1
|
Hu X, Zhu M. Were Persulfate-Based Advanced Oxidation Processes Really Understood? Basic Concepts, Cognitive Biases, and Experimental Details. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10415-10444. [PMID: 38848315 DOI: 10.1021/acs.est.3c10898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Persulfate (PS)-based advanced oxidation processes (AOPs) for pollutant removal have attracted extensive interest, but some controversies about the identification of reactive species were usually observed. This critical review aims to comprehensively introduce basic concepts and rectify cognitive biases and appeals to pay more attention to experimental details in PS-AOPs, so as to accurately explore reaction mechanisms. The review scientifically summarizes the character, generation, and identification of different reactive species. It then highlights the complexities about the analysis of electron paramagnetic resonance, the uncertainties about the use of probes and scavengers, and the necessities about the determination of scavenger concentration. The importance of the choice of buffer solution, operating mode, terminator, and filter membrane is also emphasized. Finally, we discuss current challenges and future perspectives to alleviate the misinterpretations toward reactive species and reaction mechanisms in PS-AOPs.
Collapse
Affiliation(s)
- Xiaonan Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Research Center of Nano Science and Technology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, PR China
| |
Collapse
|
2
|
Takajo T, Nagahama H, Zuinen K, Tsuchida K, Okino A, Anzai K. Evaluation of cold atmospheric pressure plasma irradiation of water as a method of singlet oxygen generation. J Clin Biochem Nutr 2023; 73:9-15. [PMID: 37534089 PMCID: PMC10390813 DOI: 10.3164/jcbn.22-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 08/04/2023] Open
Abstract
We used cold atmospheric pressure plasma jet to examine in detail 1O2 generation in water. ESR with 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide, a secondary amine probe, was used for the detection of 1O2. Nitroxide radical formation was detected after cold atmospheric pressure plasma jet irradiation of a 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide solution. An 1O2 scavenger/quencher inhibited the ESR signal intensity induced by cold atmospheric pressure plasma jet irradiation, but this inhibition was not 100%. As 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide reacts with oxidizing species other than 1O2, it was assumed that the signal intensity inhibited by NaN3 corresponds to only the nitroxide radical generated by 1O2. The concentration of 1O2 produced by cold atmospheric pressure plasma jet irradiation for 60 s was estimated at 8 μM. When this 1O2 generation was compared to methods of 1O2 generation like rose bengal photoirradiation and 4-methyl-1,4-etheno-2,3-benzodioxin-1(4H)-propanoic acid (endoperoxide) thermal decomposition, 1O2 generation was found to be, in decreasing order, rose bengal photoirradiation ≥ cold atmospheric pressure plasma jet > endoperoxide thermal decomposition. Cold atmospheric pressure plasma jet is presumed to not specifically generate 1O2, but can be used to mimic states of oxidative stress involving multiple ROS.
Collapse
Affiliation(s)
- Tokuko Takajo
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Hiroki Nagahama
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Katsuya Zuinen
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Kazunori Tsuchida
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Akitoshi Okino
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Kazunori Anzai
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| |
Collapse
|
3
|
Krasowska J, Pierzchała K, Bzowska A, Forró L, Sienkiewicz A, Wielgus-Kutrowska B. Chromophore of an Enhanced Green Fluorescent Protein Can Play a Photoprotective Role Due to Photobleaching. Int J Mol Sci 2021; 22:ijms22168565. [PMID: 34445269 PMCID: PMC8395242 DOI: 10.3390/ijms22168565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Under stress conditions, elevated levels of cellular reactive oxygen species (ROS) may impair crucial cellular structures. To counteract the resulting oxidative damage, living cells are equipped with several defense mechanisms, including photoprotective functions of specific proteins. Here, we discuss the plausible ROS scavenging mechanisms by the enhanced green fluorescent protein, EGFP. To check if this protein could fulfill a photoprotective function, we employed electron spin resonance (ESR) in combination with spin-trapping. Two organic photosensitizers, rose bengal and methylene blue, as well as an inorganic photocatalyst, nano-TiO2, were used to photogenerate ROS. Spin-traps, TMP-OH and DMPO, and a nitroxide radical, TEMPOL, served as molecular targets for ROS. Our results show that EGFP quenches various forms of ROS, including superoxide radicals and singlet oxygen. Compared to the three proteins PNP, papain, and BSA, EGFP revealed high ROS quenching ability, which suggests its photoprotective role in living systems. Damage to the EGFP chromophore was also observed under strong photo-oxidative conditions. This study contributes to the discussion on the protective function of fluorescent proteins homologous to the green fluorescent protein (GFP). It also draws attention to the possible interactions of GFP-like proteins with ROS in systems where such proteins are used as biological markers.
Collapse
Affiliation(s)
- Joanna Krasowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (J.K.); (A.B.)
| | - Katarzyna Pierzchała
- Laboratory for Functional and Metabolic Imaging (LIFMET), Institute of Physics (IPHYS), School of Basic Sciences (SB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
- Laboratory of Physics of Complex Matter (LPMC), Institute of Physics (IPHYS), School of Basic Sciences (SB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (J.K.); (A.B.)
| | - László Forró
- Laboratory of Physics of Complex Matter (LPMC), Institute of Physics (IPHYS), School of Basic Sciences (SB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
| | - Andrzej Sienkiewicz
- Laboratory of Physics of Complex Matter (LPMC), Institute of Physics (IPHYS), School of Basic Sciences (SB), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
- Laboratory for Quantum Magnetism (LQM), Institute of Physics (IPHYS), School of Basic Sciences (SB), École Polytechnique Fédérale de Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
- ADSresonances, Route de Genève 60B, CH-1028 Préverenges, Switzerland
- Correspondence: (A.S.); (B.W.-K.)
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (J.K.); (A.B.)
