1
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
2
|
Menjivar NG, Oropallo J, Gebremedhn S, Souza LA, Gad A, Puttlitz CM, Tesfaye D. MicroRNA Nano-Shuttles: Engineering Extracellular Vesicles as a Cutting-Edge Biotechnology Platform for Clinical Use in Therapeutics. Biol Proced Online 2024; 26:14. [PMID: 38773366 PMCID: PMC11106895 DOI: 10.1186/s12575-024-00241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized, membranous transporters of various active biomolecules with inflicting phenotypic capabilities, that are naturally secreted by almost all cells with a promising vantage point as a potential leading drug delivery platform. The intrinsic characteristics of their low toxicity, superior structural stability, and cargo loading capacity continue to fuel a multitude of research avenues dedicated to loading EVs with therapeutic and diagnostic cargos (pharmaceutical compounds, nucleic acids, proteins, and nanomaterials) in attempts to generate superior natural nanoscale delivery systems for clinical application in therapeutics. In addition to their well-known role in intercellular communication, EVs harbor microRNAs (miRNAs), which can alter the translational potential of receiving cells and thus act as important mediators in numerous biological and pathological processes. To leverage this potential, EVs can be structurally engineered to shuttle therapeutic miRNAs to diseased recipient cells as a potential targeted 'treatment' or 'therapy'. Herein, this review focuses on the therapeutic potential of EV-coupled miRNAs; summarizing the biogenesis, contents, and function of EVs, as well as providing both a comprehensive discussion of current EV loading techniques and an update on miRNA-engineered EVs as a next-generation platform piloting benchtop studies to propel potential clinical translation on the forefront of nanomedicine.
Collapse
Affiliation(s)
- Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jaiden Oropallo
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
- Orthopaedic Research Center (ORC), Translational Medicine Institute (TMI), Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Samuel Gebremedhn
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- J.R. Simplot Company, 1099 W. Front St, Boise, ID, 83702, USA
| | - Luca A Souza
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of São Paulo, 225 Av. Duque de Caxias Norte, Pirassununga, SP, 13635-900, Brazil
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Christian M Puttlitz
- Orthopaedic Bioengineering Research Laboratory (OBRL), Translational Medicine Institute (TMI), Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80523, USA
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
3
|
Jia Y, Huo X, Wu L, Zhang H, Xu W, Leng H. circSNTB2 and CUL4A Induces Dysfunction of Nucleus Pulposus Cells by Competitively Binding miR-665. Biochem Genet 2024; 62:968-986. [PMID: 37507642 DOI: 10.1007/s10528-023-10465-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Circular RNA (circRNA) plays important roles in lumbar degenerative diseases. This study aimed to investigate the role of circSNTB2 in regulating the development of lumbar disc herniation (LDH) in vitro and in vivo. The abnormally expressed circSNTB2 in intervertebral disc degeneration (IDD) through bioinformatics analysis was identified, and verified in nucleus pulposus (NP) tissues of patients with LDH. NP cells were treated with TNF-α to mimic the LDH microenvironment. RT-qPCR was applied to determine levels of mRNA and microRNA (miRNA) in clinical samples and cells. We performed CCK-8, EdU, TUNEL and flow cytometric apoptosis assays to evaluate the proliferation and apoptosis of NP cells. The predicted the miRNAs and downstream target genes were verified with the help of luciferase reporter gene and RNA pull-down experiments. Finally, we established an LDH rat model to further verify the role of circSNTB2 in vivo. circSNTB2 was significantly up-regulated in the NP tissues of LDH group and TNF-α -treated NP cells. miR-665 binds to circSNTB2 and cullin 4A (CUL4A) is the downstream target gene of miR-665. Knockdown of circSNTB2 promoted NP cells proliferation and inhibited apoptosis, which was reversed by down-regulation of miR-665. In addition, up-regulated CUL4A reversed the effects of over-expressed miR-665 on proliferation and apoptosis of NP cells. Meanwhile, results of in vivo experiments demonstrated that knocking down circSNTB2 alleviated LDH-induced thermo-mechanical pain and NP injury. In summary, circSNTB2 regulates the proliferation and apoptosis of NP by mediating miR-665 regulation of CUL4A, which provides a reliable idea for targeted therapy of LDH.
Collapse
Affiliation(s)
- Yiming Jia
- Department of Spine Surgery, Chifeng Municipal Hospital, Hongshan District, No. 1, Zhaowuda Road, Chifeng City, 024000, Inner Mongolia, China
| | - Xin Huo
- Department of Orthopaedics, Chifeng Second Hospital, Hongshan District, No.1, Changqing Street, Chifeng City, 024000, Inner Mongolia, China
| | - Leilei Wu
- Department of Spine Surgery, Chifeng Municipal Hospital, Hongshan District, No. 1, Zhaowuda Road, Chifeng City, 024000, Inner Mongolia, China
| | - Haibo Zhang
- Department of Spine Surgery, Chifeng Municipal Hospital, Hongshan District, No. 1, Zhaowuda Road, Chifeng City, 024000, Inner Mongolia, China
| | - Wenda Xu
- Department of Spine Surgery, Chifeng Municipal Hospital, Hongshan District, No. 1, Zhaowuda Road, Chifeng City, 024000, Inner Mongolia, China
| | - Hui Leng
- Department of Spine Surgery, Chifeng Municipal Hospital, Hongshan District, No. 1, Zhaowuda Road, Chifeng City, 024000, Inner Mongolia, China.
