1
|
He X, Shi J, Bu L, Zhou S, Wu K, Liang G, Xu X, Wang A. Ursodeoxycholic acid alleviates fat embolism syndrome-induced acute lung injury by inhibiting the p38 MAPK/NF-κB signalling pathway through FXR. Biochem Pharmacol 2024; 230:116574. [PMID: 39396648 DOI: 10.1016/j.bcp.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Acute lung injury (ALI) caused by fat embolism syndrome (FES) is a disease with high mortality. This study aimed to explore the roles of ursodeoxycholic acid (UDCA) in FES-induced ALI and its underlying mechanisms. An ALI mouse model was established by allografting mouse perinephric fat. For in vitro experiments, human pulmonary microvascular endothelial cells (HPMEC) were treated with FFAs. The effects of UDCA on the expression of farnesoid X receptor (FXR) and the inflammatory response in endothelial cells were investigated. UDCA significantly inhibited the inflammatory response and the expression of proinflammatory markers during FES-induced ALI. UDCA markedly decreased TNF-α and IL-1β expression in vitro. UDCA administration markedly upregulated FXR expression and significantly reduced the phosphorylation of p38 MAPK and NF-κB p65. Knock down FXR expression decreased the effect of UDCA in vivo. Furthermore, knock down FXR expression and overexpressing FXR increased and decreased the inflammatory response, respectively, in vitro. Moreover, administration of a p38 MAPK activator reversed the anti-inflammatory effect of FXR overexpression. UDCA ameliorated inflammation during FES-induced ALI by suppressing p38 MAPK/NF-κB signalling and activating FXR. These findings provide new evidence for the potential of UDCA for FES-induced ALI treatment.
Collapse
Affiliation(s)
- Xudong He
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 200233, China; Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jinye Shi
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 200233, China; Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Lina Bu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Shuting Zhou
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 200233, China; Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Kaixuan Wu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Gui Liang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Xiaotao Xu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Aizhong Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
2
|
Li W, Chen H, Tang J. Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens 2024; 13:702. [PMID: 39204302 PMCID: PMC11356816 DOI: 10.3390/pathogens13080702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) play a crucial role in the human body's defense against infections caused by bacteria, fungi, and viruses. BAs counteract infections not only through interactions with intestinal bacteria exhibiting bile salt hydrolase (BSH) activity but they also directly combat infections. Building upon our research group's previous discoveries highlighting the role of BAs in combating infections, we have initiated an in-depth investigation into the interactions between BAs and intestinal microbiota. Leveraging the existing literature, we offer a comprehensive analysis of the relationships between BAs and 16 key microbiota. This investigation encompasses bacteria (e.g., Clostridioides difficile (C. difficile), Staphylococcus aureus (S. aureus), Escherichia coli, Enterococcus, Pseudomonas aeruginosa, Mycobacterium tuberculosis (M. tuberculosis), Bacteroides, Clostridium scindens (C. scindens), Streptococcus thermophilus, Clostridium butyricum (C. butyricum), and lactic acid bacteria), fungi (e.g., Candida albicans (C. albicans) and Saccharomyces boulardii), and viruses (e.g., coronavirus SARS-CoV-2, influenza virus, and norovirus). Our research found that Bacteroides, C. scindens, Streptococcus thermophilus, Saccharomyces boulardii, C. butyricum, and lactic acid bacteria can regulate the metabolism and function of BSHs and 7α-dehydroxylase. BSHs and 7α-dehydroxylase play crucial roles in the conversion of primary bile acid (PBA) to secondary bile acid (SBA). It is important to note that PBAs generally promote infections, while SBAs often exhibit distinct anti-infection roles. In the antimicrobial action of BAs, SBAs demonstrate antagonistic properties against a wide range of microbiota, with the exception of norovirus. Given the intricate interplay between BAs and intestinal microbiota, and their regulatory effects on infections, we assert that BAs hold significant potential as a novel approach for preventing and treating microbial infections.