- Correspondence: (A.S.); (B.W.-K.)
| |
Collapse
|
4
|
Okazaki Y, Tanaka H, Matsumoto KI, Hori M, Toyokuni S. Non-thermal plasma-induced DMPO-OH yields hydrogen peroxide. Arch Biochem Biophys 2021; 705:108901. [PMID: 33964248 DOI: 10.1016/j.abb.2021.108901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Recent developments in electronics have enabled the medical applications of non-thermal plasma (NTP), which elicits reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydroxyl radical (●OH), hydrogen peroxide (H2O2), singlet oxygen (1O2), superoxide (O2●-), ozone, and nitric oxide at near-physiological temperatures. In preclinical studies or human clinical trials, NTP promotes blood coagulation, eradication of bacterial, viral and biofilm-related infections, wound healing, and cancer cell death. To elucidate the solution-phase biological effects of NTP in the presence of biocompatible reducing agents, we employed electron paramagnetic resonance (EPR) spectroscopy to quantify ●OH using a spin-trapping probe, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO); 1O2 using a fluorescent probe; and O2●- and H2O2 using luminescent probes in the presence of thiols or tempol. NTP-induced ●OH was significantly scavenged by dithiothreitol (DTT), reduced glutathione (GSH), and oxidized glutathione (GSSG) in 2 or 5 mM DMPO. NTP-induced O2●- was significantly scavenged by 10 μM DTT and GSH, while 1O2 was not efficiently scavenged by these compounds. GSSG degraded H2O2 more effectively than GSH and DTT, suggesting that the disulfide bonds reacted with H2O2. In the presence of 1-50 mM DMPO, NTP-induced H2O2 quantities were unchanged. The inhibitory effect of tempol concentration (50 and 100 μM) on H2O2 production was observed in 1 and 10 mM DMPO, whereas it became ineffective in 50 mM DMPO. Furthermore, DMPO-OH did not interact with tempol. These results suggest that DMPO and tempol react competitively with O2●-. Further studies are warranted to elucidate the interaction between NTP-induced ROS and biomolecules.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
5
|
Leonardi A, Zhang AC, Düzen N, Aldred N, Finlay JA, Clarke JL, Clare AS, Segalman RA, Ober CK. Amphiphilic Nitroxide-Bearing Siloxane-Based Block Copolymer Coatings for Enhanced Marine Fouling Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28790-28801. [PMID: 34105932 DOI: 10.1021/acsami.1c05266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The buildup of organic matter and organisms on surfaces exposed to marine environments, known as biofouling, is a disruptive and costly process affecting maritime operations. Previous research has identified some of the surface characteristics particularly suited to the creation of antifouling and fouling-release surfaces, but there remains room for improvement against both macrofouling and microfouling organisms. Characterization of their adhesives has shown that many rely on oxidative chemistries. In this work, we explore the incorporation of the stable radical 2,2,6,6-tetramethylpipiderin-1-oxyl (TEMPO) as a component in an amphiphilic block copolymer system to act as an inhibitor for marine cements, disrupting adhesion of macrofouling organisms. Using polystyrene-b-poly(dimethylsiloxane-r-vinylmethysiloxane) block copolymers, pendent vinyl groups were functionalized with TEMPO and poly(ethylene glycol) to construct an amphiphilic material with redox active character. The antifouling and fouling-release performance of these materials was investigated through settlement and removal assays of three model fouling organisms and correlated to surface structure and chemistry. Surfaces showed significant antifouling character and fouling-release performance was increased substantially toward barnacles by the incorporation of stable radicals, indicating their potential for marine antifouling applications.
Collapse
Affiliation(s)
- Amanda Leonardi
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Aria C Zhang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nilay Düzen
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nick Aldred
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Jessica L Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Rachel A Segalman
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93110, United States
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Takajo T, Kurihara Y, Iwase K, Miyake D, Tsuchida K, Anzai K. Basic Investigations of Singlet Oxygen Detection Systems with ESR for the Measurement of Singlet Oxygen Quenching Activities. Chem Pharm Bull (Tokyo) 2020; 68:150-154. [DOI: 10.1248/cpb.c19-00770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tokuko Takajo
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University
| | | | - Kodai Iwase
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University
| | - Daiki Miyake
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University
| | | | - Kazunori Anzai
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University
| |
Collapse
|
7
|
Scheinok S, Leveque P, Sonveaux P, Driesschaert B, Gallez B. Comparison of different methods for measuring the superoxide radical by EPR spectroscopy in buffer, cell lysates and cells. Free Radic Res 2018; 52:1182-1196. [PMID: 30362382 DOI: 10.1080/10715762.2018.1541321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As superoxide anion is of keen interest in biomedical research, it is highly desirable to have a technique allowing its detection sensitively and specifically in biological media. If electron paramagnetic resonance (EPR) techniques and probes have been individually described in the literature, there is actually no comparison of these techniques in the same conditions that may help guiding researchers for selecting the most appropriate approach. The aim of the present study was to compare different EPR strategies in terms of sensitivity and specificity to detect superoxide (vs. hydroxyl radical). Three main classes of EPR probes were used, including paramagnetic superoxide scavengers (such as nitroxides TEMPOL and mitoTEMPO as well as trityl CT-03), a spin trap (DIPPMPO), and diamagnetic superoxide scavengers (such as cyclic hydroxylamines CMH and mitoTEMPO-H). We analysed the reactivity of the different probes in the presence of a constant production of superoxide or hydroxyl radical in buffers and in cell lysates. We also assessed the performances of the different probes to detect superoxide produced by RAW264.7 macrophages stimulated by phorbol 12-myristate 13-acetate. In our conditions and models, we found that nitroxides were not specific for superoxide. CT-03 was specific, but the sensitivity of detection was low. Comparatively, we found that nitrone DIPPMPO and cyclic hydroxylamine CMH were good candidates to sensitively and specifically detect superoxide in complex biological media, CMH offering the best sensitivity.
