1
|
Skelly JD, Chen F, Chang SY, Ujjwal RR, Ghimire A, Ayers DC, Song J. Modulating On-Demand Release of Vancomycin from Implant Coatings via Chemical Modification of a Micrococcal Nuclease-Sensitive Oligonucleotide Linker. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37174-37183. [PMID: 37525332 PMCID: PMC10421633 DOI: 10.1021/acsami.3c05881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Periprosthetic infections are one of the most serious complications in orthopedic surgeries, and those caused by Staphylococcus aureus (S. aureus) are particularly hard to treat due to their tendency to form biofilms on implants and their notorious ability to invade the surrounding bones. The existing prophylactic local antibiotic deliveries involve excessive drug loading doses that could risk the development of drug resistance strains. Utilizing an oligonucleotide linker sensitive to micrococcal nuclease (MN) cleavage, we previously developed an implant coating capable of releasing covalently tethered vancomycin, triggered by S. aureus-secreted MN, to prevent periprosthetic infections in the mouse intramedullary (IM) canal. To further engineer this exciting platform to meet broader clinical needs, here, we chemically modified the oligonucleotide linker by a combination of 2'-O-methylation and phosphorothioate modification to achieve additional modulation of its stability/sensitivity to MN and the kinetics of MN-triggered on-demand release. We found that when all phosphodiester bonds within the oligonucleotide linker 5'-carboxy-mCmGTTmCmG-3-acrydite, except for the one between TT, were replaced by phosphorothioate, the oligonucleotide (6PS) stability significantly increased and enabled the most sustained release of tethered vancomycin from the coating. By contrast, when only the peripheral phosphodiester bonds at the 5'- and 3'-ends were replaced by phosphorothioate, the resulting oligonucleotide (2PS) linker was cleaved by MN more rapidly than that without any PS modifications (0PS). Using a rat femoral canal periprosthetic infection model where 1000 CFU S. aureus was inoculated at the time of IM pin insertion, we showed that the prophylactic implant coating containing either 0PS- or 2PS-modified oligonucleotide linker effectively eradicated the bacteria by enabling the rapid on-demand release of vancomycin. No bacteria were detected from the explanted pins, and no signs of cortical bone changes were detected in these treatment groups throughout the 3 month follow-ups. With an antibiotic tethering dose significantly lower than conventional antibiotic-bearing bone cements, these coatings also exhibited excellent biocompatibility. These chemically modified oligonucleotides could help tailor prophylactic anti-infective coating strategies to meet a range of clinical challenges where the risks for S. aureus prosthetic infections range from transient to long-lasting.
Collapse
Affiliation(s)
- Jordan D Skelly
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Feiyang Chen
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Shing-Yun Chang
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Rewati R Ujjwal
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Ananta Ghimire
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - David C Ayers
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| |
Collapse
|
2
|
Steadman W, Chapman PR, Schuetz M, Schmutz B, Trampuz A, Tetsworth K. Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics (Basel) 2023; 12:752. [PMID: 37107114 PMCID: PMC10134995 DOI: 10.3390/antibiotics12040752] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Prosthetic Joint Infection (PJI) causes significant morbidity and mortality for patients globally. Delivery of antibiotics to the site of infection has potential to improve the treatment outcomes and enhance biofilm eradication. These antibiotics can be delivered using an intra-articular catheter or combined with a carrier substance to enhance pharmacokinetic properties. Carrier options include non-resorbable polymethylmethacrylate (PMMA) bone cement and resorbable calcium sulphate, hydroxyapatite, bioactive glass, and hydrogels. PMMA allows for creation of structural spacers used in multi-stage revision procedures, however it requires subsequent removal and antibiotic compatibility and the levels delivered are variable. Calcium sulphate is the most researched resorbable carrier in PJI, but is associated with wound leakage and hypercalcaemia, and clinical evidence for its effectiveness remains at the early stage. Hydrogels provide a versatile combability with antibiotics and adjustable elution profiles, but clinical usage is currently limited. Novel anti-biofilm therapies include bacteriophages which have been used successfully in small case series.