Collapse
Affiliation(s)
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China;
| |
Collapse
|
3
|
Ding J, Li J, Zhang C, Tan L, Zhao C, Gao L. High-Throughput Combined Analysis of Saliva Microbiota and Metabolomic Profile in Chinese Periodontitis Patients: A Pilot Study. Inflammation 2024; 47:874-890. [PMID: 38148454 DOI: 10.1007/s10753-023-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
The onset and progression of periodontitis involves complicated interactions between the dysbiotic oral microbiota and disrupted host immune-inflammatory response, which can be mirrored by the changes in salivary metabolites profile. This pilot study sought to examine the saliva microbiome and metabolome in the Chinese population by the combined approach of 16s rRNA sequencing and high-throughput targeted metabolomics to discover potential cues for host-microbe metabolic interactions. Unstimulated whole saliva samples were collected from eighteen Stage III and IV periodontitis patients and thirteen healthy subjects. Full-mouth periodontal parameters were recorded. The taxonomic composition of microbiota was obtained by 16s rRNA sequencing, and the metabolites were identified and measured by ultra-high performance liquid chromatography and mass spectrometry-based metabolomic analysis. The oral microbiota composition displayed marked changes where the abundance of 93 microbial taxa differed significantly between the periodontitis and healthy group. Targeted metabolomics identified 103 differential metabolites between the patients and healthy individuals. Functional enrichment analysis demonstrated the upregulation of protein digestion and absorption, histidine metabolism, and nicotinate and nicotinamide metabolism pathways in the dysbiotic microbiota, while the ferroptosis, tryptophan metabolism, glutathione metabolism, and carbon metabolism pathways were upregulated in the patients. Correlation analysis confirmed positive relationships between the clinical parameters, pathogen abundances, and disease-related metabolite levels. The integral analysis of the saliva microbiome and metabolome yielded an accurate presentation of the dysbiotic oral microbiome and functional alterations in host-microbe metabolism. The microbial and metabolic profiling of the saliva could be a potential tool in the diagnosis, prognosis evaluation, and pathogenesis study of periodontitis.
Collapse
Affiliation(s)
- Jing Ding
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jinyu Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lingping Tan
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Li Gao
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
4
|
Kim EJ, Park H, Kim EY, Kim DK, Jung HS, Sohn Y. Ursodeoxycholic acid alleviates atopic dermatitis-associated inflammatory responses in HaCaT and RBL-2H3 cells and DNCB/DFE-treated mice. Life Sci 2024; 344:122560. [PMID: 38490296 DOI: 10.1016/j.lfs.2024.122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/18/2023] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
AIMS Ursodeoxycholic acid (UDCA) is a hydrophilic dihydroxy bile acid used for cholestatic liver disease and exhibits antioxidant, antitumor, and anti-inflammatory effects. However, its potential effects on atopic dermatitis (AD) have not been elucidated. This study aimed to evaluate the efficacy of UDCA in inhibiting the inflammatory response and alleviating lesions in AD-like mice. MAIN METHODS To investigate the efficacy of UDCA in AD-like inflammatory responses, tumor necrosis factor-alpha (TNF-α)- and interferon-gamma (IFN-γ)-stimulated HaCaT cells and anti-dinitrophenyl immunoglobulin E (DNP-IgE)- and human serum albumin (HSA)-stimulated RBL-2H3 cells were used to investigate the levels of inflammatory factors and their mechanisms. AD-like lesions were induced by applying DNCB/DFE to mice. The effect of UDCA administration in AD-like mice was analyzed by assessing organ weight, serum IgE and inflammatory cytokine levels, and histopathological changes using immunohistochemical and immunofluorescent staining. KEY FINDINGS In HaCaT cells, UDCA significantly diminished TARC, MDC, MCP-1, and IL-6 expression by inhibiting the phosphorylation of nuclear NF-κB and cytoplasmic IκB, and also increased the levels of skin barrier protein. In RBL-2H3 cells, UDCA reduced β-hexosaminidase and IL-4 levels. In AD-like mice, UDCA suppressed organ hypertrophy, ear edema, SCORAD index, DFE-specific IgE levels, inflammatory cytokine levels, skin hypertrophy, mast cell invasion, skin barrier loss, and thymic stromal lymphopoietin-positive areas. SIGNIFICANCE UDCA suppressed the expression of pro-inflammatory cytokines by keratinocytes and mast cells. It also alleviated atopy by suppressing symptoms without organ toxicity in AD-like mice. UDCA may be an effective and safe treatment for AD.