Collapse
Affiliation(s)
- Samantha Scheinok
- a Biomedical Magnetic Resonance , Université Catholique de Louvain, Louvain Drug Research Institute (LDRI) , Brussels , Belgium
| | - Philippe Leveque
- a Biomedical Magnetic Resonance , Université Catholique de Louvain, Louvain Drug Research Institute (LDRI) , Brussels , Belgium
| | - Pierre Sonveaux
- b Institut de Recherches Expérimentales et Cliniques (IREC) Pole of Pharmacology and Therapeutics , Université Catholique de Louvain , Brussels , Belgium
| | - Benoit Driesschaert
- c Department of Pharmaceutical Sciences School of Pharmacy & In Vivo Multifunctional Magnetic Resonance Center , West Virginia University , Morgantown , WV , USA
| | - Bernard Gallez
- a Biomedical Magnetic Resonance , Université Catholique de Louvain, Louvain Drug Research Institute (LDRI) , Brussels , Belgium
| |
Collapse
|
8
|
Wang M, Li K, Zou Z, Li L, Zhu L, Wang Q, Gao W, Wang Y, Huang W, Liu R, Yao K, Liu Q. Piperidine nitroxide Tempol enhances cisplatin-induced apoptosis in ovarian cancer cells. Oncol Lett 2018; 16:4847-4854. [PMID: 30250550 PMCID: PMC6144655 DOI: 10.3892/ol.2018.9289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
A nitroxide radical, Tempol (Tempol, TPL), is usually used as an antioxidative agent clinically, whereas the mechanism underlying its pro-oxidative effect has not been thoroughly investigated. The present study investigated the pro-oxidative effect of TPL on the inhibition of cellular proliferation and its role in enhancing the effect of anticancer drug cisplatin (DDP) on the induction of apoptosis in ovarian cancer cells. Cell viability and proliferation were evaluated by MTT assay. Cell apoptosis was analyzed by flow cytometry (FCM) following staining with Annexin V/propidium iodide. Western blot analysis was performed to determine the expression levels of anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) and pro-apoptotic protein Bcl-2-associated X protein (Bax), and the Bcl-2:Bax expression ratio. Cellular reactive oxygen species (ROS) were labeled with dichlorofluorescin-diacetate and analyzed by FCM. The results revealed that cell viabilities of OVCAR3 and SKOV3 cells were decreased by TPL in dose-dependent manner at concentrations of 2 to 10 mM after 48 h incubation. The cell proliferation rates of OVCAR3 and SKOV3 cells were suppressed by TPL at lower toxic concentrations of 1.5 and 1 mM, respectively, compared with the control group. The MTT assay indicated that the combination therapy significantly inhibited the cell proliferation of OVCAR3 cells compared with treatment with DDP alone. FCM demonstrated that the combination treatment increased the proportion of early apoptotic cells in OVCAR3 cells compared with single DDP treatment. Western blot analysis revealed that the combination treatment markedly decreased the Bcl-2:Bax expression ratio compared with treatment with DDP alone. Detection of cellular ROS expression levels demonstrated that the combination therapy significantly increased cellular ROS generation compared with the DDP-only therapy. These data indicated that TPL increased the effect of DDP on inducing apoptosis in OVCAR3 cells.
Collapse
Affiliation(s)
- Meng Wang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Keyi Li
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiwei Zou
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Linlin Li
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lingqun Zhu
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qianli Wang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenwen Gao
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Wang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ruiyuan Liu
- Science Department of Chemistry, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Kaitai Yao
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiuzhen Liu
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Guangzhou Key Laboratory of Tumor Immunology Research, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
9
|
Abstract
Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events in neurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is reestablished. Therefore, there is a critical need for novel therapeutic approaches that can "rescue" salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia.
Collapse
|
10
|
Ronaldson PT, Davis TP. Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des 2012; 18:3624-44. [PMID: 22574987 DOI: 10.2174/138161212802002625] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/06/2012] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) is a critical regulator of brain homeostasis. Additionally, the BBB is the most significant obstacle to effective CNS drug delivery. It possesses specific charcteristics (i.e., tight junction protein complexes, influx and efflux transporters) that control permeation of circulating solutes including therapeutic agents. In order to form this "barrier," brain microvascular endothelial cells require support of adjacent astrocytes and microglia. This intricate relationship also occurs between endothelial cells and other cell types and structures of the CNS (i.e., pericytes, neurons, extracellular matrix), which implies existence of a "neurovascular unit." Ischemic stroke can disrupt the neurovascular unit at both the structural and functional level, which leads to an increase in leak across the BBB. Recent studies have identified several pathophysiological mechanisms (i.e., oxidative stress, activation of cytokine-mediated intracellular signaling systems) that mediate changes in the neurovascular unit during ischemic stroke. This review summarizes current knowledge in this area and emphasizes pathways (i.e., oxidative stress, cytokine-mediated intracellular signaling, glial-expressed receptors/targets) that can be manipulated pharmacologically for i) preservation of BBB and glial integrity during ischemic stroke and ii) control of drug permeation and/or transport across the BBB. Targeting these pathways present a novel opportunity for optimization of CNS delivery of therapeutics in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
11
|
Kirschenbaum LJ, Riesz P. Sonochemical degradation of cyclic nitroxides in aqueous solution. ULTRASONICS SONOCHEMISTRY 2012; 19:1114-1119. [PMID: 22361491 DOI: 10.1016/j.ultsonch.2012.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/06/2012] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
The sonochemical degradation of eight five- and six-membered nitroxides has been studied by EPR spectroscopy after exposure to ultrasound at a frequency of 354 kHz in argon-saturated aqueous solution. Concentration vs. time profiles do not follow a simple rate law. Octanol/water partition functions have been determined for all eight nitroxides, and an excellent linear correlation has been found between initial decomposition rates and hydrophobicity (log K(octanol/water)). Variation of initial rate with concentration was investigated for one compound (TEMPONE) and is largely consistent with an equilibrium distribution of substrate between bulk solution and the gas/liquid interface.
