | - Anna N Oslapas
- Laboratory for Comparative Orthopaedic Research, Michigan State University, East Lansing, USA
| | - Keri L Gardner
- Laboratory for Comparative Orthopaedic Research, Michigan State University, East Lansing, USA
| | - Steven P Arnoczky
- Laboratory for Comparative Orthopaedic Research, Michigan State University, East Lansing, USA
| |
Collapse
|
27
|
Fryhofer GW, Freedman BR, Hillin CD, Salka NS, Pardes AM, Weiss SN, Farber DC, Soslowsky LJ. Postinjury biomechanics of Achilles tendon vary by sex and hormone status. J Appl Physiol (1985) 2016; 121:1106-1114. [PMID: 27633741 DOI: 10.1152/japplphysiol.00620.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022] Open
Abstract
Achilles tendon ruptures are common injuries. Sex differences are present in mechanical properties of uninjured Achilles tendon, but it remains unknown if these differences extend to tendon healing. We hypothesized that ovariectomized females (OVX) and males would exhibit inferior postinjury tendon properties compared with females. Male, female, and OVX Sprague-Dawley rats (n = 32/group) underwent acclimation and treadmill training before blunt transection of the Achilles tendon midsubstance. Injured hindlimbs were immobilized for 1 wk, followed by gradual return to activity and assessment of active and passive hindlimb function. Animals were euthanized at 3 or 6 wk postinjury to assess tendon structure, mechanics, and composition. Passive ankle stiffness and range of motion were superior in females at 3 wk; however, by 6 wk, passive and active function were similar in males and females but remained inferior in OVX. At 6 wk, female tendons had greater normalized secant modulus, viscoelastic behavior, and laxity compared with males. Normalized secant modulus, cross-sectional area and tendon glycosaminoglycan composition were inferior in OVX compared with females at 6 wk. Total fatigue cycles until tendon failure were similar among groups. Postinjury muscle fiber size was better preserved in females compared with males, and females had greater collagen III at the tendon injury site compared with males at 6 wk. Despite male and female Achilles tendons withstanding similar durations of fatigue loading, early passive hindlimb function and tendon mechanical properties, including secant modulus, suggest superior healing in females. Ovarian hormone loss was associated with inferior Achilles tendon healing.
Collapse
Affiliation(s)
- George W Fryhofer
- McKay Orthopaedic Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin R Freedman
- McKay Orthopaedic Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cody D Hillin
- McKay Orthopaedic Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nabeel S Salka
- McKay Orthopaedic Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam M Pardes
- McKay Orthopaedic Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie N Weiss
- McKay Orthopaedic Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel C Farber
- McKay Orthopaedic Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Louis J Soslowsky
- McKay Orthopaedic Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Chao YH, Huang SY, Yang RC, Sun JS. Tissue transglutaminase is involved in mechanical load-induced osteogenic differentiation of human ligamentum flavum cells. Connect Tissue Res 2016; 57:307-18. [PMID: 27115725 DOI: 10.1080/03008207.2016.1181062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mechanical load-induced osteogenic differentiation might be the key cellular event in the calcification and ossification of ligamentum flavum. The aim of this study was to investigate the influence of tissue transglutaminase (TGM2) on mechanical load-induced osteogenesis of ligamentum flavum cells. Human ligamentum flavum cells were obtained from 12 patients undergoing lumbar spine surgery. Osteogenic phenotypes of ligamentum flavum cells, such as alkaline phosphatase (ALP), Alizarin red-S stain, and gene expression of osteogenic makers were evaluated following the administration of mechanical load and BMP-2 treatment. The expression of TGM2 was evaluated by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA) analysis. Our results showed that mechanical load in combination with BMP-2 enhanced calcium deposition and ALP activity. Mechanical load significantly increased ALP and OC gene expression on day 3, whereas BMP-2 significantly increased ALP, OPN, and Runx2 on day 7. Mechanical load significantly induced TGM2 gene expression and enzyme activity in human ligamentum flavum cells. Exogenous TGM2 increased ALP and OC gene expression; while, inhibited TG activity significantly attenuated mechanical load-induced and TGM2-induced ALP activity. In summary, mechanical load-induced TGM2 expression and enzyme activity is involved in the progression of the calcification of ligamentum flavum.
