1
|
Scholp AJ, Jensen JA, Fowler TP, Petersen E, Fredericks D, Salem AK, Seol D, Coleman M, Lake SP, Martin JA, Sander EA. Capsule release surgery temporarily reduces contracture in a rat elbow model of arthrofibrosis. J Orthop Res 2025; 43:23-36. [PMID: 39279043 PMCID: PMC11615420 DOI: 10.1002/jor.25967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024]
Abstract
Elbow trauma can lead to joint contracture and reduced range of motion (ROM). Nonsurgical interventions can improve ROM, but in some cases capsule release surgery is required. Although surgery can improve ROM, it often does not restore full ROM. Thus, alternatives are needed. One approach is to target activated myofibroblasts, which are commonly associated with fibrotic tissue. Mechanical and biochemical cues drive a feedback loop that can result in normal or pathological healing. We hypothesize that this feedback loop exists in joint contracture and can be manipulated so that myofibroblast activity is reduced, normal healing is achieved, and ROM is improved. We previously demonstrated that blebbistatin can inhibit myofibroblast contractile forces and reduce collagen synthesis in vitro. Thus, the purpose of this study was to assess the use of blebbistatin in an animal model of elbow contracture, which was induced in 7 groups of 4 rats each (n = 28). All elbows were mechanically and histologically tested. The uninjured contralateral elbows of each rat were used as a control group. Capsule release surgery significantly improved (p < 0.01) outcomes 1 week after surgery compared to injury alone and was not significantly different from uninjured elbows. Three weeks after surgery, outcomes worsened, indicating joint stiffening consistent with what is observed clinically. The addition of blebbistatin did not significantly improve outcomes. Future work will investigate relationships among treatment, fibrotic tissue deposition, myofibroblast activity, and biomechanics to determine if blebbistatin is a useful adjunctive therapy for treating joint contracture.
Collapse
Affiliation(s)
- Austin J. Scholp
- Roy J. Carver Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Jordan A. Jensen
- Roy J. Carver Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Timothy P. Fowler
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Emily Petersen
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Douglas Fredericks
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Aliasger K. Salem
- Department of Pharmaceutical ScienceUniversity of IowaIowa CityIowaUSA
| | - Dongrim Seol
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Mitchell Coleman
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Spencer P. Lake
- Department of Mechanical Engineering & Materials ScienceWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - James A. Martin
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| | - Edward A. Sander
- Roy J. Carver Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
- Department of Orthopedics and RehabilitationUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
2
|
Sim G, Fleming J, Glasgow C. The role of early orthotic intervention in the management of post-traumatic elbow contractures: Study protocol for phase II double-blinded randomised controlled trial. HAND THERAPY 2024:17589983241292827. [PMID: 39544959 PMCID: PMC11559517 DOI: 10.1177/17589983241292827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024]
Abstract
Background Restoration of full elbow extension following trauma is difficult and influenced by the injury profile, surgeon preference, patient and environmental factors. The literature suggests that orthotic interventions are effective in improving contractures when movement plateaus despite normal therapeutic interventions. It is not known if extension orthotic intervention is more superior to standard treatment regardless of when it is commenced. The literature lacks patient-reported considerations to contracture management using elbow orthoses. Methods and analysis This protocol describes a Phase II double blinded randomised controlled feasibility trial (RCT) and mixed methods study, aimed to examine outcome with extension in an orthotic intervention group (OG) versus control (CG). All participants will undergo six weekly therapy sessions, which include a standardised therapeutic program. OG participants will be provided with an additional extension orthosis and the outcome is assessed according to the change in elbow extension motion after 6 weeks of intervention. Data will be collected via questionnaires, logbooks, feedback forms, and semi-structured interviews at baseline and final assessments for descriptive statistical analysis. Under the guidance of a statistician, all quantitative data will be evaluated using the appropriate parametric or non-parametric analyses to evaluate for systematic differences between groups. Preliminary extension gains are used to determine the final sample size required to achieve adequate power for a full-scaled RCT. Interview data on OG participants will be qualitatively analysed using the "five-factorial dimensions of adherence" framework to identify key differences in the influencers between adherent or non-adherent groups. Trial registration number ANZCTR ACTRN12619001402134p.
Collapse
Affiliation(s)
- Germaine Sim
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
- Department of Physiotherapy, Singapore General Hospital, Singapore
| | - Jennifer Fleming
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
| | - Celeste Glasgow
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
- Queensland Health, Australia
| |
Collapse
|
3
|
Nakahara R, Ito A, Nakahata A, Nagai-Tanima M, Kawai H, Uchiyama K, Nishitani K, Wang T, Aoyama T, Kuroki H. Development of a novel model for intraarticular adhesion in rat knee joint. PLoS One 2023; 18:e0292000. [PMID: 37733702 PMCID: PMC10513256 DOI: 10.1371/journal.pone.0292000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
In this study, a novel rat model of knee joint adhesion was developed, and its formation was analyzed quantitatively over time. Thirty-nine Wistar rats were randomly divided into intact control (n = 3) and experimental (n = 36) groups. The latter was equally divided into three groups according to the experimental intervention: fixed with deep bending of the knee joint (group I), fixed after incision of the capsule (group II), and fixed after exposure of the patellofemoral joint to artificial patellar subluxation (group III). All rats were subdivided according to their joint immobilization period (1, 2, or 4 weeks). Thereafter, the limited range of motion of the knee joint with (limited knee range of motion) and without (limited knee joint intrinsic range of motion) skin and muscles were measured. The lengths of adhesions of the anterior knee joint and posterior capsules were evaluated histologically. The limited intrinsic range of motion of the knee joint was found to be increased in groups II and III compared to that in group I 4 weeks after immobilization. Adhesions were confirmed within 1 week after immobilization in groups II and III. The length of the adhesions in group III was significantly longer than in other groups at 2 weeks and remained longer than in group I at 4 weeks. This model may contribute to the assessment of the adhesion process and development of new therapeutic avenues following trauma or surgical invasion.
Collapse
Affiliation(s)
- Ryo Nakahara
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Nakahata
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Momoko Nagai-Tanima
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kisara Uchiyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tianshu Wang
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Reiter AJ, Schott HR, Castile RM, Cannon PC, Havlioglu N, Chamberlain AM, Lake SP. Early Joint Use Following Elbow Dislocation Limits Range-of-Motion Loss and Tissue Pathology in Posttraumatic Joint Contracture. J Bone Joint Surg Am 2023; 105:223-230. [PMID: 36723466 PMCID: PMC10578297 DOI: 10.2106/jbjs.22.00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Simple elbow dislocation occurs at an incidence of 2.9 to 5.21 dislocations per 100,000 person-years, with as many as 62% of these patients experiencing long-term elbow joint contracture, stiffness, and/or pain. Poor outcomes and the need for secondary surgical intervention can often be prevented nonoperatively with early or immediate active mobilization and physical therapy. However, immobilization or limited mobilization may be necessary following trauma, and it is unknown how different periods of immobilization affect pathological changes in elbow joint tissue and how these changes relate to range of motion (ROM). The purpose of this study was to investigate the effects of varying the initiation of free mobilization on elbow ROM and histological features in an animal model of elbow posttraumatic joint contracture. METHODS Traumatic elbow dislocation was surgically induced unilaterally in rats. Injured forelimbs were immobilized in bandages for 3, 7, 14, or 21 days; free mobilization was then allowed until 42 days after injury. Post-mortem joint ROM testing and histological analysis were performed. One-way analysis of variance was used to compare ROM data between control and injured groups, and Pearson correlations were performed between ROM parameters and histological outcomes. RESULTS Longer immobilization periods resulted in greater ROM reductions. The anterior and posterior capsule showed increases in cellularity, fibroblasts, adhesions, fibrosis, and thickness, whereas the measured outcomes in cartilage were mostly unaffected. All measured histological characteristics of the capsule were negatively correlated with ROM, indicating that higher degrees of pathology corresponded with less ROM. CONCLUSIONS Longer immobilization periods resulted in greater ROM reductions, which correlated with worse histological outcomes in the capsule in an animal model of posttraumatic elbow contracture. The subtle differences in the timing of ROM and capsule tissue changes revealed in the present study provide new insight into the distinct timelines of biomechanical changes as well as regional tissue pathology. CLINICAL RELEVANCE This study showed that beginning active mobilization 3 days after injury minimized posttraumatic joint contracture, thereby supporting an immediate-motion clinical treatment strategy (when possible). Furthermore, uninjured but pathologically altered periarticular tissues near the injury location may contribute to more severe contracture during longer immobilization periods as the disease state progresses.