Collapse
Affiliation(s)
- Eom Ji Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hoyeon Park
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Do Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Cellular Carcinogenesis: Role of Polarized Macrophages in Cancer Initiation. Cancers (Basel) 2022; 14:cancers14112811. [PMID: 35681791 PMCID: PMC9179569 DOI: 10.3390/cancers14112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Inflammation is a hallmark of many cancers. Macrophages are key participants in innate immunity and important drivers of inflammation. When chronically polarized beyond normal homeostatic responses to infection, injury, or aging, macrophages can express several pro-carcinogenic phenotypes. In this review, evidence supporting polarized macrophages as endogenous sources of carcinogenesis is discussed. In addition, the depletion or modulation of macrophages by small molecule inhibitors and probiotics are reviewed as emerging strategies in cancer prevention. Abstract Inflammation is an essential hallmark of cancer. Macrophages are key innate immune effector cells in chronic inflammation, parainflammation, and inflammaging. Parainflammation is a form of subclinical inflammation associated with a persistent DNA damage response. Inflammaging represents low-grade inflammation due to the dysregulation of innate and adaptive immune responses that occur with aging. Whether induced by infection, injury, or aging, immune dysregulation and chronic macrophage polarization contributes to cancer initiation through the production of proinflammatory chemokines/cytokines and genotoxins and by modulating immune surveillance. This review presents pre-clinical and clinical evidence for polarized macrophages as endogenous cellular carcinogens in the context of chronic inflammation, parainflammation, and inflammaging. Emerging strategies for cancer prevention, including small molecule inhibitors and probiotic approaches, that target macrophage function and phenotype are also discussed.
Collapse
|
6
|
Yang B, Pang X, Li Z, Chen Z, Wang Y. Immunomodulation in the Treatment of Periodontitis: Progress and Perspectives. Front Immunol 2021; 12:781378. [PMID: 34868054 PMCID: PMC8640126 DOI: 10.3389/fimmu.2021.781378] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is one of the most common dental diseases. Compared with healthy periodontal tissues, the immune microenvironment plays the key role in periodontitis by allowing the invasion of pathogens. It is possible that modulating the immune microenvironment can supplement traditional treatments and may even promote periodontal regeneration by using stem cells, bacteria, etc. New anti-inflammatory therapies can enhance the generation of a viable local immune microenvironment and promote cell homing and tissue formation, thereby achieving higher levels of immune regulation and tissue repair. We screened recent studies to summarize the advances of the immunomodulatory treatments for periodontitis in the aspects of drug therapy, microbial therapy, stem cell therapy, gene therapy and other therapies. In addition, we included the changes of immune cells and cytokines in the immune microenvironment of periodontitis in the section of drug therapy so as to make it clearer how the treatments took effects accordingly. In the future, more research needs to be done to improve immunotherapy methods and understand the risks and long-term efficacy of these methods in periodontitis.