Collapse
Affiliation(s)
- William Steadman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Paul R. Chapman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Herston Infectious Disease Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Infectious Diseases, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Michael Schuetz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Beat Schmutz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane 4059, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane 4059, Australia
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Septic Unit Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Kevin Tetsworth
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Medicine, University of Queensland, Brisbane 4029, Australia
| |
Collapse
|
3
|
Dao A, O'Donohue AK, Vasiljevski E, Bobyn J, Little D, Schindeler A. Murine models of orthopedic infection featuring Staphylococcus aureus biofilm. J Bone Jt Infect 2023; 8:81-89. [PMID: 37123502 PMCID: PMC10134754 DOI: 10.5194/jbji-8-81-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/04/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: Osteomyelitis remains a major clinical challenge. Many published rodent fracture infection models are costly compared with murine models for rapid screening and proof-of-concept studies. We aimed to develop a dependable and cost-effective murine bone infection model that mimics bacterial bone infections associated with biofilm and metal implants. Methods: Tibial drilled hole (TDH) and needle insertion surgery (NIS) infection models were compared in C57BL/6 mice (female, N = 150 ). Metal pins were inserted selectively into the medullary canal adjacent to the defect sites on the metaphysis. Free Staphylococcus aureus (ATCC 12600) or biofilm suspension (ATCC 25923) was locally inoculated. Animals were monitored for physiological or radiographic evidence of infection without prophylactic antibiotics for up to 14 d. At the end point, bone swabs, soft-tissue biopsies, and metal pins were taken for cultures. X-ray and micro-CT scans were performed along with histology analysis. Results: TDH and NIS both achieved a 100 % infection rate in tibiae when a metal implant was present with injection of free bacteria. In the absence of an implant, inoculation with a bacterial biofilm still induced a 40 %-50 % infection rate. In contrast, freely suspended bacteria and no implant consistently showed lower or negligible infection rates. Micro-CT analysis confirmed that biofilm infection caused local bone loss even without a metal implant as a nidus. Although a metal surface permissive for biofilm formation is impermeable to create progressive bone infections in animal models, the metal implant can be dismissed if a bacterial biofilm is used. Conclusion: These models have a high potential utility for modeling surgery-related osteomyelitis, with NIS being simpler to perform than TDH.
Collapse
Affiliation(s)
- Aiken Dao
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
- Bioengineering & Molecular Medicine Laboratory, the Westmead Institute
for Medical Research, Westmead, NSW, Australia
| | - Alexandra K. O'Donohue
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
- Bioengineering & Molecular Medicine Laboratory, the Westmead Institute
for Medical Research, Westmead, NSW, Australia
| | - Emily R. Vasiljevski
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
| | - Justin D. Bobyn
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
| | - David G. Little
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research and Biotechnology Unit, the Children's Hospital at
Westmead, Westmead, NSW, Australia
- The Children's Hospital at Westmead Clinical School, Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
- Bioengineering & Molecular Medicine Laboratory, the Westmead Institute
for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
4
|
Kazakova O, Giniyatullina G, Babkov D, Wimmer Z. From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues. Int J Mol Sci 2022; 23:ijms23031075. [PMID: 35162998 PMCID: PMC8834734 DOI: 10.3390/ijms23031075] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
- Correspondence:
| | - Gulnara Giniyatullina
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Denis Babkov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia;
| | - Zdenek Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technicka’ 5, Prague 6, 16628 Prague, Czech Republic;
| |
Collapse
|
5
|
Spałek J, Daniluk T, Godlewski A, Deptuła P, Wnorowska U, Ziembicka D, Cieśluk M, Fiedoruk K, Ciborowski M, Krętowski A, Góźdź S, Durnaś B, Savage PB, Okła S, Bucki R. Assessment of Ceragenins in Prevention of Damage to Voice Prostheses Caused by Candida Biofilm Formation. Pathogens 2021; 10:pathogens10111371. [PMID: 34832527 PMCID: PMC8622639 DOI: 10.3390/pathogens10111371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the potential application of ceragenins (CSAs) as new candidacidal agents to prevent biofilm formation on voice prostheses (VPs). The deterioration of the silicone material of VPs is caused by biofilm growth on the device which leads to frequent replacement procedures and sometimes serious complications. A significant proportion of these failures is caused by Candida species. We found that CSAs have significant candidacidal activities in vitro (MIC; MFC; MBIC), and they effectively eradicate species of yeast responsible for VP failure. Additionally, in our in vitro experimental setting, when different Candida species were subjected to CSA-13 and CSA-131 during 25 passages, no tested Candida strain showed the significant development of resistance. Using liquid chromatography–mass spectrometry (LC-MS), we found that VP immersion in an ethanol solution containing CSA-131 results in silicon impregnation with CSA-131 molecules, and in vitro testing revealed that fungal biofilm formation on such VP surfaces was inhibited by embedded ceragenins. Future in vivo studies will validate the use of ceragenin-coated VP for improvement in the life quality and safety of patients after a total laryngectomy.