Collapse
Affiliation(s)
- Yuan-Hung Chao
- a School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University , Taipei , Taiwan
| | - Shih-Yung Huang
- b Institute of Biomedical Engineering, National Yang-Ming University , Taipei , Taiwan
| | - Ruei-Cheng Yang
- c Department of Orthopedic Surgery , Taipei City Hospital Zhongxing Branch , Taipei , Taiwan
| | - Jui-Sheng Sun
- d Department of Orthopedic Surgery , College of Medicine, National Taiwan University , Taipei , Taiwan.,e Department of Orthopedic Surgery , National Taiwan University Hospital , Taipei , Taiwan.,f Biomimetic Systems Research Center, National Chiao Tung University , Hsin-Chu , Taiwan
| |
Collapse
|
29
|
Males have Inferior Achilles Tendon Material Properties Compared to Females in a Rodent Model. Ann Biomed Eng 2016; 44:2901-2910. [PMID: 27150673 DOI: 10.1007/s10439-016-1635-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/29/2016] [Indexed: 01/08/2023]
Abstract
The Achilles tendon is the most commonly ruptured tendon in the human body. Numerous studies have reported incidence of these injuries to be upwards of five times as common in men than women. Therefore, the objective of this study was to investigate the sex- and hormone-specific differences between Achilles tendon and muscle between female, ovariectomized female (ovarian hormone deficient), and male rats. Uninjured tissues were collected from all groups for mechanical, structural, and histological analysis. Our results showed that while cross-sectional area and failure load were increased in male tendons, female tendons exhibited superior tendon material properties and decreased muscle fiber size. Specifically, linear and dynamic moduli were increased while viscoelastic properties (e.g., hysteresis, percent relaxation) were decreased in female tendons, suggesting greater resistance to deformation under load and more efficient energy transfer, respectively. No differences were identified in tendon organization, cell shape, cellularity, or proteoglycan content. Additionally, no differences in muscle fiber type distribution were observed between groups. In conclusion, inferior tendon mechanical properties and increased muscle fiber size may explain the increased susceptibility for Achilles tendon injury observed clinically in men compared to women.
Collapse
|
30
|
Connizzo BK, Adams SM, Adams TH, Jawad AF, Birk DE, Soslowsky LJ. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships. J Biomech 2016; 49:1649-1657. [PMID: 27067362 DOI: 10.1016/j.jbiomech.2016.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/11/2016] [Accepted: 03/28/2016] [Indexed: 12/26/2022]
Abstract
Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon.
Collapse
Affiliation(s)
- Brianne K Connizzo
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Thomas H Adams
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Abbas F Jawad
- Division of Biostatistics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, United States.
| |
Collapse
|
31
|
Connizzo BK, Han L, Birk DE, Soslowsky LJ. Collagen V-heterozygous and -null supraspinatus tendons exhibit altered dynamic mechanical behaviour at multiple hierarchical scales. Interface Focus 2016; 6:20150043. [PMID: 26855746 DOI: 10.1098/rsfs.2015.0043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tendons function using a unique set of mechanical properties governed by the extracellular matrix and its ability to respond to varied multi-axial loads. Reduction of collagen V expression, such as in classic Ehlers-Danlos syndrome, results in altered fibril morphology and altered macroscale mechanical function in both clinical and animal studies, yet the mechanism by which changes at the fibril level lead to macroscale functional changes has not yet been investigated. This study addresses this by defining the multiscale mechanical response of wild-type, collagen V-heterozygous and -null supraspinatus tendons. Tendons were subjected to mechanical testing and analysed for macroscale properties, as well as microscale (fibre re-alignment) and nanoscale (fibril deformation and sliding) responses. In many macroscale parameters, results showed a dose-dependent response with severely decreased properties in the null group. In addition, both heterozygous and null groups responded to load faster than in wild-type tendons via earlier fibre re-alignment and fibril stretch. However, the heterozygous group exhibited increased fibril sliding, while the null group exhibited no fibril sliding. These studies demonstrate that dynamic responses play an important role in determining overall function and that collagen V is a critical regulator in the development of these relationships.
Collapse
Affiliation(s)
- Brianne K Connizzo
- McKay Orthopaedic Research Laboratory , University of Pennsylvania , 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081 , USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems , Drexel University , 3141 Chestnut Street, Philadelphia, PA 19104 , USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology , Morsani College of Medicine, University of South Florida , Tampa, FL 33612 , USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory , University of Pennsylvania , 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081 , USA
| |
Collapse
|
32
|
Freedman BR, Bade ND, Riggin CN, Zhang S, Haines PG, Ong KL, Janmey PA. The (dys)functional extracellular matrix. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3153-64. [PMID: 25930943 DOI: 10.1016/j.bbamcr.2015.04.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
The extracellular matrix (ECM) is a major component of the biomechanical environment with which cells interact, and it plays important roles in both normal development and disease progression. Mechanical and biochemical factors alter the biomechanical properties of tissues by driving cellular remodeling of the ECM. This review provides an overview of the structural, compositional, and mechanical properties of the ECM that instruct cell behaviors. Case studies are reviewed that highlight mechanotransduction in the context of two distinct tissues: tendons and the heart. Although these two tissues demonstrate differences in relative cell-ECM composition and mechanical environment, they share similar mechanisms underlying ECM dysfunction and cell mechanotransduction. Together, these topics provide a framework for a fundamental understanding of the ECM and how it may vary across normal and diseased tissues in response to mechanical and biochemical cues. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Benjamin R Freedman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan D Bade
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Corinne N Riggin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Philip G Haines
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katy L Ong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A Janmey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|