1
|
Neurath N, Kesting M. Cytokines in gingivitis and periodontitis: from pathogenesis to therapeutic targets. Front Immunol 2024; 15:1435054. [PMID: 39253090 PMCID: PMC11381234 DOI: 10.3389/fimmu.2024.1435054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Chronic inflammatory processes in the oral mucosa and periodontitis are common disorders caused by microflora and microbial biofilms. These factors activate both the innate and adaptive immune systems, leading to the production of pro-inflammatory cytokines. Cytokines are known to play a crucial role in the pathogenesis of gingivitis and periodontitis and have been proposed as biomarkers for diagnosis and follow-up of these diseases. They can activate immune and stromal cells, leading to local inflammation and tissue damage. This damage can include destruction of the periodontal ligaments, gingiva, and alveolar bone. Studies have reported increased local levels of pro-inflammatory cytokines, such as interleukin-1beta (IL-1beta), tumor necrosis factor (TNF), IL-6, IL-17, and IL-23, in patients with periodontitis. In experimental models of periodontitis, TNF and the IL-23/IL-17 axis play a pivotal role in disease pathogenesis. Inactivation of these pro-inflammatory pathways through neutralizing antibodies, genetic engineering or IL-10 function has been demonstrated to reduce disease activity. This review discusses the role of cytokines in gingivitis and periodontitis, with particular emphasis on their role in mediating inflammation and tissue destruction. It also explores new therapeutic interventions that offer potential for research and clinical therapy in these chronic inflammatory diseases.
Collapse
Affiliation(s)
- Nicole Neurath
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Uniklinikum Erlangen, Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Uniklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Uniklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Shen Z, Zhang R, Huang Y, Chen J, Yu M, Li C, Zhang Y, Chen L, Huang X, Yang J, Lin Z, Wang S, Cheng B. The spatial transcriptomic landscape of human gingiva in health and periodontitis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:720-732. [PMID: 38172357 DOI: 10.1007/s11427-023-2467-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024]
Abstract
The gingiva is a key oral barrier that protects oral tissues from various stimuli. A loss of gingival tissue homeostasis causes periodontitis, one of the most prevalent inflammatory diseases in humans. The human gingiva exists as a complex cell network comprising specialized structures. To understand the tissue-specific pathophysiology of the gingiva, we applied a recently developed spatial enhanced resolution omics-sequencing (Stereo-seq) technique to obtain a spatial transcriptome (ST) atlas of the gingiva in healthy individuals and periodontitis patients. By utilizing Stereo-seq, we identified the major cell types present in the gingiva, which included epithelial cells, fibroblasts, endothelial cells, and immune cells, as well as subgroups of epithelial cells and immune cells. We further observed that inflammation-related signalling pathways, such as the JAK-STAT and NF-κB signalling pathways, were significantly upregulated in the endothelial cells of the gingiva of periodontitis patients compared with those of healthy individuals. Additionally, we characterized the spatial distribution of periodontitis risk genes in the gingiva and found that the expression of IFI16 was significantly increased in endothelial cells of inflamed gingiva. In conclusion, our Stereo-seq findings may facilitate the development of innovative therapeutic strategies for periodontitis by mapping periodontitis-relevant genes and pathways and effector cells.
Collapse
Affiliation(s)
- Zongshan Shen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Ran Zhang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, 100050, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Yunjia Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jiayao Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Mengjun Yu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Chunhua Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yong Zhang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Lingling Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xin Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Jichen Yang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Songlin Wang
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100050, China.
| | - Bin Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
| |
Collapse
|
3
|
Nolde M, Holtfreter B, Kocher T, Alayash Z, Reckelkamm SL, Ehmke B, Baurecht H, Baumeister SE. No bidirectional relationship between depression and periodontitis: A genetic correlation and Mendelian randomization study. Front Immunol 2022; 13:918404. [PMID: 35935963 PMCID: PMC9355660 DOI: 10.3389/fimmu.2022.918404] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background Observational and in-vivo research suggested a bidirectional relationship between depression and periodontitis. We estimated the genetic correlation and examined directionality of causation. Methods The study used summary statistics from published genome wide association studies, with sample sizes ranging from 45,563 to 797,563 individuals of European ancestry. We performed linkage disequilibrium score regression (LDSC) to estimate global correlation and used Heritability Estimation from Summary Statistics (ρ-HESS) to further examine local genetic correlation. Latent Heritable Confounder Mendelian randomization (LHC-MR), Causal Analysis using Summary Effect estimates (CAUSE), and conventional MR approaches assessed bidirectional causation. Results LDSC observed only weak genetic correlation (rg = 0.06, P-Value = 0.619) between depression and periodontitis. Analysis of local genetic correlation using ρ-HESS did not reveal loci of significant local genetic covariance. LHC-MR, CAUSE and conventional MR models provided no support for bidirectional causation between depression and periodontitis, with odds ratios ranging from 1.00 to 1.06 in either direction. Conclusions Results do not support shared heritability or a causal connection between depression and periodontitis.