| |
Collapse
|
4
|
You X, Ye Y, Lin S, Zhang Z, Guo H, Ye H. Identification of key genes and immune infiltration in osteoarthritis through analysis of zinc metabolism-related genes. BMC Musculoskelet Disord 2024; 25:227. [PMID: 38509535 PMCID: PMC10956297 DOI: 10.1186/s12891-024-07347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) represents a prominent etiology of considerable pain and disability, and conventional imaging methods lack sensitivity in diagnosing certain types of OA. Therefore, there is a need to identify highly sensitive and efficient biomarkers for OA diagnosis. Zinc ions feature in the pathogenesis of OA. This work aimed to investugate the role of zinc metabolism-related genes (ZMRGs) in OA and the diagnostic characteristics of key genes. METHODS We obtained datasets GSE169077 and GSE55235 from the Gene Expression Omnibus (GEO) and obtained ZMRGs from MSigDB. Differential expression analysis was conducted on the GSE169077 dataset using the limma R package to identify differentially expressed genes (DEGs), and the intersection of DEGs and ZMRGs yielded zinc metabolism differential expression-related genes (ZMRGs-DEGs). The clusterProfiler R package was employed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of ZMRGs-DEGs. Potential small molecule drugs were predicted using the CMap database, and immune cell infiltration and function in OA individuals were analyzed using the ssGSEA method. Protein-protein interaction (PPI) networks were constructed to detect Hub genes among ZMRGs-DEGs. Hub gene expression levels were analyzed in the GSE169077 and GSE55235 datasets, and their diagnostic characteristics were assessed using receiver operating characteristic (ROC) curves. The gene-miRNA interaction network of Hub genes was explored using the gene-miRNA interaction network website. RESULTS We identified 842 DEGs in the GSE169077 dataset, and their intersection with ZMRGs resulted in 46 ZMRGs-DEGs. ZMRGs-DEGs were primarily enriched in functions such as collagen catabolic processes, extracellular matrix organization, metallopeptidase activity, and pathways like the IL-17 signaling pathway, Nitrogen metabolism, and Relaxin signaling pathway. Ten potential small-molecule drugs were predicted using the CMap database. OA patients exhibited distinct immune cell abundance and function compared to healthy individuals. We identified 4 Hub genes (MMP2, MMP3, MMP9, MMP13) through the PPI network, which were highly expressed in OA and demonstrated good diagnostic performance. Furthermore, two closely related miRNAs for each of the 4 Hub genes were identified. CONCLUSION 4 Hub genes were identified as potential diagnostic biomarkers and therapeutic targets for OA.
Collapse
Affiliation(s)
- Xiaoxuan You
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, 362000, Fujian, China
| | - Yanbo Ye
- Suzhou University Medical Department, Suzhou, 215000, Jiangsu, China
| | - Shufeng Lin
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, 362000, Fujian, China
| | - Zefeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, 362000, Fujian, China
| | - Huiyang Guo
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, 362000, Fujian, China
| | - Hui Ye
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Licheng District, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
5
|
Yu L, Hao YJ, Ren ZN, Zhu GD, Zhou WW, Lian X, Wu XJ. Ginsenoside Rg1 relieves rat intervertebral disc degeneration and inhibits IL-1β-induced nucleus pulposus cell apoptosis and inflammation via NF-κB signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:287-299. [PMID: 38485818 PMCID: PMC11014818 DOI: 10.1007/s11626-024-00883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 04/13/2024]
Abstract
The study aimed to investigate the effect of ginsenoside Rg1 on intervertebral disc degeneration (IVDD) in rats and IL-1β-induced nucleus pulposus (NP) cells, and explore its underlying mechanism. Forty IVDD rat models were divided into the IVDD group, low-dose (L-Rg1) group (intraperitoneal injection of 20 mg/kg/d ginsenoside Rg1), medium-dose (M-Rg1) group (intraperitoneal injection of 40 mg/kg/d ginsenoside Rg1), and high-dose (H-Rg1) group (intraperitoneal injection of 80 mg/kg/d ginsenoside Rg1). The pathological change was observed by HE and safranin O-fast green staining. The expression of IL-1β, IL-6, TNF-α, MMP3, aggrecan, and collagen II was detected. The expression of NF-κB p65 in IVD tissues was detected. Rat NP cells were induced by IL-1β to simulate IVDD environment and divided into the control group, IL-1β group, and 20, 50, and 100 µmol/L Rg1 groups. The cell proliferation activity, the apoptosis, and the expression of IL-6, TNF-α, MMP3, aggrecan, collagen II, and NF-κB pathway-related protein were detected. In IVDD rats, ginsenoside Rg1 improved the pathology of IVD tissues; suppressed the expression of IL-1β, IL-6, TNF-α, aggrecan, and collagen II; and inhibited the expression of p-p65/p65 and nuclear translocation of p65, to alleviate the IVDD progression. In the IL-1β-induced NP cells, ginsenoside Rg1 also improved the cell proliferation and inhibited the apoptosis and the expression of IL-6, TNF-α, aggrecan, collagen II, p-p65/p65, and IκK in a dose-dependent manner. Ginsenoside Rg1 alleviated IVDD in rats and inhibited apoptosis, inflammatory response, and ECM degradation in IL-1β-induced NP cells. And Rg1 may exert its effect via inhibiting the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Ying-Jie Hao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Zhi-Nan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Guang-Duo Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Wei-Wei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Xu Lian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Xue-Jian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China.