Collapse
Affiliation(s)
- Jakub Spałek
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (J.S.); (S.G.); (B.D.); (S.O.)
- Department of Otolaryngology, Head and Neck Surgery, Holy-Cross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (T.D.); (P.D.); (U.W.); (M.C.); (K.F.)
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (T.D.); (P.D.); (U.W.); (M.C.); (K.F.)
| | - Adrian Godlewski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Białystok, 15-089 Białystok, Poland; (A.G.); (M.C.); (A.K.)
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (T.D.); (P.D.); (U.W.); (M.C.); (K.F.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (T.D.); (P.D.); (U.W.); (M.C.); (K.F.)
| | - Dominika Ziembicka
- Department of Public Health, Medical University of Białystok, 15-089 Białystok, Poland;
| | - Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (T.D.); (P.D.); (U.W.); (M.C.); (K.F.)
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (T.D.); (P.D.); (U.W.); (M.C.); (K.F.)
| | - Michał Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Białystok, 15-089 Białystok, Poland; (A.G.); (M.C.); (A.K.)
| | - Adam Krętowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Białystok, 15-089 Białystok, Poland; (A.G.); (M.C.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, 15-089 Białystok, Poland
| | - Stanisław Góźdź
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (J.S.); (S.G.); (B.D.); (S.O.)
| | - Bonita Durnaś
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (J.S.); (S.G.); (B.D.); (S.O.)
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Sławomir Okła
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (J.S.); (S.G.); (B.D.); (S.O.)
- Department of Otolaryngology, Head and Neck Surgery, Holy-Cross Cancer Center, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (T.D.); (P.D.); (U.W.); (M.C.); (K.F.)
- Correspondence: ; Tel.: +48-85-748-54-83
| |
Collapse
|
6
|
Dao A, Mills RJ, Kamble S, Savage PB, Little DG, Schindeler A. The application of ceragenins to orthopedic surgery and medicine. J Orthop Res 2020; 38:1883-1894. [PMID: 31994754 DOI: 10.1002/jor.24615] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/03/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis and infections associated with orthopedic implants represent a significant burden of disease worldwide. Ceragenins (CSAs) are a relatively new class of small-molecule antimicrobials that target a broad range of Gram-positive and Gram-negative bacteria as well as fungi, viruses, and parasites. This review sets the context of the need for new antimicrobial strategies by cataloging the common pathogens associated with orthopedic infection and highlighting the increasing challenges of managing antibiotic-resistant bacterial strains. It then comparatively describes the antimicrobial properties of CSAs with a focus on the CSA-13 family. More recently developed members of this family such as CSA-90 and CSA-131 may have a particular advantage in an orthopedic setting as they possess secondary pro-osteogenic properties. In this context, we consider several new preclinical studies that demonstrate the utility of CSAs in orthopedic models. Emerging evidence suggests that CSAs are effective against antibiotic-resistant Staphylococcus aureus strains and can prevent the formation of biofilms. There remains considerable scope for developing CSA-based treatments, either as coatings for orthopedic implants or as local or systemic antibiotics to prevent bone infection.
Collapse
Affiliation(s)
- Aiken Dao
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia.,The Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Rebecca J Mills
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia.,The Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Sumedh Kamble
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia.,The Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Paul B Savage
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia.,Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - David G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia.,The Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, NSW, Australia.,The Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Alt V, Chen AF. Antimicrobial coatings for orthopaedic implants - Ready for use? J Bone Jt Infect 2020; 5:125-127. [PMID: 32566450 PMCID: PMC7295647 DOI: 10.7150/jbji.46508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Antonia F. Chen
- Department of Orthopaedic Surgery at Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|