Collapse
|
12
|
Barbieriková Z, Mihalíková M, Brezová V. Photoinduced Oxidation of Sterically Hindered Amines in Acetonitrile Solutions and Titania Suspensions (An EPR Study). Photochem Photobiol 2012; 88:1442-54. [DOI: 10.1111/j.1751-1097.2012.01189.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Castro CA, Osorio P, Sienkiewicz A, Pulgarin C, Centeno A, Giraldo SA. Photocatalytic production of 1O2 and *OH mediated by silver oxidation during the photoinactivation of Escherichia coli with TiO2. JOURNAL OF HAZARDOUS MATERIALS 2012; 211-212:172-181. [PMID: 21940102 DOI: 10.1016/j.jhazmat.2011.08.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 07/16/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
Ag loaded TiO(2) was applied in the photocatalytic inactivation of Escherichia coli under ultraviolet (UV) and visible (Vis) light irradiations. Ag enhanced the TiO(2) photodisinfecting effect under Vis irradiation promoting the formation of singlet oxygen and hydroxyl radicals as identified by EPR analyses. Ag nanoparticles, determined on TEM analyses, undergo an oxidation process on the TiO(2)'s surface under UV or Vis irradiation as observed by XPS. In particular, UV pre-irradiation of the material totally diminished its photodisinfection activity under a subsequent Vis irradiation test. Under UV, photodegradation of dichloroacetic acid (DCA), attributed to photoproduced holes in TiO(2), was inhibited by the presence of Ag suggesting that oxidation of Ag(0) to Ag(+) and Ag(2+) is faster than the oxidative path of the TiO(2)'s holes on DCA molecules. Furthermore, photoassisted increased of Ag(+) concentration on TiO(2)'s surface enhances the bacteriostatic activity of the material in dark periods. Indeed, this latter dark contact of Ag(+)-TiO(2) and E. coli seems to induce recovering of the Vis light photoactivity promoted by the surface Ag photoactive species.
Collapse
Affiliation(s)
- Camilo A Castro
- Centro de Investigaciones en Catálisis, Escuela de Ingeniería Química, Universidad Industrial de Santander (UIS), A.A. 678, Bucaramanga, Colombia
| | | | | | | | | | | |
Collapse
|
14
|
Willett NJ, Kundu K, Knight SF, Dikalov S, Murthy N, Taylor WR. Redox signaling in an in vivo murine model of low magnitude oscillatory wall shear stress. Antioxid Redox Signal 2011; 15:1369-78. [PMID: 20712414 PMCID: PMC3144422 DOI: 10.1089/ars.2010.3550] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Wall Shear Stress (WSS) has been identified as an important factor in the pathogenesis of atherosclerosis. We utilized a novel murine aortic coarctation model to acutely create a region of low magnitude oscillatory WSS in vivo. We employed this model to test the hypothesis that acute changes in WSS in vivo induce upregulation of inflammatory proteins, mediated by reactive oxygen species (ROS). Superoxide generation and VCAM-1 expression both increased in regions of low magnitude oscillatory WSS. WSS-dependent superoxide formation was attenuated by tempol treatment, but was unchanged in p47 phox knockout (ko) mice. However, in both the p47 phox ko mice and the tempol-treated mice, low magnitude oscillatory WSS produced an increase in VCAM-1 expression comparable to control mice. Additionally, this same VCAM-1 expression was observed in ebselen-treated mice and catalase overexpressing mice. These results suggest that although the redox state is important to the overall pathogenesis of atherosclerosis, the initial WSS-dependent inflammatory response leading to lesion localization is not dependent on ROS.
Collapse
Affiliation(s)
- Nick J Willett
- The Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
15
|
Nakamura K, Ishiyama K, Ikai H, Kanno T, Sasaki K, Niwano Y, Kohno M. Reevaluation of analytical methods for photogenerated singlet oxygen. J Clin Biochem Nutr 2011; 49:87-95. [PMID: 21980223 PMCID: PMC3171684 DOI: 10.3164/jcbn.10-125] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/29/2010] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study is to compare different analytical methods for singlet oxygen and to discuss an appropriate way to evaluate the yield of singlet oxygen photogenerated from photosensitizers. Singlet oxygen photogenerated from rose bengal was evaluated by electron spin resonance analysis using sterically hindered amines, spectrophotometric analysis of 1,3-diphenylisobenzofuran oxidation, and analysis of fluorescent probe (Singlet Oxygen Sensor Green®). All of the analytical methods could evaluate the relative yield of singlet oxygen. The sensitivity of the analytical methods was 1,3-diphenylisobenzofuran < electron spin resonance < Singlet Oxygen Sensor Green®. However, Singlet Oxygen Sensor Green® could be used only when the concentration of rose bengal was very low (<1 µM). In addition, since the absorption spectra of 1,3-diphenylisobenzofuran is considerably changed by irradiation of 405 nm laser, photosensitizers which are excited by light with a wavelength of around 400 nm such as hematoporphyrin cannot be used in the 1,3-diphenylisobenzofuran oxidation method. On the other hand, electron spin resonance analysis using a sterically hindered amine, especially 2,2,6,6-tetramethyl-4-piperidinol and 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide, had proper sensitivity and wide detectable range for the yield of photogenerated singlet oxygen. Therefore, in photodynamic therapy, it is suggested that the relative yield of singlet oxygen generated by various photosensitizers can be evaluated properly by electron spin resonance analysis.