| |
Collapse
|
6
|
Zhao Y, Dong H, Xia Q, Wang Y, Zhu L, Hu Z, Xia J, Mao Q, Weng Z, Yi J, Feng S, Jiang Y, Liao W, Xin Z. A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomed Pharmacother 2024; 172:116238. [PMID: 38308965 DOI: 10.1016/j.biopha.2024.116238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a disease that severely affects spinal health and is prevalent worldwide. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have regenerative potential and have emerged as promising therapeutic tools for treating degenerative discs. However, challenges such as the harsh microenvironment of degenerated intervertebral discs and EVs' limited stability and efficacy have hindered their clinical application. In recent years, hydrogels have attracted much attention in the field of IDD therapy because they can mimic the physiologic microenvironment of the disc and provide a potential solution by providing a suitable growth environment for MSCs and EVs. This review introduced the biological properties of MSCs and their derived EVs, summarized the research on the application of MSCs and EVs in IDD, summarized the current clinical trial studies of MSCs and EVs, and also explored the mechanism of action of MSCs and EVs in intervertebral discs. In addition, plenty of research elaborated on the mechanism of action of different classified hydrogels in tissue engineering, the synergistic effect of MSCs and EVs in promoting intervertebral disc regeneration, and their wide application in treating IDD. Finally, the challenges and problems still faced by hydrogel-loaded MSCs and EVs in the treatment of IDD are summarized, and potential solutions are proposed. This paper outlines the synergistic effects of MSCs and EVs in treating IDD in combination with hydrogels and aims to provide theoretical references for future related studies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Huaize Dong
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiuqiu Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Yanyang Wang
- Department of Cell Engineering Laboratory, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Lu Zhu
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zongyue Hu
- Department of Pain Rehabilitation, Affiliated Sinopharm Gezhouba Central Hospital, Third Clinical Medical College of Three Gorges University, Yichang 443003, Hubei, China
| | - Jiyue Xia
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Qiming Mao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zijing Weng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Jiangbi Yi
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Shuai Feng
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Youhong Jiang
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Wenbo Liao
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China
| | - Zhijun Xin
- Department of Orthopedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China; Institut Curie, PSL Research University, CNRS UMR3244, Dynamics of Genetic Information, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
7
|
Gao X, Gao LF, Zhang ZY, Jia S, Meng CY. miR-99b-3p/Mmp13 axis regulates NLRP3 inflammasome-dependent microglial pyroptosis and alleviates neuropathic pain via the promotion of autophagy. Int Immunopharmacol 2024; 126:111331. [PMID: 38061116 DOI: 10.1016/j.intimp.2023.111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Neuropathic pain significantly impairs quality of life, and effective interventions are limited. NOD-like receptor thermal protein domain associated protein 3 (NLRP3)-mediated microglial pyroptosis and the subsequent proinflammatory cytokine production are critical in exacerbating pain. Considering microglial pyroptosis as a potential target for developing specific analgesic interventions for neuropathic pain, our study investigated the pathogenesis and therapeutic targets in this condition. METHODS In vitro experiments involved the co-culture of the immortalized BV-2 microglia cell line with lipopolysaccharide (LPS) to induce microglial pyroptosis. Differentially expressed microRNAs (miRNAs) were identified using high-throughput sequencing analysis. The downstream target genes of these miRNAs were determined through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and the downstream target genes, combined with miRNAs, were predicted and verified through dual luciferase reporter gene assays. In vivo experiments were conducted to construct a chronic constriction injury (CCI) neuropathic pain model in rats and evaluate the analgesic effects of intrathecal injection of an adeno-associated virus vector (AAV) carrying miR-99b-3p. Gene expression was modulated through mimic or siRNA transfection. Western blot analysis assessed the expression of microglial pyroptosis and autophagy-related proteins, whereas RT-qPCR measured changes in proinflammatory cytokines expression. RESULTS LPS-stimulated up-regulation of proinflammatory cytokines in microglia, accompanied by NLRP3-dependent pyroptosis, including increased NLRP3, GSDMD-N, Caspase1-p20, and mature-IL-1β expression. High-throughput sequencing analysis revealed 16 upregulated and 10 downregulated miRNAs in LPS-stimulated microglia, with miR-99b-3p being the most downregulated. KEGG analysis revealed that the target genes of these miRNAs are primarily enriched in calcium, FoxO, and mitogen-activated protein kinase (MAPK) signal pathways. Furthermore, overexpression of miR-99b-3p through mimic transfection significantly inhibited the inflammatory response and NLRP3-mediated pyroptosis by promoting autophagy levels in activated microglia. In addition, we predicted that the 3' untranslated region (UTR) of matrix metalloproteinase-13 (Mmp13) could bind to miR-99b-3p, and knockdown of Mmp13 expression through siRNA transfection similarly ameliorated enhanced proinflammatory cytokines expression and microglial pyroptosis by enhancing autophagy. In vivo, Mmp13 was co-localized with spinal dorsal horn microglia and was suppressed by intrathecal injection of the AAV-miR-99b-3p vector. Moreover, overpressed miR-99b-3p alleviated CCI-induced mechanical allodynia and neuroinflammation while suppressing pyroptosis by enhancing autophagy in the spinal cord of CCI rats. CONCLUSION miR-99b-3p exerts analgesic effects on neuropathic pain by targeting Mmp13. These antinociceptive effects are, at least in part, attributed to the promotion of autophagy, thereby inhibiting neuroinflammation and NLRP3-mediated pyroptosis in activated microglia.
Collapse
Affiliation(s)
- Xu Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong Province 272000, China
| | - Long-Fei Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong Province 272000, China
| | - Zhen-Yu Zhang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong Province 272000, China
| | - Shu Jia
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province 272000, China
| | - Chun-Yang Meng
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong Province 272000, China.
| |
Collapse
|
8
|
Zhu S, Wang J, Suo M, Huang H, Liu X, Wang J, Li Z. Can extracellular vesicles be considered as a potential frontier in the treatment of intervertebral disc disease? Ageing Res Rev 2023; 92:102094. [PMID: 37863436 DOI: 10.1016/j.arr.2023.102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
As a global public health problem, low back pain (LBP) caused by intervertebral disc degeneration (IDD) seriously affects patients' quality of life. In addition, the prevalence of IDD tends to be younger, which brings a huge burden to individuals and society economically. Current treatments do not delay or reverse the progression of IDD. The emergence of biologic therapies has brought new hope for the treatment of IDD. Among them, extracellular vesicles (EVs), as nanoscale bioactive substances that mediate cellular communication, have now produced many surprising results in the research of the treatment of IDD. This article reviews the mechanisms and roles of EVs in delaying IDD and describes the prospects and challenges of EVs.
