1
|
Fisher HA, Evans MV, Bunge AL, Hubal EAC, Vallero DA. A compartment model to predict in vitro finite dose absorption of chemicals by human skin. CHEMOSPHERE 2024; 349:140689. [PMID: 37963497 PMCID: PMC10842870 DOI: 10.1016/j.chemosphere.2023.140689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023]
Abstract
Dermal uptake is an important and complex exposure route for a wide range of chemicals. Dermal exposure can occur due to occupational settings, pharmaceutical applications, environmental contamination, or consumer product use. The large range of both chemicals and scenarios of interest makes it difficult to perform generalizable experiments, creating a need for a generic model to simulate various scenarios. In this study, a model consisting of a series of four well-mixed compartments, representing the source solution (vehicle), stratum corneum, viable tissue, and receptor fluid, was developed for predicting dermal absorption. The model considers experimental conditions including small applied doses as well as evaporation of the vehicle and chemical. To evaluate the model assumptions, we compare model predictions for a set of 26 chemicals to finite dose in-vitro experiments from a single laboratory using steady-state permeability coefficient and equilibrium partition coefficient data derived from in-vitro experiments of infinite dose exposures to these same chemicals from a different laboratory. We find that the model accurately predicts, to within an order of magnitude, total absorption after 24 h for 19 of these chemicals. In combination with key information on experimental conditions, the model is generalizable and can advance efficient assessment of dermal exposure for chemical risk assessment.
Collapse
Affiliation(s)
- H A Fisher
- Oak Ridge Associated Universities, Assigned to U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA
| | - M V Evans
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA
| | - A L Bunge
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - E A Cohen Hubal
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - D A Vallero
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, NC, USA.
| |
Collapse
|
2
|
Riedel A, Pieper L, Lautner M, Leiding C, Jung M, Schulze M. Comparison of deep-litter bedding materials and analysis of semen traits in Piétrain boars: A randomized controlled field study. Anim Reprod Sci 2023; 259:107379. [PMID: 37995520 DOI: 10.1016/j.anireprosci.2023.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
External factors can affect reproductive traits of breeding boars and especially the sensitive process of spermatogenesis. The aim of this study was to investigate probable influences of bedding materials (chipsy wood shavings (CWS), hemp straw (HS), linen straw (LS), spelt husks (SH), and regional wood shavings (RWS)) on semen traits of 40 randomly selected Piétrain boars (8 boars per group, age: 2.35 ± 1.23 years). After a six-week adaptation period, 40 fresh semen samples were collected weekly for four weeks and diluted in BTS (4 consecutive ejaculates per boar, 32 samples per group, 160 samples in total). Semen samples were analyzed using an extended range of spermatological methods (e.g., computer-assisted sperm analysis and flow cytometry). Generalized linear mixed models for each sperm parameter as well as the area under the curve for total sperm motility and thermo-resistance test were calculated. Materials LS and SH exceeded the standard maximum level for pesticide residues (VO (EG) No. 396/2005). Materials HS and LS presented the highest water-binding capacity of 413 % and 357 %, respectively, while SH showed the lowest value of 250 %. There were no significant (P > 0.05) differences between groups in any sperm characteristic, therefore indicating that bedding material had no influence on sperm quality. For most semen traits, however, we found significant (P ≤ 0.001) differences between sampling weeks. Based on pesticide results, we suggest CWS, RWS, or HS as possible bedding materials for pig production farms in the future. Furthermore, we strongly recommend a quality analysis of any new bedding material before use in swine husbandry.
Collapse
Affiliation(s)
- Anine Riedel
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321 Bernau, Germany
| | - Laura Pieper
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321 Bernau, Germany
| | - Matthias Lautner
- Besamungsverein Neustadt a.-d. Aisch, Karl-Eibl-Straße 23, D-91413 Neustadt a.-d. Aisch, Germany
| | - Claus Leiding
- Besamungsverein Neustadt a.-d. Aisch, Karl-Eibl-Straße 23, D-91413 Neustadt a.-d. Aisch, Germany
| | - Markus Jung
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321 Bernau, Germany
| | - Martin Schulze
- Institute for Reproduction of Farm Animals Schönow, Bernauer Allee 10, D-16321 Bernau, Germany.
| |
Collapse
|
3
|
Matharoo NS, Garimella HT, German C, Przekwas AJ, Michniak-Kohn B. A Comparative Evaluation of Desoximetasone Cream and Ointment Formulations Using Experiments and In Silico Modeling. Int J Mol Sci 2023; 24:15118. [PMID: 37894801 PMCID: PMC10606375 DOI: 10.3390/ijms242015118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The administration of therapeutic drugs through dermal routes, such as creams and ointments, has emerged as an increasingly popular alternative to traditional delivery methods, such as tablets and injections. In the context of drug development, it is crucial to identify the optimal doses and delivery routes that ensure successful outcomes. Physiologically based pharmacokinetic (PBPK) models have been proposed to simulate drug delivery and optimize drug formulations, but the calibration of these models is challenging due to the multitude of variables involved and limited experimental data. One significant research gap that this article addresses is the need for more efficient and accurate methods for calibrating PBPK models for dermal drug delivery. This manuscript presents a novel approach and an integrated dermal drug delivery model to address this gap that leverages virtual in vitro release (IVRT) and permeation (IVPT) testing data to optimize mechanistic models. The proposed approach was demonstrated through a study involving Desoximetasone cream and ointment formulations, where the release kinetics and permeation profiles of Desoximetasone were determined experimentally, and a computational model was created to simulate the results. The experimental studies showed that, even though the cumulative permeation of Desoximetasone at the end of the permeation study was comparable, there was a significant difference seen in the lag time in the permeation of Desoximetasone between the cream and ointment. Additionally, there was a significant difference seen in the amount of Desoximetasone permeated through human cadaver skin at early time points when the cream and ointment were compared. The computational model was optimized and validated, suggesting that this approach has the potential to bridge the existing research gap by improving the accuracy and efficiency of drug development processes. The model results show a good fit between the experimental data and model predictions. During the model optimization process, it became evident that there was variability in both the permeability and the partition coefficient within the stratum corneum. This variability had a significant and noteworthy influence on the overall performance of the model, especially when it came to its capacity to differentiate between cream and ointment formulations. Leveraging virtual models significantly aids the comprehension of drug release and permeation, mitigating the demanding data requirements. The use of virtual IVRT and IVPT data can accelerate the calibration of PBPK models, streamline the selection of the appropriate doses, and optimize drug delivery. Moreover, this novel approach could potentially reduce the time and resources involved in drug development, thus making it more cost-effective and efficient.