Collapse
Affiliation(s)
- Alex J Reiter
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri
| | - Hayden R Schott
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Ryan M Castile
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri
| | - Paul C Cannon
- Department of Mathematics, Brigham Young University, Rexburg, Idaho
| | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, Missouri
| | - Aaron M Chamberlain
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri
| | - Spencer P Lake
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri
| |
Collapse
|
5
|
Zhang Y, Wang Z, Zong C, Gu X, Fan S, Xu L, Cai B, Lu S. Platelet-rich plasma attenuates the severity of joint capsule fibrosis following post-traumatic joint contracture in rats. Front Bioeng Biotechnol 2023; 10:1078527. [PMID: 36686225 PMCID: PMC9845589 DOI: 10.3389/fbioe.2022.1078527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Post-traumatic joint contracture (PTJC) mainly manifests as excessive inflammation leading to joint capsule fibrosis. Transforming growth factor (TGF)-β1, a key regulator of inflammation and fibrosis, can promote fibroblast activation, proliferation, migration, and differentiation into myofibroblasts. Platelet-rich plasma (PRP) is considered to have strong potential for improving tissue healing and regeneration, the ability to treat joint capsule fibrosis remains largely unknown. Methods: In this study, we aimed to determine the antifibrotic potential of PRP in vivo or in vitro and its possible molecular mechanisms. The TGF-β1-induced primary joint capsule fibroblast model and rat PTJC model were used to observe several fibrotic markers (TGF-β1, α-SMA, COL-Ⅰ, MMP-9) and signaling transduction pathway (Smad2/3) using histological staining, qRT-PCR and western blot. Results: Fibroblasts transformed to myofibroblasts after TGF-β1 stimulation with an increase of TGF-β1, α-SMA, COL-Ⅰ, MMP-9 and the activation of Smad2/3 in vitro. However, TGF-β1-induced upregulation or activation of these fibrotic markers or signaling could be effectively suppressed by the introduction of PRP. Fibrotic markers' similar changes were observed in the rat PTJC model and PRP effectively reduced inflammatory cell infiltration and collagen fiber deposition in the posterior joint capsule. Interestingly, HE staining showed that articular cartilage was degraded after rat PTJC, and PRP injection also have the potential to protect articular cartilage. Conclusion: PRP can attenuate pathological changes of joint capsule fibrosis during PTJC, which may be implemented by inhibiting TGF-β1/Smad2/3 signaling and downstream fibrotic marker expression in joint capsule fibroblasts.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China,Department of Rehabilitation Medicine, Huangpu Branch, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengguang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Zong
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoding Gu
- Department of Rehabilitation Medicine, Huangpu Branch, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Fan
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Xu
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Cai
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Bin Cai, ; Shenji Lu,
| | - Shenji Lu
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Rehabilitation Medicine, Huangpu Branch, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Bin Cai, ; Shenji Lu,
| |
Collapse
|
6
|
Zhang Y, Wu Z, Lu S, Lin M, Yue X, Wang Z, Cai B. Time-Series Expression Profile Analysis of Post-Traumatic Joint Contracture in Rats at the Early Stages of the Healing Process. J Inflamm Res 2023; 16:1169-1181. [PMID: 36945316 PMCID: PMC10024884 DOI: 10.2147/jir.s400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Objective This study aimed to characterize the gene expression profile at the early stages of the healing process of post-traumatic joint contracture (PTJC). Methods Twelve rats were used for PTJC model establishment and were divided into four groups according to the sampling time: S0d, S3d, S7d and S2w. Transcriptome sequencing was performed on fibrotic joint capsule samples in four groups followed by bioinformatics analyses including differentially expressed genes (DEGs) screening, Short Time-series Expression Miner (STEM) analysis, network construction, and pathway analysis. Five important genes were validated by qRT-PCR. Results A total of 1171, 1052 and 793 DEGs were screened in S3d vs S0d, S7d vs S0d, and S2w vs S0d comparison groups, respectively. A total of 383 overlapping genes were screened out, which were significantly enriched in some inflammatory functions and pathways. Through STEM analysis, three clusters were identified, including 105, 57 and 57 DEGs, respectively. Then, based on the cluster genes, 10 genes, such as Il6, Timp1, Cxcl1, Cxcr4 and Mmp3, were further selected after PPI and pathway analyses. The expression levels of Il6, Timp1, Cxcl1, Cxcr4 and Mmp3 were validated by qRT-PCR. Conclusion The present study screened out several genes with significant changes in expression levels at the early stages of the healing process in PTJC, such as Il6, Timp1, Cxcl1, Cxcr4 and Mmp3. Our study offers a valuable contribution to the understanding pathomechanism of PTJC.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
- Correspondence: Yuxin Zhang; Bin Cai, Department of Rehabilitation Medicine, Hainan Western Central Hospital, No. 2, Fubo East Road, Nada Town, Danzhou, Hainan, 571700, People’s Republic of China, Tel +86-21-53315248, Email ;
| | - Zhigang Wu
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
| | - Shenji Lu
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Minghui Lin
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
| | - Xiaokun Yue
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zengguang Wang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Bin Cai
- Department of Rehabilitation Medicine, Hainan Western Central Hospital, Danzhou, Hainan, People’s Republic of China
- Department of Rehabilitation Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Iannucci LE, Koscso JM, Castile RM, Lake SP, Smith MV. Biomechanical Effect of Differential Tensioning on Suture-Augmented Ulnar Collateral Ligament Reconstruction of the Elbow. Am J Sports Med 2023; 51:205-213. [PMID: 36412519 DOI: 10.1177/03635465221131905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Medial ulnar collateral ligament (mUCL) reconstructions are becoming increasingly prevalent among the overhand throwing population. Suture tape augmentation has the potential to provide biomechanical advantages over standard docking reconstruction. However, the optimal tensioning of the suture augmentation technique has not yet been evaluated. PURPOSE To compare the subfailure biomechanical performance and graft strain of a standard docking mUCL reconstruction to an mUCL reconstruction using suture tape augmentation tensioned with 1 mm or 3 mm of laxity. STUDY DESIGN Controlled laboratory study. METHODS A total of 18 cadaveric elbows were dissected to the mUCL anterior band and biomechanically assessed via a valgus torque protocol to failure. Elbows were randomly assigned to be reconstructed via (1) a standard docking technique, (2) a suture-augmented reconstruction with 1-mm laxity, or (3) a suture-augmented reconstruction with 3-mm laxity. Reconstructed elbows were then subjected to the same loading protocol. Subfailure mechanical properties, failure mode, and mUCL/palmaris strain were assessed. RESULTS All reconstruction groups had decreased rotational stiffness, torque at 5° of angular rotation, and resilience compared with matched native controls. There were no differences in transition torque between groups. The failure mode of suture-augmented specimens was most often due to bone tunnel failure or reaching the maximum allowable angular displacement. In native controls or docking reconstructions, the primary failure mechanism was in the ligament or graft midsubstance. There were no significant differences in strain on the reconstructed or suture-augmented groups at any laxity compared with native controls. CONCLUSION Suture augmentation results in similar subfailure joint biomechanical properties as the standard docking reconstruction procedure at both laxity levels in a cadaveric model. There are improvements in the failure mode of suture-augmented specimens compared with standard docking. Graft strain may be modestly reduced in the 1-mm laxity group compared with other reconstruction groups. CLINICAL RELEVANCE Suture augmentation at both 1-mm and 3-mm laxity appears to offer similar advantages in subfailure biomechanics to standard docking reconstruction of the mUCL, with some improvements associated with failure mode. Strain data suggest a potential avoidance of graft stress shielding when tensioning the suture augmentation to 3-mm laxity, which is not as apparent with 1-mm laxity.
Collapse
Affiliation(s)
- Leanne E Iannucci
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jonathan M Koscso
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ryan M Castile
- Department of Mechanical Engineering and Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Spencer P Lake
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Mechanical Engineering and Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthew V Smith
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Moore LK, Lee CS, Agha O, Liu M, Zhang H, Dang ABC, Dang A, Liu X, Feeley BT. A novel mouse model of hindlimb joint contracture with 3D-printed casts. J Orthop Res 2022; 40:2865-2872. [PMID: 35266583 DOI: 10.1002/jor.25313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Stiff joints formed after trauma, surgery or immobilization are frustrating for surgeons, therapists and patients alike. Unfortunately, the study of contracture is limited by available animal model systems, which focus on the utilization of larger mammals and joint trauma. Here we describe a novel mouse-based model system for the generation of joint contracture using 3D-printed clamshell casts. With this model system we are able to generate both reversible and irreversible contractures of the knee and ankle. Four- or 8-month-old female mice were casted for either 2 or 3 weeks before liberation. All groups formed measurable contractures of the knee and ankle. Younger mice immobilized for less time formed reversible contractures of the knee and ankle. We were able to generate irreversible contracture with either longer immobilization time or the utilization of older mice. The contracture formation translated into differences in gait, which were detectable using the DigiGait® analysis system. This novel model system provides a higher throughput, lower cost and more powerful tool in studying the molecular and cellular mechanisms considering the large existing pool of transgenic/knockout murine strains.