Collapse
Affiliation(s)
- Shengxu Zhu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Junlin Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China
| | - Moran Suo
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, the People's Republic of China; Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, the People's Republic of China.
| |
Collapse
|
9
|
Huang S, Liu Y, Wang C, Xiang W, Wang N, Peng L, Jiang X, Zhang X, Fu Z. Strategies for Cartilage Repair in Osteoarthritis Based on Diverse Mesenchymal Stem Cells-Derived Extracellular Vesicles. Orthop Surg 2023; 15:2749-2765. [PMID: 37620876 PMCID: PMC10622303 DOI: 10.1111/os.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Osteoarthritis (OA) causes disability and significant economic and social burden. Cartilage injury is one of the main pathological features of OA, and is often manifested by excessive chondrocyte death, inflammatory response, abnormal bone metabolism, imbalance of extracellular matrix (ECM) metabolism, and abnormal vascular or nerve growth. Regrettably, due to the avascular nature of cartilage, its capacity to repair is notably limited. Mesenchymal stem cells-derived extracellular vesicles (MSCs-EVs) play a pivotal role in intercellular communication, presenting promising potential not only as early diagnostic biomarkers in OA but also as efficacious therapeutic strategy. MSCs-EVs were confirmed to play a therapeutic role in the pathological process of cartilage injury mentioned above. This paper comprehensively provides the functions and mechanisms of MSCs-EVs in cartilage repair.
Collapse
Affiliation(s)
- Shanjun Huang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Yujiao Liu
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Chenglong Wang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Wei Xiang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Nianwu Wang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Li Peng
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Xuanang Jiang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaomin Zhang
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| | - Zhijiang Fu
- Orthopedics DepartmentThe Affiliated Traditional Chinese Medicine Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
10
|
Zhang P, He J, Gan Y, Shang Q, Chen H, Zhao W, Shen G, Jiang X, Ren H. Plastrum testudinis Ameliorates Oxidative Stress in Nucleus Pulposus Cells via Downregulating the TNF-α Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:1482. [PMID: 37895953 PMCID: PMC10610230 DOI: 10.3390/ph16101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BackgroundPlastrum testudinis (PT), a widely used traditional Chinese medicine, exerts protective effects against bone diseases such as intervertebral disc degeneration (IDD). Despite its effectiveness, the molecular mechanisms underlying the effects of PT on IDD remain unclear. Methods In this study, we used a comprehensive strategy combining bioinformatic analysis with experimental verification to investigate the possible molecular mechanisms of PT against IDD. We retrieved targets for PT and IDD, and then used their overlapped targets for protein-protein interaction (PPI) analysis. In addition, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to investigate the anti-IDD mechanisms of PT. Moreover, in vivo and in vitro experiment validations including hematoxylin-eosin (HE) and safranine O-green staining, senescence-associated β-galactosidase (SA-β-gal) assay, cell immunofluorescence staining, intracellular ROS measurement and Western blot analysis were performed to verify bioinformatics findings. Results We identified 342 and 872 PT- and IDD-related targets (32 overlapping targets). GO enrichment analysis yielded 450 terms related to oxidative stress and inflammatory response regulation. KEGG analysis identified 48 signaling pathways, 10 of which were significant; the TNF-α signaling pathway had the highest p-value, and prostaglandin G/H synthase 2 (PTGS2), endothelin-1 (EDN1), TNF-α, JUN and FOS were enriched in this pathway. Histopathological results and safranin O/green staining demonstrated that PT attenuated IDD, and SA-β-gal assay showed that PT ameliorated nucleus pulposus cell (NPC) senescence. An ROS probe was adopted to confirm the protective effect of PT against oxidative stress. Western blot analyses confirmed that PT downregulated the protein expression of PTGS2, EDN1, TNF-α, JUN and FOS in the TNF-α signaling pathway as well as cellular senescence marker p16, proinflammatory cytokine interleukin-6 (IL6), while PT upregulated the expression of NPC-specific markers including COL2A1 and ACAN in a concentration-dependent manner. Conclusions To the best of our knowledge, this study is the first to report that PT alleviates IDD by downregulating the protein expression of PTGS2, EDN1, TNF-α, JUN and FOS in the TNF-α signaling pathway and upregulating that of COL2A1 and ACAN, thus suppressing inflammatory responses and oxidative stress in NPCs.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Jiahui He
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou 510130, China;
| | - Yanchi Gan
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (P.Z.); (Y.G.); (Q.S.); (H.C.)
| | - Wenhua Zhao
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Gengyang Shen
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Xiaobing Jiang
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| | - Hui Ren
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; (W.Z.); (G.S.)
| |
Collapse
|
11
|
Yu J, Li C. Role of lncRNA MAGI2-AS3 in lipopolysaccharide-induced nucleus pulposus cells injury by regulating miR-374b-5p/interleukin-10 axis. Immun Inflamm Dis 2023; 11:e772. [PMID: 37102649 PMCID: PMC10108685 DOI: 10.1002/iid3.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a pathological process that occurs during the natural aging of intervertebral discs. Accumulating evidence suggests that noncoding RNAs (ncRNAs), including microRNAs and long ncRNAs (lncRNAs), participate in the pathogenesis and development of IDD. Herein, we examined the role of lncRNA MAGI2-AS3 in the pathogenic mechanism of IDD. MATERIAL AND METHODS To develop an IDD in vitro model, we treated human nucleus pulposus (NP) cells with lipopolysaccharide (LPS). Aberrant levels of lncRNA MAGI2-AS3, miR-374b-5p, interleukin (IL)-10 and extracellular matrix (ECM)-related proteins in NP cells were examined using reverse transcription-quantitative PCR and western blot analysis. LPS-induced NP cell injury and inflammatory response were confirmed using the MTT assay, flow cytometry, Caspase3 activity, and enzyme-linked immunosorbent assay. Dual-luciferase reporter assay and rescue experiments were performed to confirm targets between lncRNA MAGI2-AS3 and miR-374b-5p or miR-374b-5p and IL-10. RESULTS LPS-induced NP cells exhibited low levels of lncRNA MAGI2-AS3 and IL-10 expression, along with high miR-374b-5p expression. miR-374b-5p was a target of lncRNA MAGI2-AS3 and IL-10. LncRNA MAGI2-AS3 ameliorated injury, inflammatory response, and ECM degradation in LPS-treated NP cells by downregulating miR-374b-5p to upregulate IL-10 expression. CONCLUSIONS LncRNA MAGI2-AS3 increased IL-10 expression levels by sponging miR-374b-5p, which, in turn, alleviated LPS-triggered decreased NP cell proliferation and increased apoptosis, inflammatory response, and ECM degradation. Therefore, lncRNA MAGI2-AS3 may be a potential therapeutic target for IDD.