Collapse
Affiliation(s)
- Bo Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xuefei Pang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhipeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuofan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Talebian R, Kampleitner C, Sagl B, Kuchler U, Dehpour AR, Gruber R. Bone healing around titanium implants in a preclinical model of bile duct ligation-induced liver injury. Clin Oral Implants Res 2021; 32:980-988. [PMID: 34114694 PMCID: PMC8453542 DOI: 10.1111/clr.13792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022]
Abstract
Objectives Chronic liver disease increases the risk for periodontal disease and osteoporotic fractures, but its impacts on bone regeneration remain unknown. Herein, we studied the impact of liver cirrhosis on peri‐implant bone formation. Material and Methods A total of 20 male Wistar rats were randomly divided into two groups: one with the common bile duct ligated (BDL) and the respective sham‐treated control group (SHAM). After four weeks of disease induction, titanium mini‐screws were inserted into the tibia. Successful induction of liver cirrhosis was confirmed by the presence of clinical symptoms. Another four weeks later, peri‐implant bone volume per tissue volume (BV/TV) and bone‐to‐implant contact (BIC) were determined by histomorphometric analysis. Results Peri‐implant bone formation was not significantly different between the SHAM and BDL groups. In the cortical compartment, the median percentage of peri‐implant new bone was 10.1% (95% CI of mean 4.0–35.7) and 22.5% (13.8–30.6) in the SHAM and BDL groups, respectively (p = .26). Consistently, the new bone in direct contact with the implant was 18.1% (0.4–37.8) and 23.3% (9.2–32.8) in SHAM and BDL groups, respectively (p = .38). When measuring the medullary compartment, the new bone area was 7.1% (4.8–10.4) and 10.4% (7.2–13.5) in the SHAM and BDL groups, respectively (p = .17). Medullary new bone in direct contact with the implant was 10.0% (1.2–50.4) and 20.6% (16.8–35.3) in SHAM and BDL groups, respectively, and thus comparable between the two groups (p = .46). Conclusions Bile duct ligation has no significant impact on the early stages of peri‐implant bone formation.
Collapse
Affiliation(s)
- Reza Talebian
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Benedikt Sagl
- Department of Prosthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Ulrike Kuchler
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Khosravi M. Ursodeoxycholic Acid in Patients With Treatment-Resistant Schizophrenia Suffering From Coronavirus Disease 2019: A Hypothesis Letter. Front Psychiatry 2021; 12:657316. [PMID: 33935842 PMCID: PMC8079749 DOI: 10.3389/fpsyt.2021.657316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Affiliation(s)
- Mohsen Khosravi
- Department of Psychiatry and Clinical Psychology, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
9
|
Bailly C. The implication of the PD-1/PD-L1 checkpoint in chronic periodontitis suggests novel therapeutic opportunities with natural products. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:90-96. [PMID: 32612718 PMCID: PMC7310691 DOI: 10.1016/j.jdsr.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
An analysis of the implication of the PD-1/PD-L1 immune checkpoint in periodontitis is provided with the objective to propose a novel therapeutic approach. An exhaustive survey of the literature has been performed to answer two questions: (1) Is there a role for PD-1 and/or PD-L1 in the development of periodontitis? (2) Which natural products interfere with the checkpoint activity and show activity against periodontitis? All online published information was collected and analyzed. The pathogenic bacteria Porphyromonas gingivalis, through its membrane-attached peptidoglycans, exploits the PD-1/PD-L1 checkpoint to evade immune response and to amplify the infection. Three anti-inflammatory natural products (and derivatives or plant extracts) active against periodontitis and able to interfere with the checkpoint were identified. Both curcumin and baicalin attenuate periodontitis and induce a down-regulation of PD-L1 in cells. The terpenoid saponin platycodin D inhibits the growth of P. gingivalis responsible for periodontitis and shows a rare capacity to induce the extracellular release of a soluble form of PD-L1, thereby restoring T cell activation. A potential PD-L1 shedding mechanism is discussed. The targeting of the PD-1/PD-L1 immune checkpoint could be considered a suitable approach to improve the treatment of chronic periodontitis. The plant natural products curcumin, baicalin and platycodin D should be further evaluated as PD-1/PD-L1 checkpoint modulators active against periodontitis.