Collapse
Affiliation(s)
- Laura K Moore
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Carlin S Lee
- Department of Orthopedic Surgery, San Francisco VA Medical Center, San Francisco, California, USA
| | - Obiajulu Agha
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA
| | - Mengyao Liu
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA.,Department of Orthopedic Surgery, San Francisco VA Medical Center, San Francisco, California, USA
| | - He Zhang
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA.,Department of Orthopedic Surgery, San Francisco VA Medical Center, San Francisco, California, USA.,Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Alan B C Dang
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA.,Department of Orthopedic Surgery, San Francisco VA Medical Center, San Francisco, California, USA
| | - Alexis Dang
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA.,Department of Orthopedic Surgery, San Francisco VA Medical Center, San Francisco, California, USA
| | - Xuhui Liu
- Department of Orthopedic Surgery, San Francisco VA Medical Center, San Francisco, California, USA
| | - Brian T Feeley
- Department of Orthopedic Surgery, University of California San Francisco, San Francisco, California, USA.,Department of Orthopedic Surgery, San Francisco VA Medical Center, San Francisco, California, USA
| |
Collapse
|
9
|
Magallanes J, Liu NQ, Zhang J, Ouyang Y, Mkaratigwa T, Bian F, Van Handel B, Skorka T, Petrigliano FA, Evseenko D. A new mouse model of post-traumatic joint injury allows to identify the contribution of Gli1+ mesenchymal progenitors in arthrofibrosis and acquired heterotopic endochondral ossification. Front Cell Dev Biol 2022; 10:954028. [PMID: 36092701 PMCID: PMC9448851 DOI: 10.3389/fcell.2022.954028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/21/2022] [Indexed: 01/26/2023] Open
Abstract
Complex injury and open reconstructive surgeries of the knee often lead to joint dysfunction that may alter the normal biomechanics of the joint. Two major complications that often arise are excessive deposition of fibrotic tissue and acquired heterotopic endochondral ossification. Knee arthrofibrosis is a fibrotic joint disorder where aberrant buildup of scar tissue and adhesions develop around the joint. Heterotopic ossification is ectopic bone formation around the periarticular tissues. Even though arthrofibrosis and heterotopic ossification pose an immense clinical problem, limited studies focus on their cellular and molecular mechanisms. Effective cell-targeted therapeutics are needed, but the cellular origin of both knee disorders remains elusive. Moreover, all the current animal models of knee arthrofibrosis and stiffness are developed in rats and rabbits, limiting genetic experiments that would allow us to explore the contribution of specific cellular targets to these knee pathologies. Here, we present a novel mouse model where surgically induced injury and hyperextension of the knee lead to excessive deposition of disorganized collagen in the meniscus, synovium, and joint capsule in addition to formation of extra-skeletal bone in muscle and soft tissues within the joint capsule. As a functional outcome, arthrofibrosis and acquired heterotopic endochondral ossification coupled with a significant increase in total joint stiffness were observed. By employing this injury model and genetic lineage tracing, we also demonstrate that Gli1+ mesenchymal progenitors proliferate after joint injury and contribute to the pool of fibrotic cells in the synovium and ectopic osteoblasts within the joint capsule. These findings demonstrate that Gli1+ cells are a major cellular contributor to knee arthrofibrosis and acquired heterotopic ossification that manifest after knee injury. Our data demonstrate that genetic manipulation of Gli1+ cells in mice may offer a platform for identification of novel therapeutic targets to prevent knee joint dysfunction after chronic injury.
Collapse
Affiliation(s)
- Jenny Magallanes
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, United States
| | - Nancy Q. Liu
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States
| | - Jiankang Zhang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States,State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxin Ouyang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States
| | - Tadiwanashe Mkaratigwa
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, United States
| | - Fangzhou Bian
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, United States
| | - Ben Van Handel
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States
| | - Tautis Skorka
- Department of Radiology, Keck School of Medicine, USC, Los Angeles, CA, United States
| | - Frank A. Petrigliano
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, United States,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, USC, Los Angeles, CA, United States,*Correspondence: Denis Evseenko,
| |
Collapse
|
10
|
David MA, Reiter AJ, Dunham CL, Castile RM, Abraham JA, Iannucci LE, Shah ID, Havlioglu N, Chamberlain AM, Lake SP. Pleiotropic Effects of Simvastatin and Losartan in Preclinical Models of Post-Traumatic Elbow Contracture. Front Bioeng Biotechnol 2022; 10:803403. [PMID: 35265595 PMCID: PMC8899197 DOI: 10.3389/fbioe.2022.803403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/04/2022] [Indexed: 02/02/2023] Open
Abstract
Elbow trauma can lead to post-traumatic joint contracture (PTJC), which is characterized by loss of motion associated with capsule/ligament fibrosis and cartilage damage. Unfortunately, current therapies are often unsuccessful or cause complications. This study aimed to determine the effects of prophylactically administered simvastatin (SV) and losartan (LS) in two preclinical models of elbow PTJC: an in vivo elbow-specific rat injury model and an in vitro collagen gel contraction assay. The in vivo elbow rat (n = 3-10/group) injury model evaluated the effects of orally administered SV and LS at two dosing strategies [i.e., low dose/high frequency/short duration (D1) vs. high dose/low frequency/long duration (D2)] on post-mortem elbow range of motion (via biomechanical testing) as well as capsule fibrosis and cartilage damage (via histopathology). The in vitro gel contraction assay coupled with live/dead staining (n = 3-19/group) evaluated the effects of SV and LS at various concentrations (i.e., 1, 10, 100 µM) and durations (i.e., continuous, short, or delayed) on the contractibility and viability of fibroblasts/myofibroblasts [i.e., NIH3T3 fibroblasts with endogenous transforming growth factor-beta 1 (TGFβ1)]. In vivo, no drug strategy prevented elbow contracture biomechanically. Histologically, only SV-D2 modestly reduced capsule fibrosis but maintained elevated cellularity and tissue hypertrophy, and both SV strategies lessened cartilage damage. SV modest benefits were localized to the anterior region, not the posterior, of the joint. Neither LS strategy had meaningful benefits in capsule nor cartilage. In vitro, irrespective of the presence of TGFβ1, SV (≥10 μM) prevented gel contraction partly by decreasing cell viability (100 μM). In contrast, LS did not prevent gel contraction or affect cell viability. This study demonstrates that SV, but not LS, might be suitable prophylactic drug therapy in two preclinical models of elbow PTJC. Results provide initial insight to guide future preclinical studies aimed at preventing or mitigating elbow PTJC.
Collapse
Affiliation(s)
- Michael A. David
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Alex J. Reiter
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Chelsey L. Dunham
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ryan M. Castile
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - James A. Abraham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Leanne E. Iannucci
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Ishani D. Shah
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
| | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, MO, United States
| | - Aaron M. Chamberlain
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, United States
| | - Spencer P. Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
11
|
Sim G, Fleming J, Glasgow C. Mobilizing orthoses in the management of post-traumatic elbow contractures: A survey of Australian hand therapy practice. J Hand Ther 2021; 34:90-99. [PMID: 32156579 DOI: 10.1016/j.jht.2019.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/10/2019] [Accepted: 12/31/2019] [Indexed: 02/09/2023]
Abstract
STUDY DESIGN Mixed-methods survey. INTRODUCTION Elbow stiffness and contractures often develop after trauma. There is a lack of evidence on mobilizing orthoses and the factors guiding orthotic prescription. PURPOSE OF STUDY To investigate hand therapists' orthotic preferences for varying extension and flexion deficits, and describe the factors affecting orthotic choice for post-traumatic elbow contractures. METHODS 103 members responded to the electronic survey via the Australian Hand Therapy Association mailing list. Five post-surgical scenarios were used to gather information regarding orthotic preferences, reasons and orthotic protocol: (1) week 8 with 55° extension deficit; (2) week 12 with 30° extension deficit; (3) week 12 with 55° extension deficit; (4) week 8 with flexion limited to 100°; (5) week 12 with limited flexion. RESULTS Most responders (89.9%) used mobilizing orthoses, predominantly for extension (88.5%). Orthotic preferences for scenarios 1 to 5 were (1) serial static (78.3%); (2) custom-made three-point static progressive (38.8%); (3) custom-made turnbuckle static progressive (33.8%); (4) "no orthosis" (27.9%); and (5) custom-made hinged (27.1%) and nonhinged (27.1%) dynamic. Choices were based on "effectiveness," "ease for patients to apply and wear," and "ease of fabrication/previous experience/comfortable with design." The recommended daily dosage for extension was 6 to 12 hour. DISCUSSION This is the first known study that reflects on the use of mobilizing orthoses in post-traumatic elbows in Australia. CONCLUSIONS Mobilizing orthoses are used routinely for post-traumatic elbows in Australia. Extension deficits are managed with serial static and static progressive orthoses at weeks 8 and 12, respectively. Research is needed to assess whether orthotic intervention before 12 weeks is beneficial in reducing contractures.