Collapse
Affiliation(s)
- Jiang Yu
- Department of Orthopedics SurgeryAffiliated Hospital of Jianghan UniversityWuhanChina
| | - Chengjin Li
- Department of Orthopedics SurgeryAffiliated Hospital of Jianghan UniversityWuhanChina
| |
Collapse
|
12
|
Gerami MH, Khorram R, Rasoolzadegan S, Mardpour S, Nakhaei P, Hashemi S, Al-Naqeeb BZT, Aminian A, Samimi S. Emerging role of mesenchymal stem/stromal cells (MSCs) and MSCs-derived exosomes in bone- and joint-associated musculoskeletal disorders: a new frontier. Eur J Med Res 2023; 28:86. [PMID: 36803566 PMCID: PMC9939872 DOI: 10.1186/s40001-023-01034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
Exosomes are membranous vesicles with a 30 to 150 nm diameter secreted by mesenchymal stem/stromal cells (MSCs) and other cells, such as immune cells and cancer cells. Exosomes convey proteins, bioactive lipids, and genetic components to recipient cells, such as microRNAs (miRNAs). Consequently, they have been implicated in regulating intercellular communication mediators under physiological and pathological circumstances. Exosomes therapy as a cell-free approach bypasses many concerns regarding the therapeutic application of stem/stromal cells, including undesirable proliferation, heterogeneity, and immunogenic effects. Indeed, exosomes have become a promising strategy to treat human diseases, particularly bone- and joint-associated musculoskeletal disorders, because of their characteristics, such as potentiated stability in circulation, biocompatibility, low immunogenicity, and toxicity. In this light, a diversity of studies have indicated that inhibiting inflammation, inducing angiogenesis, provoking osteoblast and chondrocyte proliferation and migration, and negative regulation of matrix-degrading enzymes result in bone and cartilage recovery upon administration of MSCs-derived exosomes. Notwithstanding, insufficient quantity of isolated exosomes, lack of reliable potency test, and exosomes heterogeneity hurdle their application in clinics. Herein, we will deliver an outline respecting the advantages of MSCs-derived exosomes-based therapy in common bone- and joint-associated musculoskeletal disorders. Moreover, we will have a glimpse the underlying mechanism behind the MSCs-elicited therapeutic merits in these conditions.
Collapse
Affiliation(s)
- Mohammad Hadi Gerami
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Khorram
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Rasoolzadegan
- grid.411600.2Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Mardpour
- grid.411705.60000 0001 0166 0922Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooria Nakhaei
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheyla Hashemi
- grid.411036.10000 0001 1498 685XObstetrician, Gynaecology & Infertility Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Aminian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Sahar Samimi
- Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Exosomes treating osteoarthritis: hope with challenge. Heliyon 2023; 9:e13152. [PMID: 36711315 PMCID: PMC9880404 DOI: 10.1016/j.heliyon.2023.e13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
Osteoarthritis (OA) has been proven as the second primary cause of pain and disability in the elderly population, impact patients both physically and mentally, as well as imposing a heavy burden on the global healthcare system. Current treatment methods, whether conservative or surgical, that aim at relieving symptoms can not delay or reverse the degenerative process in the structure. Scientists and clinicians are facing a revolution in OA treatment strategies. The emergence of exosomes brings hope for OA treatment based on pathology, which is attributed to its full potential in protecting chondrocytes from excessive death, alleviating inflammation, maintaining cartilage matrix metabolism, and regulating angiogenesis and subchondral bone remodeling. Therefore, we summarized the recent studies of exosomes in OA, aiming to comprehensively understand the functions and mechanisms of exosomes in OA treatment, which may provide direction and theoretical support for formulating therapeutic strategies in the future.
Collapse
|
14
|
Li Z, Wu Y, Tan G, Xu Z, Xue H. Exosomes and exosomal miRNAs: A new therapy for intervertebral disc degeneration. Front Pharmacol 2022; 13:992476. [PMID: 36160436 PMCID: PMC9492865 DOI: 10.3389/fphar.2022.992476] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Low back pain has been found as a major cause of global disease burden and disability. Intervertebral disc degeneration is recognized as the vital factor causing low back pain. Intervertebral disc degeneration has a complex mechanism and cannot be avoided. Traditional strategies for the treatment of intervertebral disc degeneration cannot meet the needs of intervertebral disc regeneration, so novel treatment methods are urgently required. Exosomes refer to extracellular vesicles that can be released by most cells, and play major roles in intercellular material transport and information transmission. MicroRNAs have been identified as essential components in exosomes, which can be selectively ingested by exosomes and delivered to receptor cells for the regulation of the physiological activities and functions of receptor cells. Existing studies have progressively focused on the role of exosomes and exosomal microRNAs in the treatment of intervertebral disc degeneration. The focus on this paper is placed on the changes of microenvironment during intervertebral disc degeneration and the biogenesis and mechanism of action of exosomes and exosomal microRNAs. The research results and deficiencies of exosomes and exosomal microRNAs in the regulation of apoptosis, extracellular matrix homeostasis, inflammatory response, oxidative stress, and angiogenesis in intervertebral disc degeneration are primarily investigated. The aim of this paper is to identify the latest research results, potential applications and challenges of this emerging treatment strategy.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wu
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medcial Unversity, Jinan, China
| | - Guoqing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Haipeng Xue,
| |
Collapse
|
15
|
Xia L, Gong N. Identification and verification of ferroptosis-related genes in the synovial tissue of osteoarthritis using bioinformatics analysis. Front Mol Biosci 2022; 9:992044. [PMID: 36106017 PMCID: PMC9465169 DOI: 10.3389/fmolb.2022.992044] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Osteoarthritis (OA) is a major factor causing pain and disability. Studies performed to date have suggested that synovitis is possibly a critical OA-related pathological change. Ferroptosis represents a novel type of lipid peroxidation-induced iron-dependent cell death. However, its effect on OA remains largely unclear.Objective: This work focused on identifying and validating the possible ferroptosis-related genes (FRGs) involved in synovitis of OA through bioinformatics analysis.Materials and Methods: The microarray dataset GSE55235 was downloaded in the database Gene Expression Omnibus (GEO). By the Venn diagram and GEO2R, differentially expressed genes (DEGs) and ferroptosis DEGs (FDEGs) were detected. DEGs were screened by GO and KEGG enrichment analysis, as well as protein-protein interaction (PPI) analysis. Besides, the software Cytoscape and database STRING were utilized to construct hub gene networks. Moreover, this study used the database NetworkAnalyst to predict the target miRNAs of the hub genes. Finally, the hub genes were confirmed by analysis of the receiver operating characteristic (ROC) curve on the GSE12021 and GSE1919 databases. Considering the relationship between ferroptosis and immunity, this study applied CIBERSORTx to analyze the immune infiltration in OA in addition.Results: This work discovered seven genes, including ATF3, IL6, CDKN1A, IL1B, EGR1, JUN, and CD44, as the hub FDEGs. The ROC analysis demonstrated that almost all hub genes had good diagnostic properties in GSE12021 and GSE 1919.Conclusion: This study discovered seven FDEGs to be the possible diagnostic biomarkers and therapeutic targets of synovitis during OA, which sheds more light on the pathogenesis of OA at the transcriptome level.