Collapse
Affiliation(s)
- Keisuke Nakamura
- New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Jana S, Sinha M, Chanda D, Roy T, Banerjee K, Munshi S, Patro BS, Chakrabarti S. Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:663-73. [DOI: 10.1016/j.bbadis.2011.02.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/31/2010] [Accepted: 02/25/2011] [Indexed: 11/24/2022]
|
17
|
Marshall DL, Christian ML, Gryn'ova G, Coote ML, Barker PJ, Blanksby SJ. Oxidation of 4-substituted TEMPO derivatives reveals modifications at the 1- and 4-positions. Org Biomol Chem 2011; 9:4936-47. [DOI: 10.1039/c1ob05037k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab 2010; 30:1625-36. [PMID: 20234382 PMCID: PMC2949263 DOI: 10.1038/jcbfm.2010.29] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The blood-brain barrier (BBB) has a critical role in central nervous system homeostasis. Intercellular tight junction (TJ) protein complexes of the brain microvasculature limit paracellular diffusion of substances from the blood into the brain. Hypoxia and reoxygenation (HR) is a central component to numerous disease states and pathologic conditions. We have previously shown that HR can influence the permeability of the BBB as well as the critical TJ protein occludin. During HR, free radicals are produced, which may lead to oxidative stress. Using the free radical scavenger tempol (200 mg/kg, intraperitoneal), we show that oxidative stress produced during HR (6% O(2) for 1 h, followed by room air for 20 min) mediates an increase in BBB permeability in vivo using in situ brain perfusion. We also show that these changes are associated with alterations in the structure and localization of occludin. Our data indicate that oxidative stress is associated with movement of occludin away from the TJ. Furthermore, subcellular fractionation of cerebral microvessels reveals alterations in occludin oligomeric assemblies in TJ associated with plasma membrane lipid rafts. Our data suggest that pharmacological inhibition of disease states with an HR component may help preserve BBB functional integrity.
Collapse
|
19
|
Burks SR, Makowsky MA, Yaffe ZA, Hoggle C, Tsai P, Muralidharan S, Bowman MK, Kao JP, Rosen GM. The effect of structure on nitroxide EPR spectral linewidth. J Org Chem 2010; 75:4737-41. [PMID: 20540511 PMCID: PMC2914483 DOI: 10.1021/jo1005747] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitroxides with narrow linewidths are essential for low-frequency EPR spectroscopy and in vivo EPR imaging. In developing a framework for designing narrow-line nitroxides, we sought to understand the unexpectedly narrow line width of 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxyl (5). Computational modeling revealed that the carbonyl double bond in the 4-position allows conformational diversity that results in the observed narrowing of the EPR spectral line. In view of this finding, we synthesized two new nitroxides bearing an exocyclic double bond: 4-methoxycarbonylmethylidene-2,2,6,6-tetramethyl-1-piperidinyloxyl (7) and 4-acetoxymethoxycarbonylmethylidene-2,2,6,6-tetramethyl-1-piperidinyloxyl (9). These nitroxides, like nitroxide 5, exhibited narrow linewidths-consistent with the results of modeling. Nitroxide 8 (4-carboxymethylidene-2,2,6,6-tetramethyl-1-piperidinyloxyl), as a prototype, allows for a variety of structural diversity, such as nitroxide 9,that can, for instance, target tissue compartments for in vivo EPR imaging.
Collapse
Affiliation(s)
- Scott R. Burks
- Center for Biomedical Engineering and Technology, and Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Mallory A. Makowsky
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Zachary A. Yaffe
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Chad Hoggle
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Pei Tsai
- Center for Biomedical Engineering and Technology, and Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Sukumaran Muralidharan
- Center for Biomedical Engineering and Technology, and Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201
| | - Michael K. Bowman
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487
| | - Joseph P.Y. Kao
- Center for Biomedical Engineering and Technology, and Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gerald M. Rosen
- Center for Biomedical Engineering and Technology, and Center for EPR Imaging In Vivo Physiology, University of Maryland, Baltimore, MD 21201
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| |
Collapse
|
20
|
Abstract
PURPOSE The primary objective of this study was to examine the possibility of inhibiting oxidative damage to the lens in vitro by caffeine. METHODS Oxidative damage was inflicted by incubating mouse lenses in Tyrode medium containing 0.1 mM Fe(8)Br(8), an iron complex soluble in aqueous medium. Parallel incubations were conducted in the presence of caffeine (5 mM). RESULTS Lenses incubated in the medium containing Fe(8)Br(8) undergo oxidative stress, as evidenced by the inhibition of Na(+)-K(+) ATPase-driven rubidium transport and the loss of tissue glutathione and ATP. These effects were prevented in presence of caffeine. That the effects are due to the oxyradicals produced was ascertained further by parallel studies with Tempol (5 mM), a well-known scavenger of reactive oxygen species (ROS) with its activity being more pronounced with hydroxyl radicals as compared to other ROS. CONCLUSIONS Caffeine was found to be effective in preventing oxidative stress to the lens induced by iron under ambient conditions. The protective effect is attributable to its ability to scavenge ROS, particularly the hydroxyl radical.