Collapse
Affiliation(s)
- Germaine Sim
- EKCO Hand and Upper Limb Rehabilitation Unit, South Brisbane, QLD, Australia; The University of Queensland, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia.
| | - Jennifer Fleming
- The University of Queensland, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Celeste Glasgow
- Royal Brisbane and Women's Hospital, Occupational Therapy, Herston, QLD, Australia
| |
Collapse
|
12
|
Reiter AJ, Schott HR, Castile RM, Cannon PC, Havlioglu N, Chamberlain AM, Lake SP. Females and males exhibit similar functional, mechanical, and morphological outcomes in a rat model of posttraumatic elbow contracture. J Orthop Res 2021; 39:2062-2072. [PMID: 33222267 PMCID: PMC8140065 DOI: 10.1002/jor.24918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 02/04/2023]
Abstract
Posttraumatic joint contracture (PTJC) is a debilitating condition characterized by loss of joint motion following injury. Previous work in a rat model of elbow PTJC investigated disease etiology, progression, and recovery in only male animals; this study explored sex-based differences. Rat elbows were subjected to a unilateral anterior capsulotomy and lateral collateral ligament transection followed by 42 days of immobilization and 42 days of free mobilization. Grip strength and gait were collected throughout the free mobilization period while joint mechanical testing, microcomputed tomography and histological analysis were performed postmortem. Overall, few differences were seen between sexes in functional, mechanical, and morphological outcomes with PTJC being similarly debilitating in male and female animals. Functional measures of grip strength and gait showed that, while some baseline differences existed between sexes, traumatic injury produced similar deficits that remained significantly different long-term when compared to control animals. Similarly, male and female animals both had significant reductions in joint range of motion due to injury. Ectopic calcification (EC), which had not been previously evaluated in this injury model, was present in all limbs on the lateral side. Injury caused increased EC volume but did not alter mineral density regardless of sex. Furthermore, histological analysis of the anterior capsule showed minor differences between sexes for inflammation and thickness but not for other histological parameters. A quantitative understanding of sex-based differences associated with this injury model will help inform future therapeutics aimed at reducing or preventing elbow PTJC.
Collapse
Affiliation(s)
- Alex J. Reiter
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO
| | - Hayden R. Schott
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Ryan M. Castile
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO
| | | | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, MO
| | - Aaron M. Chamberlain
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO
| | - Spencer P. Lake
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO,Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
13
|
Dunham CL, Steenbock H, Brinckmann J, Reiter AJ, Castile RM, Chamberlain AM, Lake SP. Increased volume and collagen crosslinks drive soft tissue contribution to post-traumatic elbow contracture in an animal model. J Orthop Res 2021; 39:1800-1810. [PMID: 33258516 PMCID: PMC7744303 DOI: 10.1002/jor.24781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Post-traumatic joint contracture (PTJC) in the elbow is a biological problem with functional consequences. Restoring elbow motion after injury is a complex challenge because contracture is a multi-tissue pathology. We previously developed an animal model of elbow PTJC using Long-Evans rats and showed that the capsule and ligaments/cartilage were the primary soft tissues that caused persistent joint motion loss. The objective of this study was to evaluate tissue-specific changes within the anterior capsule and lateral collateral ligament (LCL) that led to their contribution to elbow contracture. In our rat model of elbow PTJC, a unilateral surgery replicated damage that commonly occurs due to elbow dislocation. Following surgery, the injured limb was immobilized for 42 days. The capsule and LCL were evaluated after 42 days of immobilization or 42 days of immobilization followed by 42 days of free mobilization. We evaluated extracellular matrix protein biochemistry, non-enzymatic collagen crosslink content, tissue volume with contrast-enhanced micro-computed tomography, and tissue mechanical properties. Increased collagen content, but not collagen density, was observed in both injured limb capsules and LCLs, which was consistent with the increased tissue volume. Injured limb LCLs exhibited decreased normalized maximum force, and both tissues had increased immature collagen cross-links compared to control. Overall, increased tissue volume and immature collagen crosslinks in the capsule and LCL drive their contribution to elbow contracture in our rat model.
Collapse
Affiliation(s)
- Chelsey L. Dunham
- Department of Biomedical Engineering, Washington University in St. Louis, MO
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, Germany
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, Germany;,Department of Dermatology, University of Lübeck, Germany
| | - Alex J. Reiter
- Department of Mechanical Engineering, Washington University in St. Louis, MO
| | - Ryan M. Castile
- Department of Mechanical Engineering, Washington University in St. Louis, MO
| | | | - Spencer P. Lake
- Department of Biomedical Engineering, Washington University in St. Louis, MO;,Department of Mechanical Engineering, Washington University in St. Louis, MO;,Department of Orthopaedic Surgery, Washington University in St. Louis, MO
| |
Collapse
|
14
|
Zhang Y, Liu Z, Wang K, Lu S, Fan S, Xu L, Cai B. Macrophage migration inhibitory factor regulates joint capsule fibrosis by promoting TGF-β1 production in fibroblasts. Int J Biol Sci 2021; 17:1837-1850. [PMID: 33994866 PMCID: PMC8120472 DOI: 10.7150/ijbs.57025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/09/2021] [Indexed: 11/05/2022] Open
Abstract
Joint capsule fibrosis caused by excessive inflammation results in post-traumatic joint contracture (PTJC). Transforming growth factor (TGF)-β1 plays a key role in PTJC by regulating fibroblast functions, however, cytokine-induced TGF-β1 expression in specific cell types remains poorly characterized. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in inflammation- and fibrosis-associated pathophysiology. In this study, we investigated whether MIF can facilitate TGF-β1 production from fibroblasts and regulate joint capsule fibrosis following PTJC. Our data demonstrated that MIF and TGF-β1 significantly increased in fibroblasts of injured rat posterior joint capsules. Treatment the lesion sites with MIF inhibitor 4-Iodo-6-phenylpyrimidine (4-IPP) reduced TGF-β1 production and relieved joint capsule inflammation and fibrosis. In vitro, MIF facilitated TGF-β1 expression in primary joint capsule fibroblasts by activating mitogen-activated protein kinase (MAPK) (P38, ERK) signaling through coupling with membrane surface receptor CD74, which in turn affected fibroblast functions and promoted MIF production. Our results reveal a novel function of trauma-induced MIF in the occurrence and development of joint capsule fibrosis. Further investigation of the underlying mechanism may provide potential therapeutic targets for PTJC.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,Shanghai Key Laboratory of Orthopedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai 200011, China
| | - Kexin Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Shenji Lu
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Shuai Fan
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lili Xu
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bin Cai
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
15
|
Blessing WA, Williamson AK, Kirsch JR, Grinstaff MW. The Prognosis of Arthrofibroses: Prevalence, Clinical Shortcomings, and Future Prospects. Trends Pharmacol Sci 2021; 42:398-415. [PMID: 33795150 DOI: 10.1016/j.tips.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/18/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is the dysregulated biosynthesis of connective tissue that results from persistent infection, high serum cholesterol, surgery, trauma, or prolonged joint immobilization. As a disease that impacts connective tissue, it is prevalent across the body and disrupts normal extracellular and tissue organization. Ultimately, fibrosis impairs the tissue structural, mechanical, or biochemical function. This review describes the clinical landscape of joint fibrosis, that is, arthrofibrosis, including the risk factors and causes, as well as current clinical treatments and their shortcomings. Because treating arthrofibrosis remains an unmet clinical challenge, we present several animal models used for exploration of the physiopathology of arthrofibrosis and summarize their use for testing novel treatments. We then discuss therapeutics for the prevention or treatment of arthrofibrosis that are in preclinical development and in ongoing clinical trials. We conclude with recent findings from molecular biological studies of arthrofibroses that shed insight on future areas of research for improved treatments.
Collapse
Affiliation(s)
- William A Blessing
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Amanda K Williamson
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA 02215, USA
| | - Jack R Kirsch
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA 02215, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Dunham C, Havlioglu N, Chamberlain A, Lake S, Meyer G. Adipose stem cells exhibit mechanical memory and reduce fibrotic contracture in a rat elbow injury model. FASEB J 2020; 34:12976-12990. [PMID: 33411380 PMCID: PMC8745456 DOI: 10.1096/fj.202001274r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is driven by a misdirected cell response causing the overproduction of extracellular matrix and tissue dysfunction. Numerous pharmacological strategies have attempted to prevent fibrosis but have attained limited efficacy with some detrimental side effects. While stem cell treatments have provided more encouraging results, they have exhibited high variability and have not always improved tissue function. To enhance stem cell efficacy, we evaluated whether mechanical memory could direct cell response. We hypothesized that mechanically pre-conditioning on a soft matrix (soft priming) will delay adipose-derived stem cell (ASC) transition to a pro-fibrotic phenotype, expanding their regenerative potential, and improving healing in a complex tissue environment. Primary ASCs isolated from rat and human subcutaneous fat exhibited mechanical memory, demonstrated by a delayed cell response to stiffness following two weeks of soft priming including decreased cell area, actin coherency, and extracellular matrix production compared to cells on stiff substrates. Soft primed ASCs injected into our rat model of post-traumatic elbow contracture decreased histological evidence of anterior capsule fibrosis and increased elbow range-of-motion when evaluated by joint mechanics. These findings suggest that exploiting mechanical memory by strategically controlling the culture environment during cell expansion may improve the efficacy of stem cell-based therapies targeting fibrosis.