Collapse
Affiliation(s)
- Lin Xia
- Department of Plastic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ningji Gong
- Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Ningji Gong,
| |
Collapse
|
16
|
Morteza Bagi H, Ahmadi S, Tarighat F, Rahbarghazi R, Soleimanpour H. Interplay between exosomes and autophagy machinery in pain management: State of the art. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100095. [PMID: 35720640 PMCID: PMC9198378 DOI: 10.1016/j.ynpai.2022.100095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 05/30/2023]
Abstract
Despite recent progress regarding inexpensive medical approaches, many individuals suffer from moderate to severe pain globally. The discovery and advent of exosomes, as biological nano-sized vesicles, has revolutionized current knowledge about underlying mechanisms associated with several pathological conditions. Indeed, these particles are touted as biological bio-shuttles with the potential to carry specific signaling biomolecules to cells in proximity and remote sites, maintaining cell-to-cell communication in a paracrine manner. A piece of evidence points to an intricate relationship between exosome biogenesis and autophagy signaling pathways at different molecular levels. A close collaboration of autophagic response with exosome release can affect the body's hemostasis and physiology of different cell types. This review is a preliminary attempt to highlight the possible interface of autophagy flux and exosome biogenesis on pain management with a special focus on neuropathic pain. It is thought that this review article will help us to understand the interplay of autophagic response and exosome biogenesis in the management of pain under pathological conditions. The application of therapies targeting autophagy pathway and exosome abscission can be an alternative strategy in the regulation of pain.
Collapse
Key Words
- Autophagy
- CESC-Exo, cartilage endplate stem cell-derived Exo
- Cell Therapy
- ER, endoplasmic reticulum
- ESCRT, endosomal sorting complex required for transport
- HSPA8, heat shock protein family A member 8
- LAMP2, lysosomal‑associated membrane protein type 2
- LAT1, large amino acid transporter
- LTs, leukotrienes
- MAPK8/JNK, mitogen-activated protein kinase 8p-/c-Jun N-terminal Kinase
- MMP, matrix metalloproteinase
- MVBs, multivesicular bodies
- NFKB/NF-κB, nuclear factor of kappa light polypeptide gene enhancer in B cells
- NPCs, nucleus pulposus cells
- NPCs-Exo, NPCs-derived Exo
- Neural Exosome
- Pain Management
- SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptors
- TLR4, Toll-like receptor 4
- TRAF6, TNF receptor-associated factor 6
- nSMase, ceramide-generating enzyme neutral sphingomyelinases
Collapse
Affiliation(s)
- Hamidreza Morteza Bagi
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Ahmadi
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Tarighat
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Soleimanpour
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Abstract
Tissue engineering and regenerative medicine (TERM) may be defined as a translational discipline focused on the development of novel techniques, devices, and materials to replace or repair injured or diseased tissue and organs. The main approaches typically use cells, scaffolds, and signaling molecules, either alone or in combination, to promote repair and regeneration. Although cells are required to create new functional tissue, the source of cells, either from an exogenous allogeneic or autologous source or through the recruitment of endogenous (autologous) cells, is technically challenging and risks the host rejection of new tissue. Regardless of the cell source, these approaches also require appropriate instruction for proliferation, differentiation, and in vivo spatial organization to create new functional tissue. Such instruction is supplied through the microenvironment where cells reside, environments which largely consist of the extracellular matrix (ECM). The specific components of the ECM, and broadly the extracellular space, responsible for promoting tissue regeneration and repair, are not fully understood, however extracellular vesicles (EVs) found in body fluids and solid phases of ECM have emerged as key mediators of tissue regeneration and repair. Additionally, these EVs might serve as potential cell-free tools in TERM to promote tissue repair and regeneration with minimal risk for host rejection and adverse sequelae. The past two decades have shown a substantial interest in understanding the therapeutic role of EVs and their applications in the context of TERM. Therefore, the purpose of this review is to highlight the fundamental characteristics of EVs, the current pre-clinical and clinical applications of EVs in TERM, and the future of EV-based strategies in TERM.