Collapse
Affiliation(s)
- Namrata S. Matharoo
- Center for Dermal Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | - Bozena Michniak-Kohn
- Center for Dermal Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Bielfeldt S, Bonnier F, Byrne H, Chourpa I, Dancik Y, Lane M, Lunter D, Munnier E, Puppels G, Tfayli A, Ziemons E. Monitoring dermal penetration and permeation kinetics of topical products; the role of Raman microspectroscopy. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Niemeier RT, Maier MA, Reichard JF. Rapid Review of Dermal Penetration and Absorption of Inorganic Lead Compounds for Occupational Risk Assessment. Ann Work Expo Health 2022; 66:291-311. [PMID: 35051994 PMCID: PMC8930439 DOI: 10.1093/annweh/wxab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Lead (Pb) exposure continues to be a significant public health issue in both occupational and non-occupational settings. The vast majority of exposure and toxicological studies have focused on effects related to inhalation and gastrointestinal exposure routes. Exposure to inorganic Pb compounds through dermal absorption has been less well studied, perhaps due to the assumption that the dermal pathway is a minor contributor to aggregate exposures to Pb compounds. The aim of this rapid review was to identify and evaluate published literature on dermal exposures to support the estimation of key percutaneous absorption parameters (Kp, flux, diffusion rate) for use in occupational risk assessment. Eleven articles were identified containing information from both in vitro and in vivo systems relevant to percutaneous absorption kinetics. These articles provided 24 individual study summaries and information for seven inorganic Pb compounds. The vast majority of study summaries evaluated (n = 22, 92%) reported detectable amounts of dermal absorption of inorganic Pb. Data were identified for four Pb compounds (Pb acetate, Pb nitrate, Pb oxide, and Pb metal) that may be sufficient to use in evaluating physiologically based pharmacokinetic models. Average calculated diffusion rates for the pool of animal and human skin data ranged from 10-7 to 10-4 mg cm-2 h-1, and Kp values ranged from 10-7 to 10-5 cm h-1. Study design and documentation were highly variable, and only one of the studies identified was conducted using standard test guideline-compliant methodologies. Two studies provided quality estimates on the impacts of dermal absorption from water-insoluble Pb compounds on blood Pb levels. These two studies reported that exposures via dermal routes could elevate blood Pb by over 6 µg dl-1. This estimation could represent over 100% of 5 µg dl-1, the blood Pb associated with adverse health effects in adults. The utility of these estimates to occupational dermal exposures is limited, because the confidence in the estimates is not high. The literature, while of limited quality, overall strongly suggests inorganic Pb has the potential for dermal uptake in meaningful amounts associated with negative health outcomes based on upper bound diffusion rate estimates. Future standard test guideline-compliant studies are needed to provide high-confidence estimates of dermal uptake. Such data are needed to allow for improved evaluation of Pb exposures in an occupational risk assessment context.
Collapse
|
6
|
Bartels M, van Osdol W, Le Merdy M, Chappelle A, Kuhl A, West R. In silico predictions of absorption of MDI substances after dermal or inhalation exposures to support a category based read-across assessment. Regul Toxicol Pharmacol 2022; 129:105117. [PMID: 35017021 DOI: 10.1016/j.yrtph.2022.105117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 01/08/2023]
Abstract
Methylenediphenyl diisocyanate (MDI) substances used polyurethane production can range from their simplest monomeric forms (e.g., 4,4'-MDI) to mixtures of the monomers with various homologues, homopolymer, and prepolymer derivatives. The relative dermal or inhalation absorption of 39 constituents of these substances in human were predicted using the GastroPlus® program. Predicted dermal uptake and absorption of the three MDI monomers from an acetone vehicle was 84-86% and 1.4-1.5%, respectively, with lower uptake and absorption predicted for the higher MW analogs. Lower absorption was predicted from exposures in a more lipophilic vehicle (1-octanol). Modeled inhalation exposures afforded the highest pulmonary absorption for the MDI monomers (38-54%), with 3-27% for the MW range of 381-751, and <0.1% for the remaining, higher MW derivatives. Predicted oral absorption, representing mucociliary transport, ranged from 5 to 10% for the MDI monomers, 10-25% for constituents of MW 381-751, and ≤3% for constituents with MW > 900. These in silico evaluations should be useful in category-based, worst-case, Read-Across assessments for MDI monomers and modified MDI substances for potential systemic effects. Predictions of appreciable mucociliary transport may also be useful to address data gaps in oral toxicity testing for this category of compounds.