Collapse
Affiliation(s)
- Chelsey Dunham
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, MO, USA
| | - Aaron Chamberlain
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Spencer Lake
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO
| | - Gretchen Meyer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
17
|
Matsuzawa K, Edama M, Ikezu M, Kaneko F, Hirabayashi R, Kageyama I. The origin structure of each finger in the flexor digitorum superficialis muscle. Surg Radiol Anat 2020; 43:3-10. [PMID: 32564110 DOI: 10.1007/s00276-020-02522-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The flexor digitorum superficialis muscle (FDS) is considered the most important of the forearm flexors for maintaining elbow valgus stability. However, the relationships between the origin structure of each finger of the FDS and the anterior oblique ligament (AOL) of the ulnar collateral ligament and the common tendon (CT) in the proximal part, and morphological features are unclear. The purpose of this study was to clarify the relationships between the origin structure of each finger of the FDS and the AOL and the CT, as well as to clarify the morphological features of the muscle belly of each finger of the FDS. METHODS This study examined 20 elbows. The origin of each finger was examined. Muscle mass, muscle fiber bundle length, and the pennation angle of each finger were also measured. RESULTS In all cases, the third and fourth digits originated from the radius, the anterior common tendon (ACT), and the posterior common tendon (PCT). The second and fifth digits (18 elbows) or an independent fifth digit (2 elbows) originated from the ACT, the PCT, the AOL, and other soft tissues of the elbow. Muscle mass and muscle fiber bundle length in the muscle belly of the third and fourth digits were significantly heavier and longer, respectively, than in the muscle belly of the second and fifth digits. CONCLUSION Because the second and fifth digits or an independent fifth digit originated from the AOL, their contraction may cause tension in the AOL.
Collapse
Affiliation(s)
- Kanta Matsuzawa
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan.
| | - Mutsuaki Edama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan.,Department of Anatomy, School of Life Dentistry at Niigata, Nippon Dental University, Niigata, Japan
| | - Masahiro Ikezu
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Fumiya Kaneko
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Ryo Hirabayashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan
| | - Ikuo Kageyama
- Department of Anatomy, School of Life Dentistry at Niigata, Nippon Dental University, Niigata, Japan
| |
Collapse
|
18
|
Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Three-week joint immobilization increases anterior-posterior laxity without alterations in mechanical properties of the anterior cruciate ligament in the rat knee. Clin Biomech (Bristol, Avon) 2020; 75:104993. [PMID: 32298871 DOI: 10.1016/j.clinbiomech.2020.104993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although knee immobilization may deteriorate the mechanical parameters of the anterior cruciate ligament, such as stiffness and failure strength, it is unknown whether it induces laxity in the whole joint. We examined the effects of immobilization on anterior-posterior joint laxity and mechanical properties of the anterior cruciate ligament, as well as histological and gene expression profiles of the joint capsule in rat knee joints. METHODS Unilateral rat knees were immobilized using an external fixator. Non-immobilized contralateral knees were used as controls. After 3 weeks, anterior-posterior laxity in the whole joint (i.e., a complex of bones, ligaments, and capsule) and stiffness and failure strength in the anterior cruciate ligament were examined using a universal testing machine. Moreover, the knee joint capsule was histologically analyzed, and the expression levels of genes related to collagen turnover in the posterior joint capsule were examined. FINDINGS Joint immobilization slightly but significantly increased anterior-posterior laxity compared with the contralateral side. Unexpectedly, the stiffness and failure strength of the anterior cruciate ligament were not altered by immobilization. There was no correlation found between anterior cruciate ligament stiffness and anterior-posterior joint laxity. In the posterior joint capsule, thinning of the collagen fiber bundles accompanied by a decrease in COL3A1 gene expression was observed after immobilization. INTERPRETATION These results suggest that 3 weeks of joint immobilization alters the biomechanical integrity in the knee joint without altering the mechanical properties of the anterior cruciate ligament. Changes in the joint capsule may contribute to the immobilization-induced increase in anterior-posterior laxity.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| | - Kengo Minamimoto
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
19
|
Zhang D, Nazarian A, Rodriguez EK. Post-traumatic elbow stiffness: Pathogenesis and current treatments. Shoulder Elbow 2020; 12:38-45. [PMID: 32010232 PMCID: PMC6974890 DOI: 10.1177/1758573218793903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022]
Abstract
Post-traumatic elbow stiffness is a major cause of functional impairment after elbow trauma. A stiff elbow limits patients' ability to position their hand in space for optimal use of their upper extremities, and as such, is a frequent indication for reoperation. This article reviews current concepts on the pathogenesis of post-traumatic elbow stiffness. Current nonoperative treatment options include therapy, bracing, and manipulation under anesthesia, while operative treatment options include arthroscopic and open arthrolysis. The pros and cons of various treatment options are discussed, with a focus on the evidence supporting their use, the expected functional gains, and associated complications. Future directions in post-traumatic elbow stiffness are highlighted.
Collapse
Affiliation(s)
- Dafang Zhang
- Department of Orthopaedic Surgery, Beth
Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
- Harvard Medical School, Boston, MA,
USA
| | - Ara Nazarian
- Harvard Medical School, Boston, MA,
USA
- Center for Advanced Orthopaedic Studies,
Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
- Department of Orthopaedic Surgery,
Yerevan State Medical University, Yerevan, Armenia
| | - Edward K Rodriguez
- Department of Orthopaedic Surgery, Beth
Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
- Harvard Medical School, Boston, MA,
USA
- Center for Advanced Orthopaedic Studies,
Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, USA
| |
Collapse
|
20
|
Baranowski A, Schlemmer L, Förster K, Slotina E, Mickan T, Truffel S, Klein A, Mattyasovszky SG, Hofmann A, Ritz U, Rommens PM. Effects of losartan and atorvastatin on the development of early posttraumatic joint stiffness in a rat model. Drug Des Devel Ther 2019; 13:2603-2618. [PMID: 31440039 PMCID: PMC6679684 DOI: 10.2147/dddt.s204135] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND After a trauma, exuberant tissue healing with fibrosis of the joint capsule can lead to posttraumatic joint stiffness (PTJS). Losartan and atorvastatin have both shown their antifibrotic effects in different organ systems. OBJECTIVE The purpose of this study was the evaluation of the influence of losartan and atorvastatin on the early development of joint contracture. In addition to joint angles, the change in myofibroblast numbers and the distribution of bone sialoprotein (BSP) were assessed. STUDY DESIGN AND METHODS In this randomized and blinded experimental study with 24 rats, losartan and atorvastatin were compared to a placebo. After an initial joint injury, rat knees were immobilized with a Kirschner wire. Rats received either losartan, atorvastatin or a placebo orally daily. After 14 days, joint angle measurements and histological assessments were performed. RESULTS Losartan increased the length of the inferior joint capsule. Joint angle and other capsule length measurements did not reveal significant differences between both drugs and the placebo. At cellular level both losartan and atorvastatin reduced the total number of myofibroblasts (losartan: 191±77, atorvastatin: 98±58, placebo: 319±113 per counting field, p<0.01) and the percentage area of myofibroblasts (losartan: 2.8±1.8% [p<0.05], atorvastatin: 2.5±1.7% [p<0.01], vs control [6.4±4%], respectively). BSP was detectable in equivalent amounts in the joint capsules of all groups with only a trend toward a reduction of the BSP-stained area by atorvastatin. CONCLUSION Both atorvastatin and losartan reduced the number of myofibroblasts in the posterior knee joint capsule of rat knees 2 weeks after trauma and losartan increased the length of the inferior joint capsule. However, these changes at the cellular level did not translate an increase in range of motion of the rats´ knee joints during early contracture development.
Collapse
Affiliation(s)
- Andreas Baranowski
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Ludwig Schlemmer
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Katharina Förster
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Ekaterina Slotina
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Tim Mickan
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Truffel
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Anja Klein
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Stefan G Mattyasovszky
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
- Department of Traumatology and Orthopaedics 1, Westpfalz-Medical Centre Kaiserslautern, Kaiserslautern, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Pol M Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
21
|
Reiter AJ, Kivitz GJ, Castile RM, Cannon PC, Lakes EH, Jacobs BY, Allen KD, Chamberlain AM, Lake SP. Functional Measures of Grip Strength and Gait Remain Altered Long-term in a Rat Model of Post-traumatic Elbow Contracture. J Biomech Eng 2019; 141:2730666. [PMID: 30958506 PMCID: PMC6611348 DOI: 10.1115/1.4043433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/29/2019] [Indexed: 12/11/2022]
Abstract
Post-traumatic joint contracture (PTJC) is a debilitating condition, particularly in the elbow. Previously, we established an animal model of elbow PTJC quantifying passive post-mortem joint mechanics and histological changes temporally. These results showed persistent motion loss similar to what is experienced in humans. Functional assessment of PTJC in our model was not previously considered; however, these measures would provide a clinically relevant measure and would further validate our model by demonstrating persistently altered joint function. To this end, a custom bilateral grip strength device was developed, and a recently established open-source gait analysis system was used to quantify forelimb function in our unilateral injury model. In vivo joint function was shown to be altered long-term and never fully recover. Specifically, forelimb strength in the injured limbs showed persistent deficits at all time points; additionally, gait patterns remained imbalanced and asymmetric throughout the study (although a few gait parameters did return to near normal levels). A quantitative understanding of these longitudinal, functional disabilities further strengthens the clinical relevance of our rat PTJC model enabling assessment of the effectiveness of future interventions aimed at reducing or preventing PTJC.