Collapse
|
18
|
Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying circ_0050205 Attenuate Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8983667. [PMID: 35847582 PMCID: PMC9277161 DOI: 10.1155/2022/8983667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 02/07/2023]
Abstract
Objective It has been reported that bone marrow mesenchymal stem cells (BMSCs) are a potential source of autologous stem cells to support the nucleus pulposus (NP) regeneration in intervertebral disc degeneration (IDD). Herein, we aim to study the mechanism underlying the effects of BMSC-derived extracellular vesicles (BMSC-EVs) on nucleus pulposus cells (NPCs) in IDD. Methods EVs were isolated from BMSCs. An IDD model was surgically established in C57BL/6J mice. NPCs were exposed to tBHP to establish an IDD cell model. RNA sequencing was performed to identify differentially expressed circRNAs in NP tissues harvested from mice with IDD. Interactions among circ_0050205, miR-665, and GPX4 were validated, and different interventions were used to study the roles of these molecules in NPC biological functions. Results BMSC-EVs promoted NPC survival and inhibited NPC apoptosis and extracellular matrix (ECM) degradation. circ_0050205 expression was downregulated in the NP tissues of IDD mice, and BMSC-EVs facilitated NPC survival and suppressed ECM degradation in NPCs by transferring circ_0050205. circ_0050205 sponged miR-665 and upregulated GPX4 expression. BMSC-EVs expressing circ_0050205 promoted NPC survival-inhibited ECM degradation in NPCs and alleviated IDD in mice via the miR-665/GPX4 axis. Conclusion In conclusion, BMSC-EVs promoted NPC survival-inhibited ECM degradation in NPCs and attenuated IDD progression via the circ_0050205/miR-665/GPX4 axis.
Collapse
|
19
|
Hu S, Zou Y, Jiang Y, Zhang Q, Cheng H, Wang H, Li X. Scutellarin‐mediated autophagy activates exosome release of rat nucleus pulposus cells by positively regulating Rab8a via the PI3K/PTEN/Akt pathway. Cell Biol Int 2022; 46:1588-1603. [PMID: 35762224 DOI: 10.1002/cbin.11838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shun‐Qi Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Yan‐Pei Zou
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Yun‐Qi Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Qi‐Chen Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Hong‐Xia Cheng
- Liver Cancer Institute, Zhongshan Hospital Fudan University Shanghai China
| | - Hui‐Ren Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Xi‐Lei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
20
|
Lan T, Shen Z, Hu Z, Yan B. Vitamin D/VDR in the pathogenesis of intervertebral disc degeneration: Does autophagy play a role? Biomed Pharmacother 2022; 148:112739. [PMID: 35202910 DOI: 10.1016/j.biopha.2022.112739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
To date, the underlying mechanisms involved intervertebral disc degeneration (IDD) remain unclear, which has hindered the development of molecular biological therapy for IDD. Autophagy is vital for intracellular quality control and metabolic balance in intervertebral disc cells. Hence, autophagy homeostasis is important. Emerging evidence has implicated vitamin D (VD) and the vitamin D receptor (VDR) in IDD progression because of their effects on different autophagy steps. However, the results of clinical trials in which VD supplementation was assessed as a treatment for IDD are controversial. Furthermore, experimental studies on the interplay between VD/VDR and autophagy are still in their infancy. In view of the significance of the crosstalk between VD/VDR and autophagy components, this review focuses on the latest research on VD/VDR modulation in autophagy and investigates the possible regulatory mechanisms. This article will deepen our understanding of the relationship between VD/VDR and autophagy and suggests novel strategies for IDD prevention and treatment.
Collapse
Affiliation(s)
- Tao Lan
- Department of Spinal Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China.
| | - Zhe Shen
- Department of Spinal Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Zhihao Hu
- Department of Spinal Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Bin Yan
- Department of Spinal Surgery, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China.
| |
Collapse
|
21
|
Exosomes: A promising therapeutic strategy for intervertebral disc degeneration. Exp Gerontol 2022; 163:111806. [DOI: 10.1016/j.exger.2022.111806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022]
|
22
|
Li W, Zhang S, Wang D, Zhang H, Shi Q, Zhang Y, Wang M, Ding Z, Xu S, Gao B, Yan M. Exosomes Immunity Strategy: A Novel Approach for Ameliorating Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:822149. [PMID: 35223870 PMCID: PMC8870130 DOI: 10.3389/fcell.2021.822149] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP), which is one of the most severe medical and social problems globally, has affected nearly 80% of the population worldwide, and intervertebral disc degeneration (IDD) is a common musculoskeletal disorder that happens to be the primary trigger of LBP. The pathology of IDD is based on the impaired homeostasis of catabolism and anabolism in the extracellular matrix (ECM), uncontrolled activation of immunologic cascades, dysfunction, and loss of nucleus pulposus (NP) cells in addition to dynamic cellular and biochemical alterations in the microenvironment of intervertebral disc (IVD). Currently, the main therapeutic approach regarding IDD is surgical intervention, but it could not considerably cure IDD. Exosomes, extracellular vesicles with a diameter of 30–150 nm, are secreted by various kinds of cell types like stem cells, tumor cells, immune cells, and endothelial cells; the lipid bilayer of the exosomes protects them from ribonuclease degradation and helps improve their biological efficiency in recipient cells. Increasing lines of evidence have reported the promising applications of exosomes in immunological diseases, and regarded exosomes as a potential therapeutic source for IDD. This review focuses on clarifying novel therapies based on exosomes derived from different cell sources and the essential roles of exosomes in regulating IDD, especially the immunologic strategy.