Collapse
Affiliation(s)
| | | | | | - Anne Chappelle
- International Isocyanate Institute, Mountain Lakes, NJ, USA
| | - Adam Kuhl
- Huntsman LLC, The Woodlands, Texas, USA
| | - Robert West
- International Isocyanate Institute, Mountain Lakes, NJ, USA
| |
Collapse
|
7
|
Roberts MS, Cheruvu HS, Mangion SE, Alinaghi A, Benson HA, Mohammed Y, Holmes A, van der Hoek J, Pastore M, Grice JE. Topical drug delivery: History, percutaneous absorption, and product development. Adv Drug Deliv Rev 2021; 177:113929. [PMID: 34403750 DOI: 10.1016/j.addr.2021.113929] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Topical products, widely used to manage skin conditions, have evolved from simple potions to sophisticated delivery systems. Their development has been facilitated by advances in percutaneous absorption and product design based on an increasingly mechanistic understanding of drug-product-skin interactions, associated experiments, and a quality-by-design framework. Topical drug delivery involves drug transport from a product on the skin to a local target site and then clearance by diffusion, metabolism, and the dermal circulation to the rest of the body and deeper tissues. Insights have been provided by Quantitative Structure Permeability Relationships (QSPR), molecular dynamics simulations, and dermal Physiologically Based PharmacoKinetics (PBPK). Currently, generic product equivalents of reference-listed products dominate the topical delivery market. There is an increasing regulatory interest in understanding topical product delivery behavior under 'in use' conditions and predicting in vivo response for population variations in skin barrier function and response using in silico and in vitro findings.
Collapse
|
8
|
Kapraun DF, Schlosser PM, Nylander-French LA, Kim D, Yost EE, Druwe IL. A Physiologically Based Pharmacokinetic Model for Naphthalene With Inhalation and Skin Routes of Exposure. Toxicol Sci 2021; 177:377-391. [PMID: 32687177 DOI: 10.1093/toxsci/kfaa117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Naphthalene, a volatile organic compound present in moth repellants and petroleum-based fuels, has been shown to induce toxicity in mice and rats during chronic inhalation exposures. Although simpler default methods exist for extrapolating toxicity points of departure from animals to humans, using a physiologically based pharmacokinetic (PBPK) model to perform such extrapolations is generally preferred. Confidence in PBPK models increases when they have been validated using both animal and human in vivo pharmacokinetic (PK) data. A published inhalation PBPK model for naphthalene was previously shown to predict rodent PK data well, so we sought to evaluate this model using human PK data. The most reliable human data available come from a controlled skin exposure study, but the inhalation PBPK model does not include a skin exposure route; therefore, we extended the model by incorporating compartments representing the stratum corneum and the viable epidermis and parameters that determine absorption and rate of transport through the skin. The human data revealed measurable blood concentrations of naphthalene present in the subjects prior to skin exposure, so we also introduced a continuous dose-rate parameter to account for these baseline blood concentration levels. We calibrated the three new parameters in the modified PBPK model using data from the controlled skin exposure study but did not modify values for any other parameters. Model predictions then fell within a factor of 2 of most (96%) of the human PK observations, demonstrating that this model can accurately predict internal doses of naphthalene and is thus a viable tool for use in human health risk assessment.
Collapse
Affiliation(s)
- Dustin F Kapraun
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711
| | - Paul M Schlosser
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711
| | - Leena A Nylander-French
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - David Kim
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Erin E Yost
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711
| | - Ingrid L Druwe
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711
| |
Collapse
|
9
|
Somayaji MR, Das D, Garimella HT, German CL, Przekwas AJ, Simon L. An Integrated Biophysical Model for Predicting the Clinical Pharmacokinetics of Transdermally Delivered Compounds. Eur J Pharm Sci 2021; 167:105924. [PMID: 34289340 DOI: 10.1016/j.ejps.2021.105924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
The delivery of therapeutic drugs through the skin is a promising alternative to oral or parenteral delivery routes because dermal drug delivery systems (D3S) offer unique advantages such as controlled drug release over sustained periods and a significant reduction in first-pass effects, thus reducing the required dosing frequency and level of patient noncompliance. Furthermore, D3S find applications in multiple therapeutic areas, including drug repurposing. This article presents an integrated biophysical model of dermal absorption for simulating the permeation and absorption of compounds delivered transdermally. The biophysical model is physiologically/biologically inspired and combines a holistic model of healthy skin with whole-body physiology-based pharmacokinetics through dermis microcirculation. The model also includes the effects of chemical penetration enhancers and hair follicles on transdermal transport. The model-predicted permeation and pharmacokinetics of select compounds were validated using in vivo data reported in the literature. We conjecture that the integrated model can be used to gather insights into the permeation and systemic absorption of transdermal formulations (including cosmetic products) released from novel depots and optimize delivery systems. Furthermore, the model can be adapted to diseased skin with parametrization and structural adjustments specific to skin diseases.
Collapse
Affiliation(s)
- Mahadevabharath R Somayaji
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States.
| | - Debarun Das
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Harsha Teja Garimella
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Carrie L German
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Andrzej J Przekwas
- Manager, Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806, United States
| | - Laurent Simon
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| |
Collapse
|
10
|
Abstract
For topical drug products that target sites of action in the viable epidermal and/or upper dermal compartment of the skin, the local concentration profiles have proven difficult to quantify because drug clearance from the viable cutaneous tissue is not well characterised. Without such knowledge, of course, it is difficult-if not impossible-to predict a priori whether and over what time frame a topical formulation will permit an effective concentration of drug within the skin 'compartment' to be achieved. Here, we test the hypothesis that valuable information about drug disposition, and specifically its clearance, in this experimentally difficult-to-access compartment (at least, in vivo) can be derived from available systemic pharmacokinetic data for drugs administered via transdermal delivery systems. A multiple regression analysis was undertaken to determine the best-fit empirical correlation relating clearance from the skin to known or easily calculable drug properties. It was possible, in this way, to demonstrate a clear relationship between drug clearance from the skin and key physical chemical properties of the drug (molecular weight, log P and topological polar surface area). It was further demonstrated that values predicted by the model correlated well with those derived from in vitro skin experiments.