Collapse
Affiliation(s)
- Alex J. Reiter
- Department of Mechanical Engineering
and Materials Science,
Washington University in St. Louis,
St. Louis, MO 63130
| | - Griffin J. Kivitz
- Department of Mechanical Engineering
and Materials Science,
Washington University in St. Louis,
St. Louis, MO 63130
| | - Ryan M. Castile
- Department of Mechanical Engineering
and Materials Science,
Washington University in St. Louis,
St. Louis, MO 63130
| | - Paul C. Cannon
- Seed Production Innovation,
Bayer Crop Science,
St. Louis, MO 63146
| | - Emily H. Lakes
- J. Crayton Pruitt Family Department
of Biomedical Engineering,
University of Florida,
Gainesville, FL 32610
| | - Brittany Y. Jacobs
- J. Crayton Pruitt Family Department
of Biomedical Engineering,
University of Florida,
Gainesville, FL 32610
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department
of Biomedical Engineering,
University of Florida,
Gainesville, FL 32610
| | - Aaron M. Chamberlain
- Department of Orthopaedic Surgery,
Washington University in St. Louis,
St. Louis, MO 63130
| | - Spencer P. Lake
- Department of Mechanical Engineeringand Materials Science,
Department of Orthopaedic Surgery,Department of Biomedical Engineering,Washington University in St. Louis,
St. Louis, MO 63130
e-mail:
| |
Collapse
|
22
|
Dunham CL, Castile RM, Chamberlain AM, Lake SP. The Role of Periarticular Soft Tissues in Persistent Motion Loss in a Rat Model of Posttraumatic Elbow Contracture. J Bone Joint Surg Am 2019; 101:e17. [PMID: 30845041 PMCID: PMC6738539 DOI: 10.2106/jbjs.18.00246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Elbow injuries disrupt the surrounding periarticular soft tissues, which include the muscles, tendons, capsule, ligaments, and cartilage. Damage to these tissues as a result of elbow trauma causes clinically significant contracture in 50% of patients. However, it is unclear which of these tissues is primarily responsible for the decreased range of motion. We hypothesized that all tissues would substantially contribute to elbow contracture after immobilization, but only the capsule, ligaments, and cartilage would contribute after free mobilization, with the capsule as the primary contributor at all time points. METHODS Utilizing a rat model of posttraumatic elbow contracture, a unilateral soft-tissue injury was surgically induced to replicate the damage that commonly occurs during elbow joint dislocation. After surgery, the injured limb was immobilized for 42 days. Animals were evaluated after either 42 days of immobilization (42 IM) or 42 days of immobilization with an additional 21 or 42 days of free mobilization (42/21 or 42/42 IM-FM). For each group of animals, elbow mechanical testing in flexion-extension was completed post-mortem with (1) all soft tissues intact, (2) muscles/tendons removed, and (3) muscle/tendons and anterior capsule removed. Total extension was assessed to determine the relative contributions of muscles/tendons, capsule, and the remaining intact tissues (i.e., ligaments and cartilage). RESULTS After immobilization, the muscles/tendons and anterior capsule contributed 10% and 90% to elbow contracture, respectively. After each free mobilization period, the muscles/tendons did not significantly contribute to contracture. The capsule and ligaments/cartilage were responsible for 47% and 52% of the motion lost at 42/21 IM-FM, respectively, and 26% and 74% at 42/42 IM-FM, respectively. CONCLUSIONS Overall, data demonstrated a time-dependent response of periarticular tissue contribution to elbow contracture, with the capsule, ligaments, and cartilage as the primary long-term contributors. CLINICAL RELEVANCE The capsule, ligaments, and cartilage were primarily responsible for persistent motion loss and should be considered during development of tissue-targeted treatment strategies to inhibit elbow contracture following injury.
Collapse
Affiliation(s)
- Chelsey L. Dunham
- Departments of Biomedical Engineering (C.L.D. and S.P.L.), Mechanical Engineering & Materials Science (R.M.C. and S.P.L.), and Orthopaedic Surgery (A.M.C. and S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| | - Ryan M. Castile
- Departments of Biomedical Engineering (C.L.D. and S.P.L.), Mechanical Engineering & Materials Science (R.M.C. and S.P.L.), and Orthopaedic Surgery (A.M.C. and S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| | - Aaron M. Chamberlain
- Departments of Biomedical Engineering (C.L.D. and S.P.L.), Mechanical Engineering & Materials Science (R.M.C. and S.P.L.), and Orthopaedic Surgery (A.M.C. and S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| | - Spencer P. Lake
- Departments of Biomedical Engineering (C.L.D. and S.P.L.), Mechanical Engineering & Materials Science (R.M.C. and S.P.L.), and Orthopaedic Surgery (A.M.C. and S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
23
|
Dunham CL, Chamberlain AM, Meyer GA, Lake SP. Muscle does not drive persistent posttraumatic elbow contracture in a rat model. Muscle Nerve 2018; 58:843-851. [PMID: 30230560 DOI: 10.1002/mus.26344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/19/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Posttraumatic elbow contracture is clinically challenging because injury often disrupts multiple periarticular soft tissues. Tissue specific contribution to contracture, particularly muscle, remains poorly understood. METHODS In this study we used a previously developed animal model of elbow contracture. After surgically inducing a unilateral soft tissue injury, injured limbs were immobilized for 3, 7, 21, and 42 days (IM) or for 42 IM with 42 days of free mobilization (42/42 IM-FM). Biceps brachii active/passive mechanics and morphology were evaluated at 42 IM and 42/42 IM-FM, whereas biceps brachii and brachialis gene expression was evaluated at all time points. RESULTS Injured limb muscle exhibited significantly altered active/passive mechanics and decreased fiber area at 42 IM but returned to control levels by 42/42 IM-FM. Gene expression suggested muscle growth rather than a fibrotic response at 42/42 IM-FM. DISCUSSION Muscle is a transient contributor to motion loss in our rat model of posttraumatic elbow contracture. Muscle Nerve 58:843-851, 2018.
Collapse
Affiliation(s)
- Chelsey L Dunham
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, Missouri, USA
| | - Aaron M Chamberlain
- Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, Missouri, USA
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University in St Louis, St Louis, Missouri, USA
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, Missouri, 63130, USA
| |
Collapse
|
24
|
Tinklenberg J, Beatka M, Bain JLW, Siebers EM, Meng H, Pearsall RS, Lawlor MW, Riley DA. Use Of Ankle Immobilization In Evaluating Treatments To Promote Longitudinal Muscle Growth In Mice. Muscle Nerve 2018; 58:718-725. [PMID: 29981243 DOI: 10.1002/mus.26296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/12/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Difficulty in modeling congenital contractures (deformities of muscle-tendon unit development that include shortened muscles and lengthened tendons) has limited research of new treatments. METHODS Early immobilization of the ankle in prepuberal mice was used to produce deformities similar to congenital contractures. Stretch treatment, electrostimulation, and local intramuscular injection of a follistatin analog (FST-288) were assessed as therapeutic interventions for these deformities. RESULTS Ankle immobilization at full plantarflexion and 90 ° created tendon lengthening and muscle shortening in the tibialis anterior and soleus. Stretch treatment produced minimal evidence for longitudinal muscle growth and electrostimulation provided no additional benefit. Stretch treatment with FST-288 produced greater longitudinal muscle growth and less tendon lengthening, constituting the best treatment response. DISCUSSION Ankle immobilization recapitulates key morphologic features of congenital contracture, and these features can be mitigated by a combination of stretch and pharmacological approaches that may be useful in patients. Muscle Nerve 58: 718-725, 2018.