Collapse
Affiliation(s)
- Weihang Li
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Shilei Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Dong Wang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Orthopaedics, Affiliated Hospital of Yanan University, Yanan, China
| | - Huan Zhang
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Quan Shi
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yuyuan Zhang
- Department of Critical Care Medicine, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Mo Wang
- The First Brigade of Basic Medical College, Air Force Military Medical University, Xi’an, China
| | - Ziyi Ding
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Songjie Xu
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| | - Ming Yan
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Songjie Xu, ; Bo Gao, ; Ming Yan,
| |
Collapse
|
23
|
Tan J, Li Z, Liu L, Liu H, Xue J. IL‐17 in intervertebral disc degeneration: mechanistic insights and therapeutic implications. Cell Biol Int 2022; 46:535-547. [PMID: 35066966 DOI: 10.1002/cbin.11767] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Hua Tan
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Ze‐Peng Li
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Lu‐Lu Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Hao Liu
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| | - Jing‐Bo Xue
- The First Affiliated Hospital, Department of Spine Surgery, Hengyang Medical School, University of South ChinaHengyangHunan421001China
| |
Collapse
|
24
|
KRAUS P, SAMANTA A, LUFKIN S, LUFKIN T. Stem cells in intervertebral disc regeneration-more talk than action? BIOCELL 2021; 46:893-898. [PMID: 34966192 PMCID: PMC8713956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pain and lifestyle changes are common consequences of intervertebral disc degeneration (IVDD) and affect a large part of the aging population. The stemness of cells is exploited in the field of regenerative medicine as key to treat degenerative diseases. Transplanted cells however often face delivery and survival challenges, especially in tissues with a naturally harsh microniche environment such as the intervertebral disc. Recent interest in the secretome of stem cells, especially cargo protected from microniche-related decay as frequently present in degenerating tissues, provides new means of rejuvenating ailing cells and tissues. Exosomes, a type of extracellular vesicles with purposeful cargo gained particular interest in conveying stem cell related attributes of rejuvenation, which will be discussed here in the context of IVDD.
Collapse
Affiliation(s)
- Petra KRAUS
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA, Address correspondence to: Petra Kraus,
| | - Ankita SAMANTA
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| | - Sina LUFKIN
- The Clarkson School, Clarkson University, Potsdam, NY 13699, USA
| | - Thomas LUFKIN
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
25
|
Zhang QC, Zou YP, Hu SQ, Zhang TW, Zhou H, Liang B, Zhuang CY, Wang HR, Jiang LB, Li XL. TNF-α-stimulated nucleus pulposus cells induce cell apoptosis through the release of exosomal miR-16 targeting IGF-1 and IGF-1R in rats. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1376. [PMID: 34733928 PMCID: PMC8506555 DOI: 10.21037/atm-21-227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/05/2021] [Indexed: 01/07/2023]
Abstract
Background Exosomes may contain excess cellular components released by cells in response to harmful external stimuli to maintain cellular homeostasis. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), can induce cell apoptosis, alter cellular component expression levels, and stimulate exosome release. In this study, we examined whether exosomes released from nucleus pulposus cells (NPCs) under inflammatory conditions could induce normal NP cell apoptosis in rats and its underlining mechanism. Methods Exosomes were isolated from TNF-α‐treated NPCs and used to treat normal NPCs. The effects were assessed by flow cytometry and western blot analysis. Anti-apoptotic insulin-like growth factor-1 (IGF-1) expression in NPCs was assessed by western blot analysis. Given the exosomal miRNAs might be the key factors of exosomes, bioinformatics approaches and quantitative real-time polymerase chain reaction (qRT-PCR) were used to identify IGF-1-regulating micro RNAs (miRNAs), including miR-16. Luciferase reporter assay assessed miR-16 regulation of IGF-1 and IGF-1 receptor (IGF-1R). NPCs were transfected with miR-16 mimic, and exosomes were applied to normal NPCs. NPCs were pretreated with 10 ng/mL TNF-α, transfected with miR-16 inhibitors, and the exosomes were isolated. Cell and exosome miR-16 levels were detected by qRT-PCR. Western blot analysis determined IGF-1, IGF-1R, and apoptotic marker levels in exosome-treated NPCs. Results Exosomes from TNF-α-treated NPCs induced apoptosis in normal NPCs and repressed IGF-1 expression. Exosomal miR-16 regulated IGF-1 and induced NPC apoptosis. The dual-luciferase reporter assay revealed that miR-16 binds the 3' untranslated regions (3'-UTRs) of IGF-1 and IGF-1R. Exosomal miR-16 repressed IGF-1 and the IGF-1R/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway which therefore induced NPC apoptosis. Rescue experiments using miR-16 inhibitors further validated these findings. Conclusions The inflammatory factor TNF-α stimulated exosome release from NPCs, which induced the apoptosis of normal NPCs through the actions of exosomal miR-16. Exosomal miR-16 directly repressed the anti-apoptotic IGF-1/IGF-1R pathway, increasing the apoptosis of NPCs.
Collapse
Affiliation(s)
- Qi-Chen Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan-Pei Zou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shun-Qi Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tai-Wei Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Zhou
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bing Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China
| | - Chen-Yang Zhuang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui-Ren Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Bo Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xi-Lei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Zheng T, Zhou Q, Huang J, Lai J, Ji G, Kong D. Xanthohumol Inhibited Mechanical Stimulation-Induced Articular ECM Degradation by Mediating lncRNA GAS5/miR-27a Axis. Front Pharmacol 2021; 12:737552. [PMID: 34616299 PMCID: PMC8489376 DOI: 10.3389/fphar.2021.737552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is histopathologically marked by extracellular matrix (ECM) degradation in joint cartilage. Abnormal mechanical stimulation on joint cartilage may result in ECM degeneration and OA development. Matrix metalloproteinase 13 (MMP-13) is one of the catabolic enzymes contributing to the degradation of ECM, and it has become the potential biomarker for the therapeutic management of OA. Xanthohumol (XH), a naturally occurring prenylflavonoid derived from hops and beer, shows the protective activity against OA development. However, the potential mechanisms still need great effort. In this article, mechanical stimulation could significantly increase the expression of MMP-13 and lncRNA GAS5 (GAS5) and promoting ECM degradation. These could be effectively reversed by XH administration. Suppressed expression GAS5 ameliorated mechanical stimulation-induced MMP-13 expression. MiR-27a was predicted and verified as a target of GAS5, and overexpression of miR-27a down regulated the expression of MMP-13. Collectively, XH exhibited protective effects against mechanical stimulation-induced ECM degradation by mediating the GAS5/miR-27a signaling pathway in OA chondrocytes.
Collapse
Affiliation(s)
- Tiansheng Zheng
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qingluo Zhou
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jishang Huang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinliang Lai
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guanglin Ji
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dechao Kong
- Department of Trauma Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|