Collapse
|
11
|
Almeida RN, Costa P, Pereira J, Cassel E, Rodrigues AE. Evaporation and Permeation of Fragrance Applied to the Skin. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rafael N. Almeida
- LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Patrícia Costa
- LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Pereira
- LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eduardo Cassel
- Unit Operations Lab, Polytechnic School, Pontifical Catholic University of Rio Grande do Sul, Av. Ipiranga 6681 - Prédio 30, Bloco F, Sala 208, Porto Alegre, Brazil
| | - Alírio E. Rodrigues
- LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
12
|
Preparation, properties and challenges of the microneedles-based insulin delivery system. J Control Release 2018; 288:173-188. [PMID: 30189223 DOI: 10.1016/j.jconrel.2018.08.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
Abstract
Microneedle technology relates to pharmacy, polymer chemistry and micromachining. Microneedle can effectively deliver insulin into systemic circulation across the skin. This process does not affect the activity of insulin. Compared to subcutaneous injection, microneedles cause less pain for their special structure. This review thoroughly discusses the preparation technologies of the microneedles-based insulin delivery system including solid, hollow, dissolving, phase transition, glucose-responsive microneedle patches. In the meantime, the properties, challenges and clinical/commercial status of the microneedles-based insulin delivery system are also discussed in this review.
Collapse
|
13
|
Dąbrowska AK, Spano F, Derler S, Adlhart C, Spencer ND, Rossi RM. The relationship between skin function, barrier properties, and body-dependent factors. Skin Res Technol 2017; 24:165-174. [PMID: 29057509 DOI: 10.1111/srt.12424] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND Skin is a multilayer interface between the body and the environment, responsible for many important functions, such as temperature regulation, water transport, sensation, and protection from external triggers. OBJECTIVES This paper provides an overview of principal factors that influence human skin and describes the diversity of skin characteristics, its causes and possible consequences. It also discusses limitations in the barrier function of the skin, describing mechanisms of absorption. METHODS There are a number of in vivo investigations focusing on the diversity of human skin characteristics with reference to barrier properties and body-dependent factors. RESULTS Skin properties vary among individuals of different age, gender, ethnicity, and skin types. In addition, skin characteristics differ depending on the body site and can be influenced by the body-mass index and lifestyle. Although one of the main functions of the skin is to act as a barrier, absorption of some substances remains possible. CONCLUSIONS Various factors can alter human skin properties, which can be reflected in skin function and the quality of everyday life. Skin properties and function are strongly interlinked.
Collapse
Affiliation(s)
- A K Dąbrowska
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.,Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - F Spano
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - S Derler
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - C Adlhart
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, ZHAW, Wädenswil, Switzerland
| | - N D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - R M Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| |
Collapse
|
14
|
Liu J, Ding W, Ruan R, Zou L, Chen M, Wei P, Wen L. A Theoretical Study on Inhibition of Melanoma with Controlled and Targeted Delivery of siRNA via Skin Using SPACE-EGF. Ann Biomed Eng 2017; 45:1407-1419. [PMID: 28349327 DOI: 10.1007/s10439-017-1825-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/20/2017] [Indexed: 11/26/2022]
Abstract
Melanoma is a potentially lethal skin cancer with high mortality rate. Recently, the peptide-mediated transdermal delivery of small interference RNA (siRNA) emerges as a promising strategy to treat melanoma by inducing the apoptosis of tumor cells, but the related theoretical model describing the delivery of siRNA under the effect of SPACE-EGF, the growth inhibition of melanoma and the dynamic expanding of the bump on the skin due to the growth of melanoma has not been reported yet. In this article, a theoretical model is developed to describe the percutaneous siRNA delivery mediated by SPACE-EGF to melanoma and the growth inhibition of melanoma. The results present the spatial-temporal distribution of siRNA and the growth of melanoma under the inhibition of siRNA, which shows a good consistency with the experimental results. In addition, this model represents the uplift process of tumors on the skin surface. The model presented here is a useful tool to understand the whole process of the SPACE-EGF-mediated delivery of the siRNA to melanoma through skin, to predict the therapeutic effect, and to optimize the therapeutic strategy, providing valuable references for the treatment of melanoma.
Collapse
Affiliation(s)
- Juanjuan Liu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Renquan Ruan
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Lili Zou
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Ming Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Pharmacology, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Pengfei Wei
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Longping Wen
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| |
Collapse
|
15
|
Simon L, Ospina J. The development of a peak-time criterion for designing controlled-release devices. Eur J Pharm Sci 2016; 91:64-73. [PMID: 27260085 DOI: 10.1016/j.ejps.2016.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 05/20/2016] [Accepted: 05/29/2016] [Indexed: 11/25/2022]
Abstract
This work consists of estimating dynamic characteristics for topically-applied drugs when the magnitude of the flux increases to a maximum value, called peak flux, before declining to zero. This situation is typical of controlled-released systems with a finite donor or vehicle volume. Laplace transforms were applied to the governing equations and resulted in an expression for the flux in terms of the physical characteristics of the system. After approximating this function by a second-order model, three parameters of this reduced structure captured the essential features of the original process. Closed-form relationships were then developed for the peak flux and time-to-peak based on the empirical representation. Three case studies that involve mechanisms, such as diffusion, partitioning, dissolution and elimination, were selected to illustrate the procedure. The technique performed successfully as shown by the ability of the second-order flux to match the prediction of the original transport equations. A main advantage of the proposed method is that it does not require a solution of the original partial differential equations. Less accurate results were noted for longer lag times.