Collapse
Affiliation(s)
- Michael Nolde
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - Zoheir Alayash
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Stefan Lars Reckelkamm
- Institute of Health Services Research in Dentistry, University of Münster, Münster, Germany
| | - Benjamin Ehmke
- Clinic for Periodontology and Conservative Dentistry, University of Münster, Münster, Germany
| | - Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
4
|
Li Y, Ling J, Jiang Q. Inflammasomes in Alveolar Bone Loss. Front Immunol 2021; 12:691013. [PMID: 34177950 PMCID: PMC8221428 DOI: 10.3389/fimmu.2021.691013] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Bone remodeling is tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Fine tuning of the osteoclast-osteoblast balance results in strict synchronization of bone resorption and formation, which maintains structural integrity and bone tissue homeostasis; in contrast, dysregulated bone remodeling may cause pathological osteolysis, in which inflammation plays a vital role in promoting bone destruction. The alveolar bone presents high turnover rate, complex associations with the tooth and periodontium, and susceptibility to oral pathogenic insults and mechanical stress, which enhance its complexity in host defense and bone remodeling. Alveolar bone loss is also involved in systemic bone destruction and is affected by medication or systemic pathological factors. Therefore, it is essential to investigate the osteoimmunological mechanisms involved in the dysregulation of alveolar bone remodeling. The inflammasome is a supramolecular protein complex assembled in response to pattern recognition receptors and damage-associated molecular patterns, leading to the maturation and secretion of pro-inflammatory cytokines and activation of inflammatory responses. Pyroptosis downstream of inflammasome activation also facilitates the clearance of intracellular pathogens and irritants. However, inadequate or excessive activity of the inflammasome may allow for persistent infection and infection spreading or uncontrolled destruction of the alveolar bone, as commonly observed in periodontitis, periapical periodontitis, peri-implantitis, orthodontic tooth movement, medication-related osteonecrosis of the jaw, nonsterile or sterile osteomyelitis of the jaw, and osteoporosis. In this review, we present a framework for understanding the role and mechanism of canonical and noncanonical inflammasomes in the pathogenesis and development of etiologically diverse diseases associated with alveolar bone loss. Inappropriate inflammasome activation may drive alveolar osteolysis by regulating cellular players, including osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, monocytes, neutrophils, and adaptive immune cells, such as T helper 17 cells, causing increased osteoclast activity, decreased osteoblast activity, and enhanced periodontium inflammation by creating a pro-inflammatory milieu in a context- and cell type-dependent manner. We also discuss promising therapeutic strategies targeting inappropriate inflammasome activity in the treatment of alveolar bone loss. Novel strategies for inhibiting inflammasome signaling may facilitate the development of versatile drugs that carefully balance the beneficial contributions of inflammasomes to host defense.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junqi Ling
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
5
|
Zhang W, Jia L, Zhao B, Xiong Y, Wang YN, Liang J, Xu X. Quercetin reverses TNF‑α induced osteogenic damage to human periodontal ligament stem cells by suppressing the NF‑κB/NLRP3 inflammasome pathway. Int J Mol Med 2021; 47:39. [PMID: 33537804 PMCID: PMC7891819 DOI: 10.3892/ijmm.2021.4872] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
Quercetin (Quer) is a typical antioxidant flavonoid from plants that is involved in bone metabolism, as well as in the progression of inflammatory diseases. Elevated levels of tumor necrosis factor-α (TNF-α), a typical pro-inflammatory cytokine, can affect osteogenesis. In the present study, TNF-α was used to establish an in vitro model of periodontitis. The effects of Quer on, as well as its potential role in the osteogenic response of human periodontal ligament stem cells (hPDLSCs) under TNF-α-induced inflammatory conditions and the underlying mechanisms were then investigated. Within the appropriate concentration range, Quer did not exhibit any cytotoxicity. More importantly, Quer significantly attenuated the TNF-α induced the suppression of osteogenesis-related genes and proteins, alkaline phosphatase (ALP) activity and mineralized matrix in the hPDLSCs. These findings were associated with the fact that Quer inhibited the activation of the NF-κB signaling pathway, as well as the expression of NLRP3 inflammation-associated proteins in the inflammatory microenvironment. Moreover, the silencing of NLRP3 by small interfering RNA (siRNA) was found to protect the hPDLSCs against TNF-α-induced osteogenic damage, which was in accordance with the effects of Quer. On the whole, the present study demonstrates that Quer reduces the impaired osteogenesis of hPDLSCs under TNF-α-induced inflammatory conditions by inhibiting the NF-κB/NLRP3 inflammasome pathway. Thus, Quer may prove to be a potential remedy against periodontal bone defects.
Collapse
Affiliation(s)
- Wenjing Zhang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Linglu Jia
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Zhao
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yixuan Xiong
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ya-Nan Wang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jin Liang
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
6
|
Marchesan JT. Inflammasomes as contributors to periodontal disease. J Periodontol 2020; 91 Suppl 1:S6-S11. [PMID: 32533779 PMCID: PMC7689877 DOI: 10.1002/jper.20-0157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
A genome‐wide association study of ≈2.5 million markers identified unique biologically informed periodontal complex traits with distinct microbial communities and interleukin‐1β (IL‐1β) levels. Each trait was associated with different single nucleotide polymorphisms. These variants include genes associated with immune responses, microbial colonization, and the epithelial barrier function. The specific set of variants leads to individual biological paths that converge into an overlapping clinical phenotype of periodontal tissue destruction. This concept suggests that periodontal disease is a group of distinct conditions. We identified polymorphisms in inflammasome genes interferon gamma inducible protein 16 (IFI16) and absent in melanoma 2 (AIM2) that were associated with increased severity of periodontal disease. Inflammasomes respond to pathogen or tissue “danger” signals and assemble into multiprotein “machineries” that are essential for the cleavage of proinflammatory mediator IL‐1β into an active form. Thus, understanding how variants of IFI16 and AIM2 contribute to periodontal disease pathogenesis may lead to treatment options that address individual biological variations and precision therapies for oral health.
Collapse
Affiliation(s)
- Julie T Marchesan
- Department of Comprehensive Oral Health, Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| |
Collapse
|