Collapse
Affiliation(s)
- Jennifer Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Margaret Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - James L W Bain
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emily M Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Danny A Riley
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
25
|
Moore-Lotridge SN, Oelsner WK, Ihejirika Y, Desai MJ, Gebhart SS, Schoenecker JG. Novel preclinical murine model of trauma-induced elbow stiffness. J Exp Orthop 2018; 5:36. [PMID: 30229498 PMCID: PMC6143496 DOI: 10.1186/s40634-018-0155-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Peri-articular injury may result in functional deficits and pain. In particular, post-traumatic elbow stiffness is a debilitating condition, precluding patients from performing activities of daily living. As such, clinicians and basic scientists alike, aim to develop novel therapeutic interventions to prevent and treat elbow stiffness; thereby reducing patient morbidity. Yet, there is a paucity of pre-clinical models of peri-articular stiffness, especially of the upper extremity, necessary to develop and test the efficacy of therapeutics. We set out to develop a pre-clinical murine model of elbow stiffness, resulting from soft tissue injury, with features characteristic of pathology observed in these patients. METHODS A soft tissue peri-elbow injury was inflicted in mice using cardiotoxin. Pathologic tissue repair was induced by creating an investigator-imposed deficiency of plasminogen, a protease essential for musculoskeletal tissue repair. Functional testing was conducted through analysis of grip strength and gait. Radiography, microcomputed tomography, and histological analyses were employed to quantify development of heterotopic ossification. RESULTS Animals with peri-elbow soft tissues injury in conjunction with an investigator-imposed plasminogen deficiency, developed a significant loss of elbow function measured by grip strength (2.387 ± 0.136 N vs 1.921 ± 0.157 N, ****, p < 0.0001) and gait analysis (35.05 ± 2.775 mm vs 29.87 ± 2.075 mm, ***, p < 0.0002). Additionally, plasminogen deficient animals developed capsule thickening, delayed skeletal muscle repair, fibrosis, chronic inflammation, and heterotopic ossification; all features characteristic of pathology observed in patients with trauma-induced elbow stiffness. CONCLUSION A soft tissue injury to the peri-elbow soft tissue with a concomitant deficiency in plasminogen, instigates elbow stiffness and pathologic features similar to those observed in humans. This pre-clinical model is valuable for translational studies designed to investigate the contributions of pathologic features to elbow stiffness or as a high-throughput model for testing therapeutic strategies designed to prevent and treat trauma-induced elbow stiffness.
Collapse
Affiliation(s)
- Stephanie N Moore-Lotridge
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University Medical Center, 2200 Pierce Ave, Robinson Research Building, Rm 454, Nashville, TN, 37232, USA
| | - William K Oelsner
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Yael Ihejirika
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Mihir J Desai
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Sandra S Gebhart
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA. .,Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA. .,Department of Pediatrics, Vanderbilt University Medical Center, 4202 Doctor's Office Tower, 2200 Children's Way, Nashville, TN, 37232, USA. .,Department of Pharmacology, Vanderbilt University Medical Center, 2200 Pierce Ave, Robinson Research Building, Rm 454, Nashville, TN, 37232, USA.
| |
Collapse
|
26
|
Temporal Patterns of Motion in Flexion-extension and Pronation-supination in a Rat Model of Posttraumatic Elbow Contracture. Clin Orthop Relat Res 2018; 476:1878-1889. [PMID: 30001292 PMCID: PMC6259801 DOI: 10.1097/corr.0000000000000388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The elbow is highly susceptible to contracture, which affects up to 50% of patients who experience elbow trauma. Previously, we developed a rat model to study elbow contracture that exhibited features similar to the human condition, including persistently decreased ROM and increased capsule thickness/adhesions. However, elbow ROM was not quantitatively evaluated over time throughout contracture development and subsequent mobilization of the joint. QUESTIONS/PURPOSES The purposes of this study were (1) to quantify the time-dependent mechanics of contracture, including comparison of contracture after immobilization and free mobilization; and (2) to determine what changes occur in capsule and joint surface morphology that may support the altered joint mechanics. METHODS A total of 96 male Long-Evans rats were randomized into control and injury (unilateral soft tissue injury/immobilization) groups. Flexion-extension and pronation-supination joint mechanics (n = 8/group) were evaluated after 3, 7, 21, or 42 days of immobilization (IM) or after 42 days of IM with either 21 or 42 days of free mobilization (63 or 84 FM, respectively). After measuring joint mechanics, a subset of these limbs (n = 3/group) was prepared for histologic analysis and blinded sections were scored to evaluate capsule and joint surface morphology. Joint mechanics and capsule histology at 42 IM and 84 FM were reported previously but are included to demonstrate the full timeline of elbow contracture. RESULTS In flexion-extension, injured limb ROM was decreased compared with control (103° ± 11°) by 21 IM (70° ± 13°) (p = 0.001). Despite an increase in injured limb ROM from 42 IM (55° ± 14°) to 63 FM (83° ± 10°) (p < 0.001), injured limb ROM was still decreased compared with control (103° ± 11°) (p = 0.002). Interestingly, ROM recovery plateaued because there was no difference between injured limbs at 63 (83° ± 10°) and 84 FM (73° ± 19°) (p > 0.999). In pronation-supination, increased injured limb ROM occurred until 7 IM (202° ± 32°) compared with control (155° ± 22°) (p = 0.001), representative of joint instability. However, injured limb ROM decreased from 21 (182° ± 25°) to 42 IM (123° ± 47°) (p = 0.001), but was not different compared with control (155° ± 22°) (p = 0.108). Histologic evaluation showed morphologic changes in the anterior capsule (increased adhesions, myofibroblasts, thickness) and nonopposing joint surfaces (surface irregularities with tissue overgrowth, reduced matrix), but these changes did not increase with time. CONCLUSIONS Overall, flexion-extension and pronation-supination exhibited distinct time-dependent patterns during contracture development and joint mobilization. Histologic evaluation showed tissue changes, but did not fully explain the patterns in contracture mechanics. Future work will use this rat model to evaluate the periarticular soft tissues of the elbow to isolate tissue-specific contributions to contracture to ultimately develop strategies for tissue-targeted treatments. CLINICAL RELEVANCE A rat model of posttraumatic elbow contracture quantitatively described contracture development/progression and reiterates the need for rehabilitation strategies that consider both flexion-extension and pronation-supination elbow motion.
Collapse
|
27
|
Baranowski A, Schlemmer L, Förster K, Mattyasovszky SG, Ritz U, Wagner D, Rommens PM, Hofmann A. A novel rat model of stable posttraumatic joint stiffness of the knee. J Orthop Surg Res 2018; 13:185. [PMID: 30045767 PMCID: PMC6060505 DOI: 10.1186/s13018-018-0894-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/17/2018] [Indexed: 11/25/2022] Open
Abstract
Background Animal models of posttraumatic joint stiffness (PTJS) are helpful in understanding underlying mechanisms, which is important for developing specific treatments and prophylactic therapies. Existing rat models of PTJS in the knee failed to show that the created contracture does not resolve through subsequent remobilization. Our objective was to establish a rat model of persisting PTJS of the knee and compare it to existing models. Methods Thirty skeletally immature male Sprague Dawley rats underwent surgical intervention with knee hyperextension, extracartilaginous femoral condyle defect, and Kirschner (K)-wire transfixation for 4 weeks with the knee joint in 146.7° ± 7.7° of flexion (n = 10 per group, groups I–III). After K-wire removal, group I underwent joint angle measurements and group II and group III were allowed for 4 or 8 weeks of free cage activity, respectively, before joint angles were measured. Eighteen rats (n = 6 per group, groups Ic–IIIc) served as untreated control. Results Arthrogenic contracture was largest in group I (55.2°). After 4 weeks of remobilization, the contracture decreased to 25.7° in group II (p < 0.05 vs. group I), whereas 8 weeks of remobilization did not reduce the contracture significantly (group III, 26.5°, p = 0.06 vs. group I). Between 4 and 8 weeks of remobilization, no increase in extension (26.5° in group III, p = 0.99 vs. group II) was observed. Interestingly, muscles did not contribute to the development of contracture. Conclusion In our new rat model of PTJS of the knee joint, we were able to create a significant joint contracture with an immobilization time of only 4 weeks after trauma. Remobilization of up to 8 weeks alone did not result in full recovery of the range of motion. This model represents a powerful tool for further investigations on prevention and treatment of PTJS. Future studies of our group will use this new model to analyze medical treatment options for PTJS.
Collapse
Affiliation(s)
- Andreas Baranowski
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany.
| | - Ludwig Schlemmer
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katharina Förster
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Stefan G Mattyasovszky
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Daniel Wagner
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Pol M Rommens
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131, Mainz, Germany.,Department of Traumatology and Orthopaedics 1, Westpfalz-Medical Centre Kaiserslautern, Hellmut-Hartert-Str 1, 67655, Kaiserslautern, Germany
| |
Collapse
|
28
|
Jacobs BY, Lakes EH, Reiter AJ, Lake SP, Ham TR, Leipzig ND, Porvasnik SL, Schmidt CE, Wachs RA, Allen KD. The Open Source GAITOR Suite for Rodent Gait Analysis. Sci Rep 2018; 8:9797. [PMID: 29955094 PMCID: PMC6023937 DOI: 10.1038/s41598-018-28134-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/14/2018] [Indexed: 11/24/2022] Open
Abstract
Locomotive changes are often associated with disease or injury, and these changes can be quantified through gait analysis. Gait analysis has been applied to preclinical studies, providing quantitative behavioural assessment with a reasonable clinical analogue. However, available gait analysis technology for small animals is somewhat limited. Furthermore, technological and analytical challenges can limit the effectiveness of preclinical gait analysis. The Gait Analysis Instrumentation and Technology Optimized for Rodents (GAITOR) Suite is designed to increase the accessibility of preclinical gait analysis to researchers, facilitating hardware and software customization for broad applications. Here, the GAITOR Suite’s utility is demonstrated in 4 models: a monoiodoacetate (MIA) injection model of joint pain, a sciatic nerve injury model, an elbow joint contracture model, and a spinal cord injury model. The GAITOR Suite identified unique compensatory gait patterns in each model, demonstrating the software’s utility for detecting gait changes in rodent models of highly disparate injuries and diseases. Robust gait analysis may improve preclinical model selection, disease sequelae assessment, and evaluation of potential therapeutics. Our group has provided the GAITOR Suite as an open resource to the research community at www.GAITOR.org, aiming to promote and improve the implementation of gait analysis in preclinical rodent models.