Collapse
Affiliation(s)
- Laurent Simon
- Otto H. York Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 0702, USA
| | - Juan Ospina
- Logic and Computation Group, Physics Engineering Program, School of Sciences and Humanities, EAFIT University, Medellin, Colombia
| |
Collapse
|
16
|
Nozaki S, Yamaguchi M, Lefèvre G. Pharmacokinetic Modeling to Simulate the Concentration-Time Profiles After Dermal Application of Rivastigmine Patch. J Pharm Sci 2016; 105:2213-21. [PMID: 27212635 DOI: 10.1016/j.xphs.2016.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 11/19/2022]
Abstract
Rivastigmine is an inhibitor of acetylcholinesterases and butyrylcholinesterases for symptomatic treatment of Alzheimer disease and is available as oral and transdermal patch formulations. A dermal absorption pharmacokinetic (PK) model was developed to simulate the plasma concentration-time profile of rivastigmine to answer questions relative to the efficacy and safety risks after misuse of the patch (e.g., longer application than 24 h, multiple patches applied at the same time, and so forth). The model comprised 2 compartments which was a combination of mechanistic dermal absorption model and a basic 1-compartment model. The initial values for the model were determined based on the physicochemical characteristics of rivastigmine and PK parameters after intravenous administration. The model was fitted to the clinical PK profiles after single application of rivastigmine patch to obtain model parameters. The final model was validated by confirming that the simulated concentration-time curves and PK parameters (Cmax and area under the drug plasma concentration-time curve) conformed to the observed values and then was used to simulate the PK profiles of rivastigmine. This work demonstrated that the mechanistic dermal PK model fitted the clinical data well and was able to simulate the PK profile after patch misuse.
Collapse
Affiliation(s)
- Sachiko Nozaki
- Drug Metabolism & Pharmacokinetics, Translational Medicine, Novartis Pharma K.K., Tokyo, Japan.
| | - Masayuki Yamaguchi
- Drug Metabolism & Pharmacokinetics, Translational Medicine, Novartis Pharma K.K., Tokyo, Japan
| | - Gilbert Lefèvre
- Clinical PK/PD, Translational Medicine, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
17
|
Römgens AM, Bader DL, Bouwstra JA, Oomens CW. A theoretical compartment model for antigen kinetics in the skin. Eur J Pharm Sci 2016; 84:18-25. [DOI: 10.1016/j.ejps.2016.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/16/2022]
|
18
|
Selzer D, Neumann D, Schaefer UF. Mathematical models for dermal drug absorption. Expert Opin Drug Metab Toxicol 2015; 11:1567-83. [PMID: 26166490 DOI: 10.1517/17425255.2015.1063615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Mathematical models of dermal transport offer the advantages of being much faster and less expensive than in vitro or in vivo studies. The number of methods used to create such models has been increasing rapidly, probably due to the steady rise in computational power. Although each of the various approaches has its own virtues and limitations, it may be difficult to decide which approach is best suited to address a given problem. AREAS COVERED Here we outline the basic ideas, drawbacks and advantages of compartmental and quantitative structure-activity relationship models, as well as of analytical and numerical approaches for solving the diffusion equation. Examples of special applications of the different approaches are given. EXPERT OPINION Although some models are sophisticated and might be used in future to predict transport through damaged or diseased skin, the comparatively low availability of suitable and accurate experimental data limits extensive usage of these models and their predictive accuracy. Due to the lack of experimental data, the possibility of validating mathematical models is limited.
Collapse
Affiliation(s)
- Dominik Selzer
- a 1 Saarland University, Biopharmaceutics and Pharmaceutical Technology , 66123 Saarbruecken, Germany.,b 2 Scientific Consilience GmbH, Saarland University , Bldg. 30, 66123 Saarbruecken, Germany +49 681 302 71230 ; +49 681 302 64956 ;
| | - Dirk Neumann
- a 1 Saarland University, Biopharmaceutics and Pharmaceutical Technology , 66123 Saarbruecken, Germany.,b 2 Scientific Consilience GmbH, Saarland University , Bldg. 30, 66123 Saarbruecken, Germany +49 681 302 71230 ; +49 681 302 64956 ;
| | - Ulrich F Schaefer
- c 3 Saarland University, Biopharmaceutics and Pharmaceutical Technology , 66123 Saarbruecken, Germany
| |
Collapse
|
19
|
van Logtestijn MDA, Domínguez-Hüttinger E, Stamatas GN, Tanaka RJ. Resistance to water diffusion in the stratum corneum is depth-dependent. PLoS One 2015; 10:e0117292. [PMID: 25671323 PMCID: PMC4324936 DOI: 10.1371/journal.pone.0117292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/22/2014] [Indexed: 11/23/2022] Open
Abstract
The stratum corneum (SC) provides a permeability barrier that limits the inflow and outflow of water. The permeability barrier is continuously and dynamically formed, maintained, and degraded along the depth, from the bottom to the top, of the SC. Naturally, its functioning and structure also change dynamically in a depth-dependent manner. While transepidermal water loss is typically used to assess the function of the SC barrier, it fails to provide any information about the dynamic mechanisms that are responsible for the depth-dependent characteristics of the permeability barrier. This paper aims to quantitatively characterize the depth-dependency of the permeability barrier using in vivo non-invasive measurement data for understanding the underlying mechanisms for barrier formation, maintenance, and degradation. As a framework to combine existing experimental data, we propose a mathematical model of the SC, consisting of multiple compartments, to explicitly address and investigate the depth-dependency of the SC permeability barrier. Using this mathematical model, we derive a measure of the water permeability barrier, i.e. resistance to water diffusion in the SC, from the measurement data on transepidermal water loss and water concentration profiles measured non-invasively by Raman spectroscopy. The derived resistance profiles effectively characterize the depth-dependency of the permeability barrier, with three distinct regions corresponding to formation, maintenance, and degradation of the barrier. Quantitative characterization of the obtained resistance profiles allows us to compare and evaluate the permeability barrier of skin with different morphology and physiology (infants vs adults, different skin sites, before and after application of oils) and elucidates differences in underlying mechanisms of processing barriers. The resistance profiles were further used to predict the spatial-temporal effects of skin treatments by in silico experiments, in terms of spatial-temporal dynamics of percutaneous water penetration.