Collapse
|
10
|
Talebian R, Panahipour L, Gruber R. Ursodeoxycholic acid attenuates the expression of proinflammatory cytokines in periodontal cells. J Periodontol 2020; 91:1098-1104. [PMID: 31960968 PMCID: PMC7496100 DOI: 10.1002/jper.19-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) is one of the first-line therapeutic medications used in treatment of cholestatic liver disease. Considering that periodontitis is epidemiologically linked to liver diseases, the question arises weather UDCA holds anti-inflammatory properties on periodontal health. Herein, we provide information that support anti-inflammatory effects of UDCA on three different periodontium-related cell types. METHODS Gingival fibroblasts and the oral human squamous carcinoma cell line HSC-2 were exposed to interleukin (IL)1β and tumor necrosis factor (TNF)α with and without UDCA. Murine RAW 264.7 macrophages were incubated with sterile-filtered human saliva also in the presence of UDCA. The expression of inflammatory cytokines was measured by reverse transcription-polymerase chain reaction. Immunoassay was applied to detect the production of IL6. Immunostaining was performed for the p65 subunit to further support the anti-inflammatory role of UDCA. RESULTS We report here that UDCA significantly reduced the IL1β and TNFα-induced expression of IL1, IL6, and IL8 in gingival fibroblasts and the HSC-2 cell line. In RAW 264.7 macrophages, UDCA attenuated the expression of IL1α, IL1β, and IL6 that was increased by saliva. Immunoassay confirmed the capacity of UDCA to reduce inflammation-induced production of IL6 in gingival fibroblasts, HSC-2 and RAW 264.7 cells. Immunostaining revealed the blocking of nuclear translocation of p65 in gingival fibroblasts. CONCLUSIONS Taken together, UDCA can attenuate the provoked expression of inflammatory cytokines in oral fibroblasts, oral human squamous carcinoma cells and macrophages in vitro. These data support the hypothesis that patients with cholestatic liver disease might benefit from UDCA with respect to periodontal health.
Collapse
Affiliation(s)
- Reza Talebian
- Department of Oral BiologyUniversity Clinic of Dentistry, Medical University of ViennaViennaAustria
- Experimental Research CenterMedical FacultyTehran University of Medical SciencesTehranIran
| | - Layla Panahipour
- Department of Oral BiologyUniversity Clinic of Dentistry, Medical University of ViennaViennaAustria
| | - Reinhard Gruber
- Department of Oral BiologyUniversity Clinic of Dentistry, Medical University of ViennaViennaAustria
- Department of PeriodontologySchool of Dental MedicineUniversity of BernBernSwitzerland
| |
Collapse
|
11
|
Merit of an Ursodeoxycholic Acid Clinical Trial in COVID-19 Patients. Vaccines (Basel) 2020; 8:vaccines8020320. [PMID: 32575350 PMCID: PMC7350268 DOI: 10.3390/vaccines8020320] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19) has affected over 8 million people worldwide. We underscore the potential benefits of conducting a randomized open-label unblinded clinical trial to evaluate the role of ursodeoxycholic acid (UDCA) in the treatment of COVID-19. Some COVID-19 patients are characterized with cytokine storm syndrome that can cause severe and irreversible damage to organs leading to multi-organ failure and death. Therefore, it is critical to control both programmed cell death (apoptosis) and the hyper-immune inflammatory response in COVID-19 patients to reduce the rising morbidity and mortality. UDCA is an existing drug with proven safety profiles that can reduce inflammation and prevent cell death. National Geographic reported that, "China Promotes Bear Bile as Coronavirus Treatment". Bear bile is rich in UDCA, comprising up to 40-50% of the total bile acid. UDCA is a logical and attainable replacement for bear bile that is available in pill form and merits clinical trial consideration.
Collapse
|
12
|
Abdulrab S, Al-Maweri S, Halboub E. Ursodeoxycholic acid as a candidate therapeutic to alleviate and/or prevent COVID-19-associated cytokine storm. Med Hypotheses 2020; 143:109897. [PMID: 32505909 PMCID: PMC7261102 DOI: 10.1016/j.mehy.2020.109897] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Saleem Abdulrab
- Madinat Khalifa Health Center, Primary Health Care Corporation, Doha, Qatar; Ministry of Public Health and Population, Sana'a, Yemen.
| | - Sadeq Al-Maweri
- Department of Oral Medicine and Diagnostic Science, Al Farabi Colleges, Riyadh, Saudi Arabia.
| | - Esam Halboub
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia; Department of Oral Medicine, Oral Pathology and Oral Radiology, Faculty of Dentistry, Sana'a University, Sana'a, Yemen.
| |
Collapse
|