Collapse
Affiliation(s)
- Shambhu D Varma
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
21
|
Jiang J, Stoyanovsky DA, Belikova NA, Tyurina YY, Zhao Q, Tungekar MA, Kapralova V, Huang Z, Mintz AH, Greenberger JS, Kagan VE. A mitochondria-targeted triphenylphosphonium-conjugated nitroxide functions as a radioprotector/mitigator. Radiat Res 2009; 172:706-17. [PMID: 19929417 DOI: 10.1667/rr1729.1] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Removal of excessive mitochondrial reactive oxygen species by electron scavengers and antioxidants is a promising therapeutic strategy to reduce the detrimental effects of radiation exposure. Here we exploited triphenylphosphonium (TPP) cation as a means to target nitroxide radicals to mitochondria. We synthesized a library of TPP-conjugated nitroxides and tested their radioprotective effects in gamma-irradiated mouse embryo cells and human epithelial BEAS-2B cells. Cells were incubated with conjugates either before or after irradiation. We found that [2-(1-oxyl-2,2,6,6-tetramethyl-piperidin-4-ylimino)-ethyl]-triphenyl-phosphonium (TPEY-Tempo) significantly blocked radiation-induced apoptosis as revealed by externalization of phosphatidylserine on the cell surface and inhibition of cytochrome c release from mitochondria. Using electron paramagnetic resonance, we showed that TPEY-Tempo was integrated into cells and mitochondria, where it underwent one-electron reduction to hydroxylamine. TPEY-Tempo acted as an electron scavenger that prevented superoxide generation and cardiolipin oxidation in mitochondria. Finally, TPEY-Tempo increased the clonogenic survival rate of irradiated cells. The cellular integration efficiencies of nonradioprotective TPP conjugates, including Mito-Tempo (Alexis, San Diego, CA), were markedly lower, although these homologues were integrated into isolated succinate-energized mitochondria to a similar extent as TPEY-Tempo. We conclude that mitochondrial targeting of TPP-conjugated nitroxides represents a promising approach for the development of novel radioprotectors.
Collapse
Affiliation(s)
- Jianfei Jiang
- Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wei SG, Zhang ZH, Yu Y, Felder RB. Systemically administered tempol reduces neuronal activity in paraventricular nucleus of hypothalamus and rostral ventrolateral medulla in rats. J Hypertens 2009; 27:543-50. [PMID: 19330914 DOI: 10.1097/hjh.0b013e3283200442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Systemic administration of the superoxide scavenger tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) reduces blood pressure (BP), heart rate (HR) and sympathetic nerve activity in normotensive and hypertensive animals. The global nature of the depressor response to tempol suggests an inhibitory influence on cardiovascular presympathetic regions of the brain. This study examined several possible mechanisms for such an effect. METHODS AND RESULTS In urethane anesthetized rats, as expected, intravenous tempol (120 microg mol/kg) reduced mean arterial pressure, HR and renal sympathetic nerve activity (RSNA). Concomitant central neuronal recordings revealed reduced spontaneous discharge (spikes/s) of neurons in the paraventricular nucleus of hypothalamus (from 2.9 +/- 0.4 to 0.8+/- 0.2) and the rostral ventrolateral medulla (RVLM; from 9.8 +/- 0.5 to 7.2 +/-0.4), two cardiovascular and autonomic regions of the brain. Baroreceptor-denervated rats had exaggerated sympathetic and cardiovascular responses. Pretreatment with the hydroxyl radical scavenger dimethyl sulfoxide (intravenous) attenuated the tempol-induced decreases in BP, HR and RSNA, but the nitric oxide synthesis inhibitor NG-nitro-L-arginine methyl ester (intravenous or intracerebroventricular) had no effect. CONCLUSION These findings suggest that systemically administered tempol acts upon neurons in paraventricular nucleus and RVLM to reduce BP, HR and RSNA, perhaps by reducing the influence of reactive oxygen species in those regions. The arterial baroreflex modulates the depressor responses to tempol. These central mechanisms must be considered in interpreting data from studies using systemically administered tempol to assess the role of reactive oxygen species in cardiovascular regulation.
Collapse
Affiliation(s)
- Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
23
|
Luo Z, Chen Y, Chen S, Welch WJ, Andresen BT, Jose PA, Wilcox CS. Comparison of inhibitors of superoxide generation in vascular smooth muscle cells. Br J Pharmacol 2009; 157:935-43. [PMID: 19466991 DOI: 10.1111/j.1476-5381.2009.00259.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE We compared the dose-dependent reductions in cellular superoxide anion (O(2)(-)) by catalytic agents: superoxide dismutase (SOD), polyethylene glycol (PEG)-SOD and the nitroxide 4-hydroxy-2,2,6,6,-tetramethylpiperidine-1-oxyl (tempol) with uncharacterized antioxidants: 5,10,15,20-tetrakis (4-sulphonatophenyl) porphyrinate iron (III)(Fe-TTPS), (-)-cis-3,3',4',5,7-pentahydroxyflavane (2R,3R)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-1(2H)-benzopyran-3,5,7-triol (-epicatechin), 2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen) and N-acetyl-L-cysteine (NAC) with the spin trap nitroblue tetrazolium (NBT) and with the vitamins or their analogues: ascorbate, alpha-tocopherol and 6-hydroxy-2,5,7,8-tetramethylkroman-2-carboxy acid (trolox). EXPERIMENTAL APPROACH O(2)(-) was generated in primary cultures of angiotensin II-stimulated preglomerular vascular smooth muscle cells from spontaneously hypertensive rats and detected by lucigenin-enhanced chemiluminescence. KEY RESULTS SOD, PEG-SOD, NAC and tempol produced a similar maximum inhibition of O(2)(-) of 80-90%. -Epicatechin, NBT, ebselen and Fe-TTPS were significantly (P < 0.0125) less effective (50-70%), whereas trolox, alpha-tocopherol and ascorbate had little action even over 24 h of incubation (<31%). Effectiveness in disrupted and intact cells was similar for the permeable agents, PEG-SOD and tempol, but was enhanced for SOD. Generation of O(2)(-) was increased by NAC and NBT at low concentrations but reduced at high concentrations. CONCLUSIONS AND IMPLICATIONS Maximum effectiveness against cellular production of O(2)(-) requires cell membrane permeability and catalytic action as exemplified by PEG-SOD or tempol. NAC and NBT have biphasic effects on O(2)(-) production. Vitamins C and E or analogues have low efficacy.