Collapse
Affiliation(s)
| | | | | | - Reiko J. Tanaka
- Department of Bioengineering, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
In Silico Prediction of Percutaneous Absorption and Disposition Kinetics of Chemicals. Pharm Res 2014; 32:1779-93. [DOI: 10.1007/s11095-014-1575-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/10/2014] [Indexed: 11/26/2022]
|
21
|
Gajewska M, Worth A, Urani C, Briesen H, Schramm KW. The acute effects of daily nicotine intake on heart rate--a toxicokinetic and toxicodynamic modelling study. Regul Toxicol Pharmacol 2014; 70:312-24. [PMID: 25066669 DOI: 10.1016/j.yrtph.2014.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022]
Abstract
Joint physiologically-based toxicokinetic and toxicodynamic (PBTK/TD) modelling was applied to simulate concentration-time profiles of nicotine, a well-known stimulant, in the human body following single and repeated dosing. Both kinetic and dynamic models were first calibrated by using in vivo literature data for the Caucasian population. The models were then used to estimate the blood and liver concentrations of nicotine in terms of the Area Under Curve (AUC) and the peak concentration (Cmax) for selected exposure scenarios based on inhalation (cigarette smoking), oral intake (nicotine lozenges) and dermal absorption (nicotine patches). The model simulations indicated that whereas frequent cigarette smoking gives rise to high AUC and Cmax in blood, the use of nicotine-rich dermal patches leads to high AUC and Cmax in the liver. Venous blood concentrations were used to estimate one of the most common acute effects, mean heart rate, both at rest and during exercise. These estimations showed that cigarette smoking causes a high peak heart rate, whereas dermal absorption causes a high mean heart rate over 48h. This study illustrates the potential of using PBTK/TD modelling in the safety assessment of nicotine-containing products.
Collapse
Affiliation(s)
- M Gajewska
- Systems Toxicology Unit and EURL ECVAM, Institute for Health and Consumer Protection, European Commission, Joint Research Centre, 21027 Ispra, VA, Italy; University of Milano Bicocca, Dep. of Earth and Environmental Sciences, Piazza della Scienza 1, Milano, Italy; TUM, Wissenschaftszentrum Weihenstephan für Ernährung und Landnutzung, Department für Biowissenschaften, Weihenstephaner Steig 23, 85350 Freising, Germany.
| | - A Worth
- Systems Toxicology Unit and EURL ECVAM, Institute for Health and Consumer Protection, European Commission, Joint Research Centre, 21027 Ispra, VA, Italy
| | - C Urani
- University of Milano Bicocca, Dep. of Earth and Environmental Sciences, Piazza della Scienza 1, Milano, Italy
| | - H Briesen
- TUM, Wissenschaftszentrum Weihenstephan für Ernährung und Landnutzung, Lehrstuhl für Systemverfahrenstechnik, Weihenstephaner Steig 23, 85350 Freising, Germany
| | - K-W Schramm
- TUM, Wissenschaftszentrum Weihenstephan für Ernährung und Landnutzung, Department für Biowissenschaften, Weihenstephaner Steig 23, 85350 Freising, Germany; Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Molecular EXposomics (MEX), Ingolstädter Landstr.1, D-85764 Neuherberg, Germany
| |
Collapse
|
22
|
Mo R, Jiang T, Di J, Tai W, Gu Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 2014; 43:3595-629. [PMID: 24626293 DOI: 10.1039/c3cs60436e] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Insulin is essential for type 1 and advanced type 2 diabetics to maintain blood glucose levels and prolong lives. The traditional administration requires frequent subcutaneous insulin injections that are associated with poor patient compliance, including pain, local tissue necrosis, infection, and nerve damage. Taking advantage of emerging micro- and nanotechnologies, numerous alternative strategies integrated with chemical approaches for insulin delivery have been investigated. This review outlines recent developments in the controlled delivery of insulin, including oral, nasal, pulmonary, transdermal, subcutaneous and closed-loop insulin delivery. Perspectives from new materials, formulations and devices at the micro- or nano-scales are specifically surveyed. Advantages and limitations of current delivery methods, as well as future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Ran Mo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
23
|
Lopes LB. Overcoming the cutaneous barrier with microemulsions. Pharmaceutics 2014; 6:52-77. [PMID: 24590260 PMCID: PMC3978525 DOI: 10.3390/pharmaceutics6010052] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/24/2014] [Accepted: 02/11/2014] [Indexed: 11/16/2022] Open
Abstract
Microemulsions are fluid and isotropic formulations that have been widely studied as delivery systems for a variety of routes, including the skin. In spite of what the name suggests, microemulsions are nanocarriers, and their use as topical delivery systems derives from their multiple advantages compared to other dermatological formulations, such as ease of preparation, thermodynamic stability and penetration-enhancing properties. Composition, charge and internal structure have been reported as determinant factors for the modulation of drug release and cutaneous and transdermal transport. This manuscript aims at reviewing how these and other characteristics affect delivery and make microemulsions appealing for topical and transdermal administration, as well as how they can be modulated during the formulation design to improve the potential and efficacy of the final system.
Collapse
Affiliation(s)
- Luciana B Lopes
- Institute of Biomedical Science, University of São Paulo, São Paulo 05508, SP, Brazil.
| |
Collapse
|
24
|
Pot LM, Scheitza SM, Coenraads PJ, Blömeke B. Penetration and haptenation of p-phenylenediamine. Contact Dermatitis 2013; 68:193-207. [PMID: 23510340 DOI: 10.1111/cod.12032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although p-phenylenediamine (PPD) has been recognized as an extreme sensitizer for many years, the exact mechanism of sensitization has not been elucidated yet. Penetration and the ability to bind to proteins are the first two hurdles that an allergen has to overcome to be able to sensitize. This review is an overview of studies regarding PPD penetration through skin (analogues) and studies on the amino acids that are targeted by PPD. To complete this review, the auto-oxidation and N-acetylation steps involved in PPD metabolism are described. In summary, under normal hair dyeing exposure conditions, <1% of the applied PPD dose penetrates the skin. The majority (>80%) of PPD that penetrates will be converted into the detoxification products monoacetyl-PPD and diacetyl-PPD by the N-acetyltransferase enzymes. The small amount of PPD that does not become N-acetylated is susceptible to auto-oxidation reactions, yielding protein-reactive PPD derivatives. These derivatives may bind to specific amino acids, and some of the formed adducts might be the complexes responsible for sensitization. However, true in vivo evidence is lacking, and further research to unravel the definite mechanism of sensitization is needed.