Collapse
Affiliation(s)
- Brittany Y Jacobs
- University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, 32611, USA
| | - Emily H Lakes
- University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, 32611, USA
| | - Alex J Reiter
- Washington University in St. Louis, School of Engineering and Applied Science, St. Louis, 63130, USA
| | - Spencer P Lake
- Washington University in St. Louis, School of Engineering and Applied Science, St. Louis, 63130, USA
| | - Trevor R Ham
- University of Akron, Chemical and Biomolecular Engineering, Akron, 44325, USA
| | - Nic D Leipzig
- University of Akron, Chemical and Biomolecular Engineering, Akron, 44325, USA
| | - Stacy L Porvasnik
- University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, 32611, USA
| | - Christine E Schmidt
- University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, 32611, USA
| | - Rebecca A Wachs
- University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, 32611, USA.,University of Nebraska-Lincoln, Biological Systems Engineering, Lincoln, 68588, USA
| | - Kyle D Allen
- University of Florida, J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, 32611, USA.
| |
Collapse
|
29
|
Dunham CL, Castile RM, Chamberlain AM, Galatz LM, Lake SP. Pronation-Supination Motion Is Altered in a Rat Model of Post-Traumatic Elbow Contracture. J Biomech Eng 2018; 139:2621591. [PMID: 28418515 DOI: 10.1115/1.4036472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 11/08/2022]
Abstract
The elbow joint is highly susceptible to joint contracture, and treating elbow contracture is a challenging clinical problem. Previously, we established an animal model to study elbow contracture that exhibited features similar to the human condition including persistent decreased range of motion (ROM) in flexion-extension and increased capsule thickness/adhesions. The objective of this study was to mechanically quantify pronation-supination in different injury models to determine if significant differences compared to control or contralateral persist long-term in our animal elbow contracture model. After surgically inducing soft tissue damage in the elbow, Injury I (anterior capsulotomy) and Injury II (anterior capsulotomy with lateral collateral ligament transection), limbs were immobilized for 6 weeks (immobilization (IM)). Animals were evaluated after the IM period or following an additional 6 weeks of free mobilization (FM). Total ROM for pronation-supination was significantly decreased compared to the uninjured contralateral limb for both IM and FM, although not different from control limbs. Specifically, for both IM and FM, total ROM for Injury I and Injury II was significantly decreased by ∼20% compared to contralateral. Correlations of measurements from flexion-extension and pronation-supination divulged that FM did not affect these motions in the same way, demonstrating that joint motions need to be studied/treated separately. Overall, injured limbs exhibited persistent motion loss in pronation-supination when comparing side-to-side differences, similar to human post-traumatic joint contracture. Future work will use this animal model to study how elbow periarticular soft tissues contribute to contracture.
Collapse
Affiliation(s)
- Chelsey L Dunham
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130 e-mail:
| | - Ryan M Castile
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130 e-mail:
| | - Aaron M Chamberlain
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63130 e-mail:
| | - Leesa M Galatz
- Department of Orthopaedic Surgery, Mount Sinai Hospital, New York, NY 10029 e-mail:
| | - Spencer P Lake
- Mem. ASME Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130;Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO 63130;Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130 e-mail:
| |
Collapse
|
30
|
Dunham CL, Castile RM, Havlioglu N, Chamberlain AM, Galatz LM, Lake SP. Persistent motion loss after free joint mobilization in a rat model of post-traumatic elbow contracture. J Shoulder Elbow Surg 2017; 26:611-618. [PMID: 28081997 PMCID: PMC5502529 DOI: 10.1016/j.jse.2016.09.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/19/2016] [Accepted: 09/29/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Post-traumatic joint contracture (PTJC) in the elbow is a challenging clinical problem due to the anatomical and biomechanical complexity of the elbow joint. METHODS We previously established an animal model to study elbow PTJC, wherein surgically induced soft tissue damage, followed by 6 weeks of unilateral immobilization in Long-Evans rats, led to stiffened and contracted joints that exhibited features similar to the human condition. In this study, after 6 weeks of immobilization, we remobilized the animal (ie, external bandage removed and free cage activity) for an additional 6 weeks, after which the limbs were evaluated mechanically and histologically. The objective of this study was to evaluate whether this decreased joint motion would persist after 6 weeks of free mobilization (FM). RESULTS After FM, flexion-extension demonstrated decreased total range of motion (ROM) and neutral zone length, and increased ROM midpoint for injured limbs compared with control and contralateral limbs. Specifically, after FM total ROM demonstrated a significant decrease of approximately 22% and 26% compared with control and contralateral limbs for injury I (anterior capsulotomy) and injury II (anterior capsulotomy with lateral collateral ligament transection), respectively. Histologic evaluation showed increased adhesion, fibrosis, and thickness of the capsule tissue in the injured limbs after FM compared with control and contralateral limbs, which is consistent with patterns previously reported in human tissue. CONCLUSION Even with FM, injured limbs in this model demonstrate persistent joint motion loss and histologic results similar to the human condition. Future work will use this animal model to investigate the mechanisms responsible for PTJC and responses to therapeutic intervention.
Collapse
Affiliation(s)
- Chelsey L. Dunham
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| | - Ryan M. Castile
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO
| | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, MO
| | | | - Leesa M. Galatz
- Department of Orthopaedic Surgery, Mount Sinai Hospital, New York, NY
| | - Spencer P. Lake
- Department of Biomedical Engineering, Washington University, St. Louis, MO,Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO,Department of Orthopaedic Surgery, Washington University, St. Louis, MO,Corresponding Author: Spencer P. Lake, Ph.D., 1 Brookings Drive, Campus Box 1185, St. Louis, MO 63130,
| |
Collapse
|
31
|
Pingel J, Bartels EM, Nielsen JB. New perspectives on the development of muscle contractures following central motor lesions. J Physiol 2017; 595:1027-1038. [PMID: 27779750 PMCID: PMC5309377 DOI: 10.1113/jp272767] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/18/2016] [Indexed: 01/03/2023] Open
Abstract
Muscle contractures are common in patients with central motor lesions, but the mechanisms responsible for the development of contractures are still unclear. Increased or decreased neural activation, protracted placement of a joint with the muscle in a short position and muscle atrophy have been suggested to be involved, but none of these mechanisms are sufficient to explain the development of muscle contractures alone. Here we propose that changes in tissue homeostasis in the neuromuscular-tendon-connective tissue complex is at the heart of the development of contractures, and that an integrated physiological understanding of the interaction between neural, mechanical and metabolic factors, as well as genetic and epigenetic factors, is necessary in order to unravel the mechanisms that result in muscle contractures. We hope thereby to contribute to a reconsideration of how and why muscle contractures develop in a way which will open a window towards new insight in this area in the future.
Collapse
Affiliation(s)
- J. Pingel
- Department of ExerciseNutrition and SportsUniversity of CopenhagenDenmark
| | - E. M. Bartels
- The Biochemistry and Physiology LaboratoryThe Parker InstituteCopenhagen University HospitalBispebjerg and FrederiksbergDenmark
| | - J. B. Nielsen
- Department of ExerciseNutrition and SportsUniversity of CopenhagenDenmark
| |
Collapse
|
32
|
Gibbs VN, Middleton R, Rees JL. Surgical management of the elderly elbow. Maturitas 2016; 91:36-41. [PMID: 27451319 DOI: 10.1016/j.maturitas.2016.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 11/25/2022]
Abstract
The elbow has a major role in helping with the positioning of the hand in space. Any pathology of the joint can result in pain, loss of function and difficulties with activities of daily living. With an increasingly elderly population the degenerative conditions affecting the elbow are becoming more prevalent. Besides traumatic injury, the more commonly encountered problems are osteoarthritis, inflammatory arthritis, nerve compression and stiffness. An awareness of these conditions is important for those who provide care to this patient group. Whilst many of these conditions can be managed conservatively in primary care, some patients are referred to secondary care and elect for surgical treatments. This review considers the surgical treatments for the common elbow pathologies in the elderly population, including the potential complications associated with such treatments.
Collapse
Affiliation(s)
- V N Gibbs
- Nuffield Orthopaedic Centre, Windmill Road, Headington, Oxford OX3 7HE, United Kingdom.
| | - R Middleton
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, The Botnar Research Institute, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom.
| | - J L Rees
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, The Botnar Research Institute, University of Oxford, Old Road, Headington, Oxford OX3 7LD, United Kingdom.
| |
Collapse
|
33
|
Abstract
Posttraumatic elbow stiffness is a disabling condition that remains challenging to treat despite improvement of our understanding of the pathogenesis of posttraumatic contractures and new treatment regimens. This review provides an update and overview of the etiology of posttraumatic elbow stiffness, its classification, evaluation, nonoperative and operative treatment, and postoperative management.
Collapse
|