Collapse
Affiliation(s)
- Z Luo
- Hypertension, Kidney and Vascular Centre, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Simonsen U, Christensen FH, Buus NH. The effect of tempol on endothelium-dependent vasodilatation and blood pressure. Pharmacol Ther 2009; 122:109-24. [DOI: 10.1016/j.pharmthera.2009.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 02/05/2009] [Indexed: 02/07/2023]
|
25
|
Wilcox CS, Pearlman A. Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev 2009; 60:418-69. [PMID: 19112152 DOI: 10.1124/pr.108.000240] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nitroxides can undergo one- or two-electron reduction reactions to hydroxylamines or oxammonium cations, respectively, which themselves are interconvertible, thereby providing redox metabolic actions. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (tempol) is the most extensively studied nitroxide. It is a cell membrane-permeable amphilite that dismutates superoxide catalytically, facilitates hydrogen peroxide metabolism by catalase-like actions, and limits formation of toxic hydroxyl radicals produced by Fenton reactions. It is broadly effective in detoxifying these reactive oxygen species in cell and animal studies. When administered intravenously to hypertensive rodent models, tempol caused rapid and reversible dose-dependent reductions in blood pressure in 22 of 26 studies. This was accompanied by vasodilation, increased nitric oxide activity, reduced sympathetic nervous system activity at central and peripheral sites, and enhanced potassium channel conductance in blood vessels and neurons. When administered orally or by infusion over days or weeks to hypertensive rodent models, it reduced blood pressure in 59 of 68 studies. This was accompanied by correction of salt sensitivity and endothelial dysfunction and reduced agonist-evoked oxidative stress and contractility of blood vessels, reduced renal vascular resistance, and increased renal tissue oxygen tension. Thus, tempol is broadly effective in reducing blood pressure, whether given by acute intravenous injection or by prolonged administration, in a wide range of rodent models of hypertension.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Kidney and Vascular Disorder Center, Georgetown University, Washington, DC 20007, USA.
| | | |
Collapse
|
26
|
Kudo W, Yamato M, Yamada KI, Kinoshita Y, Shiba T, Watanabe T, Utsumi H. Formation of TEMPOL-hydroxylamine during reaction between TEMPOL and hydroxyl radical: HPLC/ECD study. Free Radic Res 2008; 42:505-12. [PMID: 18484414 DOI: 10.1080/10715760802112809] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nitroxyl radicals are important antioxidants that have been used to protect animal tissues from oxidative damage. Their reaction with hydroxyl radical ((*)OH) is generally accepted to be the mechanism of antioxidant function. However, the direct interaction of nitroxyl radicals with (*)OH does not always provide a satisfactory explanation in various pH, because the concentration of hydrogen ion may affect the generation of secondary (*)OH-derived radicals. In the present study, it was confirmed that the reaction between 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) and (*)OH generated TEMPOL-hydroxylamine, 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPON) and TEMPON-hydroxylamine using HPLC coupled with electrochemical detection. In the absence of NADH, TEMPOL-H may be generated by the reaction with secondary (*)OH-derived radicals in acidic condition. In the presence of NADH, a large proportion of the non-paramagnetic products was TEMPOL-H. Finally, it was clarified that TEMPOL-H was generated during dopamine metabolism, which is believed to be one of the (*)OH sources in pathological processes such as Parkinson's disease.
Collapse
Affiliation(s)
- Wataru Kudo
- Department REDOX Medicinal Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Jiang J, Belikova NA, Hoye AT, Zhao Q, Epperly MW, Greenberger JS, Wipf P, Kagan VE. A mitochondria-targeted nitroxide/hemigramicidin S conjugate protects mouse embryonic cells against gamma irradiation. Int J Radiat Oncol Biol Phys 2008; 70:816-25. [PMID: 18262096 DOI: 10.1016/j.ijrobp.2007.10.047] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 10/24/2007] [Accepted: 10/24/2007] [Indexed: 01/07/2023]
Abstract
PURPOSE To evaluate the in vitro radioprotective effect of the mitochondria-targeted hemigramicidin S-conjugated 4-amino-2,2,6,6-tetramethyl-piperidine-N-oxyl (hemi-GS-TEMPO) 5-125 in gamma-irradiated mouse embryonic cells and adenovirus-12 SV40 hybrid virus transformed human bronchial epithelial cells BEAS-2B and explore the mechanisms involved in its radioprotective effect. METHODS AND MATERIALS Cells were incubated with 5-125 before (10 minutes) or after (1 hour) gamma-irradiation. Superoxide generation was determined by using dihydroethidium assay, and lipid oxidation was quantitated by using a fluorescence high-performance liquid chromatography-based Amplex Red assay. Apoptosis was characterized by evaluating the accumulation of cytochrome c in the cytosol and externalization of phosphatidylserine on the cell surface. Cell survival was measured by means of a clonogenic assay. RESULTS Treatment (before and after irradiation) of cells with 5-125 at low concentrations (5, 10, and 20 mum) effectively suppressed gamma-irradiation-induced superoxide generation, cardiolipin oxidation, and delayed irradiation-induced apoptosis, evaluated by using cytochrome c release and phosphatidylserine externalization. Importantly, treatment with 5-125 increased the clonogenic survival rate of gamma-irradiated cells. In addition, 5-125 enhanced and prolonged gamma-irradiation-induced G(2)/M phase arrest. CONCLUSIONS Radioprotection/mitigation by hemi-GS-TEMPO likely is caused by its ability to act as an electron scavenger and prevent superoxide generation, attenuate cardiolipin oxidation in mitochondria, and hence prevent the release of proapoptotic factors from mitochondria. Other mechanisms, including cell-cycle arrest at the G(2)/M phase, may contribute to the protection.