Collapse
Affiliation(s)
- Laura M Pot
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Naegel A, Heisig M, Wittum G. Detailed modeling of skin penetration--an overview. Adv Drug Deliv Rev 2013; 65:191-207. [PMID: 23142646 DOI: 10.1016/j.addr.2012.10.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 06/28/2012] [Accepted: 10/17/2012] [Indexed: 11/20/2022]
Abstract
In recent years, the combination of computational modeling and experiments has become a useful tool that is proving increasingly powerful for explaining biological complexity. As computational power is increasing, scientists are able to explore ever more complex models in finer detail and to explain very complex real world data. This work provides an overview of one-, two- and three-dimensional diffusion models for penetration into mammalian skin. Besides diffusive transport this includes also binding of substances to skin proteins and metabolism. These models are based on partial differential equations that describe the spatial evolution of the transport process through the biological barrier skin. Furthermore, the work focuses on analytical and numerical techniques for this type of equations such as discretization schemes or homogenization (upscaling) techniques. Finally, the work compares different geometry models with respect to the permeability.
Collapse
Affiliation(s)
- Arne Naegel
- Frankfurt University, Goethe Center for Scientific Computing, Kettenhofweg 139, 60325 Frankfurt am Main, Germany
| | | | | |
Collapse
|
26
|
Selzer D, Hahn T, Naegel A, Heisig M, Kostka KH, Lehr CM, Neumann D, Schaefer UF, Wittum G. Finite dose skin mass balance including the lateral part: comparison between experiment, pharmacokinetic modeling and diffusion models. J Control Release 2012; 165:119-28. [PMID: 23099116 DOI: 10.1016/j.jconrel.2012.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/29/2022]
Abstract
This work investigates in vitro finite dose skin absorption of the model compounds flufenamic acid and caffeine experimentally and mathematically. The mass balance in different skin compartments (donor, stratum corneum (SC), deeper skin layers (DSL), lateral skin parts and acceptor) is analyzed as a function of time. For both substances high amounts were found in the lateral skin compartment after 6h of incubation, which emphasizes not to elide these parts in the modeling. Here, three different mathematical models were investigated and tested with the experimental data: a pharmacokinetic model (PK), a detailed microscopic two-dimensional diffusion model (MICRO) and a macroscopic homogenized diffusion model (MACRO). While the PK model was fitted to the experimental data, the MICRO and the MACRO models employed input parameters derived from infinite dose studies to predict the underlying diffusion process. All models could satisfyingly predict or describe the experimental data. The PK model and MACRO model also feature the lateral parts.
Collapse
Affiliation(s)
- D Selzer
- Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbruecken, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
UNLABELLED This paper critically examines indoor exposure to semivolatile organic compounds (SVOCs) via dermal pathways. First, it demonstrates that--in central tendency--an SVOC's abundance on indoor surfaces and in handwipes can be predicted reasonably well from gas-phase concentrations, assuming that thermodynamic equilibrium prevails. Then, equations are developed, based upon idealized mass-transport considerations, to estimate transdermal penetration of an SVOC either from its concentration in skin-surface lipids or its concentration in air. Kinetic constraints limit air-to-skin transport in the case of SVOCs that strongly sorb to skin-surface lipids. Air-to-skin transdermal uptake is estimated to be comparable to or larger than inhalation intake for many SVOCs of current or potential interest indoors, including butylated hydroxytoluene, chlordane, chlorpyrifos, diethyl phthalate, Galaxolide, geranyl acetone, nicotine (in free-base form), PCB28, PCB52, Phantolide, Texanol and Tonalide. Although air-to-skin transdermal uptake is anticipated to be slow for bisphenol A, we find that transdermal permeation may nevertheless be substantial following its transfer to skin via contact with contaminated surfaces. The paper concludes with explorations of the influence of particles and dust on dermal exposure, the role of clothing and bedding as transport vectors, and the potential significance of hair follicles as transport shunts through the epidermis. PRACTICAL IMPLICATIONS Human exposure to indoor pollutants can occur through dietary and nondietary ingestion, inhalation, and dermal absorption. Many factors influence the relative importance of these pathways, including physical and chemical properties of the pollutants. This paper argues that exposure to indoor semivolatile organic compounds (SVOCs) through the dermal pathway has often been underestimated. Transdermal permeation of SVOCs can be substantially greater than is commonly assumed. Transport of SVOCs from the air to and through the skin is typically not taken into account in exposure assessments. Yet, for certain SVOCs, intake through skin is estimated to be substantially larger than intake through inhalation. Exposure scientists, risk assessors, and public health officials should be mindful of the dermal pathway when estimating exposures to indoor SVOCs. Also, they should recognize that health consequences vary with exposure pathway. For example, an SVOC that enters the blood through the skin does not encounter the same detoxifying enzymes that an ingested SVOC would experience in the stomach, intestines, and liver before it enters the blood.