Collapse
Affiliation(s)
- Jianfei Jiang
- Center for Medical Countermeasures Against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Czepas J, Koceva-Chyła A, Gwoździński K, Jóźwiak Z. Different effectiveness of piperidine nitroxides against oxidative stress induced by doxorubicin and hydrogen peroxide. Cell Biol Toxicol 2007; 24:101-12. [PMID: 17610030 DOI: 10.1007/s10565-007-9020-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 04/23/2007] [Indexed: 01/29/2023]
Abstract
The piperidine nitroxides Tempamine and Tempace have been studied for their effect on doxorubicin (DOX) and hydrogen peroxide (H(2)O(2)) cytotoxicity in immortalized B14 cells, a model for neoplastic phenotype. The significance for nitroxide performance of the substituent in position 4 of the piperidine ring was evaluated. The cells were exposed to DOX/H(2)O(2) alone or in combination with the nitroxides Tempamine or Tempace. Two other piperidine nitroxides, Tempo and Tempol, were used for comparison. All the nitroxides except Tempamine modestly reduced DOX cytotoxicity. Tempamine evoked a biphasic response: at concentrations lower than 200 micromol/L the nitroxide decreased DOX cytotoxicity, while at concentrations higher than 200 micromol/L, it enhanced DOX cytotoxicity. In contrast to Tempo and Tempol, Tempamine and Tempace ameliorated hydrogen peroxide cytotoxicity, but none of the nitroxides influenced TBARS stimulated by hydrogen peroxide. The cytoprotective effect of Tempace, Tempo and Tempol in DOX-treated cells correlated with the inhibition of DOX-induced lipid peroxidation. The bioreduction rates of the investigated nitroxides differed significantly and were variously affected by DOX depending on the nitroxide substituent. In combination with DOX, Tempo and Tempol were reduced significantly more slowly, while no influence of DOX on Tempamine and Tempace bioreduction was observed. Our results suggest that the structure of the 4-position substituent is an important factor for biological activity of piperidine nitroxides. Among the investigated nitroxides, Tempace displayed the best protective properties in vitro but Tempamine was the only nitroxide that potentiated cytotoxicity of DOX and did not influence DOX-induced lipid peroxidation. However, this nitroxide showed different performance depending on its concentration and conditions of oxidative stress.
Collapse
Affiliation(s)
- J Czepas
- Department of Molecular Biophysics, University of Łódź, Łódź, Poland.
| | | | | | | |
Collapse
|
29
|
Minami SB, Yamashita D, Ogawa K, Schacht J, Miller JM. Creatine and tempol attenuate noise-induced hearing loss. Brain Res 2007; 1148:83-9. [PMID: 17359945 PMCID: PMC2680083 DOI: 10.1016/j.brainres.2007.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 02/07/2007] [Accepted: 02/12/2007] [Indexed: 11/28/2022]
Abstract
To define the role of free radical formation and potential energy depletion in noise induced hearing loss (NIHL), we measured the effectiveness of tempol (free radical scavenger) and creatine (enhances cellular energy storage) alone and in combination to attenuate NIHL. Guinea pigs were divided into four treatment groups: controls, 3% creatine diet (2 weeks prior to noise exposure), tempol (3 mM in drinking water 2 weeks prior to exposure), and creatine plus tempol and exposed to 120 dB SPL one-octave band noise centered at 4 kHz for 5 h. The noise-only control group showed frequency-dependent auditory threshold shifts (measured by auditory brainstem response, ABR) of up to 73 dB (16 kHz) on day 1, and up to 50 dB (8 kHz) on day 10. Creatine-treated subjects had significantly smaller ABR threshold shifts on day 1 and on day 10. Tempol alone significantly reduced ABR threshold shifts on day 10 but not on day 1. ABR shifts after combination treatment were similar to those in the creatine group. Hair cell loss on day 10 was equally attenuated by creatine and tempol alone or in combination. Our results indicate that the maintenance of ATP levels is important in attenuating both temporary and permanent NIHL, while the scavenging of free radicals provides protection from permanent NIHL.
Collapse
Affiliation(s)
- Shujiro B. Minami
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI
- Department of Otolaryngology, Keio University, Tokyo, Japan
| | | | - Kaoru Ogawa
- Department of Otolaryngology, Keio University, Tokyo, Japan
| | - Jochen Schacht
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI
| | - Josef M. Miller
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI
- Center for Hearing and Communication, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Saito K, Takeshita K, Anzai K, Ozawa T. Pharmacokinetic study of acyl-protected hydroxylamine probe, 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine, for in vivo measurements of reactive oxygen species. Free Radic Biol Med 2004; 36:517-25. [PMID: 14975454 DOI: 10.1016/j.freeradbiomed.2003.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 10/29/2003] [Accepted: 11/14/2003] [Indexed: 11/22/2022]
Abstract
1-Acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP) is a unique probe for in vivo measurements of reactive oxygen species (ROS), because it is hydrolyzed by esterase to a hydroxylamine form (CP-H), which is oxidized to an electron spin resonance-detectable nitroxyl radical (CP) by a reaction with superoxide anion radical, etc. Although a knowledge of pharmacokinetics is essential for the use of ACP in vivo, such information is limited. We investigated the pharmacokinetics of ACP in mice by examining the time course of the tissue distribution of ACP, CP-H, and CP after intravenous or intraperitoneal injection of ACP. Esterase activity for ACP in tissue homogenates was also measured. The concentration of ACP decreased in all tissues obeying a one-compartment model. ACP was hydrolyzed to CP-H in the liver and kidney predominantly, and the first-pass effect of liver on the hydrolysis of ACP was very large. A homogeneous biodistribution of CP-H was obtained 10 min after the injection of ACP regardless of the injection route, and concentrations remained stable over at least 20 min. Because of these pharmacokinetic properties, ACP should be suitable for the imaging of ROS in animals.
Collapse
Affiliation(s)
- Keita Saito
- Redox Regulation Research Group, National Institute of Radiological Sciences, 9-1, Anagawa-4, Inage-ku, Chiba 263-8555, Japan
| | | | | | | |
Collapse
|