Collapse
Affiliation(s)
- C J Weschler
- Environmental and Occupational Health Sciences Institute, UMDNJ-Robert Wood Johnson Medical School and Rutgers University, Piscataway, NJ, USA.
| | | |
Collapse
|
28
|
Levin J, Maibach H. Interindividual variation in transdermal and oral drug deliveries. J Pharm Sci 2012; 101:4293-307. [PMID: 22927031 DOI: 10.1002/jps.23270] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/17/2012] [Accepted: 07/02/2012] [Indexed: 11/07/2022]
Abstract
It is generally assumed that the topical absorption of drugs is subject to more interindividual variation than the oral absorption of drugs. To date, we are unaware of any clinical studies or meta-analyses that compare the interindividual variation of transdermal and oral drug deliveries for a large number of medications. In this research article, the absorption data for 10 medications that can be used as an oral medication or a transdermal patch were compiled, and from the collected data, the interindividual variance was calculated for topical and oral absorption as an overall average and by drug. This research article also briefly reviews the pharmacokinetics and pharmacodynamics of transdermal and oral drug absorption. Our results indicate that there is considerable interindividual variation in topical and oral absorption for the 10 medications investigated. Yet, surprisingly, the calculated overall mean and median coefficient of variation (CV) for topical and oral absorption were comparable (within 10% of each other). Therefore, the interindividual variation in topical and oral absorption may not be as divergent as assumed previously. In a drug-by-drug comparison, certain medications demonstrated considerably more variation when absorbed orally versus topically and vice versa. It is unclear why certain drugs had less variation in absorption when delivered topically versus orally (or vice versa). However, patterns in drug molecular weight (MW) or octanol partition coefficient (log K(OCT) ) could not totally explain these findings. In our analysis, the previously reported correlation between MW or log K(OCT) and interindividual variation in absorption could only be replicated when plotting the topical absorption CV and MW. What became clear from our analysis is that the drug itself is an important variable when considering which route of delivery (oral or topical) will provide the least amount of interindividual variation. Our study had many limitations because of study design, which may have affected our calculations and conclusions. Further experimentation is needed to support and reveal the basic science of skin or drug chemistry that can further explain these findings.
Collapse
|
29
|
In vivo enhancement of transdermal absorption of ketotifen by supersaturation generated by amorphous form of the drug. Eur J Pharm Sci 2012; 47:228-34. [DOI: 10.1016/j.ejps.2012.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/08/2012] [Accepted: 06/08/2012] [Indexed: 11/23/2022]
|
30
|
Polak S, Ghobadi C, Mishra H, Ahamadi M, Patel N, Jamei M, Rostami-Hodjegan A. Prediction of Concentration–Time Profile and its Inter-Individual Variability following the Dermal Drug Absorption. J Pharm Sci 2012; 101:2584-95. [DOI: 10.1002/jps.23155] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 01/08/2023]
|
31
|
Jones HM, Dickins M, Youdim K, Gosset JR, Attkins NJ, Hay TL, Gurrell IK, Logan YR, Bungay PJ, Jones BC, Gardner IB. Application of PBPK modelling in drug discovery and development at Pfizer. Xenobiotica 2011; 42:94-106. [DOI: 10.3109/00498254.2011.627477] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Mathematical models of skin permeability: An overview. Int J Pharm 2011; 418:115-29. [DOI: 10.1016/j.ijpharm.2011.02.023] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/14/2011] [Accepted: 02/16/2011] [Indexed: 11/23/2022]
|
33
|
Rowland M, Peck C, Tucker G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 2011; 51:45-73. [PMID: 20854171 DOI: 10.1146/annurev-pharmtox-010510-100540] [Citation(s) in RCA: 428] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The application of physiologically-based pharmacokinetic (PBPK) modeling is coming of age in drug development and regulation, reflecting significant advances over the past 10 years in the predictability of key pharmacokinetic (PK) parameters from human in vitro data and in the availability of dedicated software platforms and associated databases. Specific advances and contemporary challenges with respect to predicting the processes of drug clearance, distribution, and absorption are reviewed, together with the ability to anticipate the quantitative extent of PK-based drug-drug interactions and the impact of age, genetics, disease, and formulation. The value of this capability in selecting and designing appropriate clinical studies, its implications for resource-sparing techniques, and a more holistic view of the application of PK across the preclinical/clinical divide are considered. Finally, some attention is given to the positioning of PBPK within the drug development and approval paradigm and its future application in truly personalized medicine.
Collapse
Affiliation(s)
- Malcolm Rowland
- Centre for Pharmacokinetic Research, University of Manchester, United Kingdom.
| | | | | |
Collapse
|
34
|
Sung JH, Esch MB, Shuler ML. Integration of in silico and in vitro platforms for pharmacokinetic-pharmacodynamic modeling. Expert Opin Drug Metab Toxicol 2011; 6:1063-81. [PMID: 20540627 DOI: 10.1517/17425255.2010.496251] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
IMPORTANCE OF THE FIELD Pharmacokinetic-pharmacodynamic (PK-PD) modeling enables quantitative prediction of the dose-response relationship. Recent advances in microscale technology enabled researchers to create in vitro systems that mimic biological systems more closely. Combination of mathematical modeling and microscale technology offers the possibility of faster, cheaper and more accurate prediction of the drug's effect with a reduced need for animal or human subjects. AREAS COVERED IN THIS REVIEW This article discusses combining in vitro microscale systems and PK-PD models for improved prediction of drug's efficacy and toxicity. First, we describe the concept of PK-PD modeling and its applications. Different classes of PK-PD models are described. Microscale technology offers an opportunity for building physical systems that mimic PK-PD models. Recent progress in this approach during the last decade is summarized. WHAT THE READER WILL GAIN This article is intended to review how microscale technology combined with cell cultures, also known as 'cells-on-a-chip', can confer a novel aspect to current PK-PD modeling. Readers will gain a comprehensive knowledge of PK-PD modeling and 'cells-on-a-chip' technology, with the prospect of how they may be combined for synergistic effect. TAKE HOME MESSAGE The combination of microscale technology and PK-PD modeling should contribute to the development of a novel in vitro/in silico platform for more physiologically-realistic drug screening.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Cornell University, Chemical and Biomolecular Engineering, Ithaca, NY 14850, USA
| | | | | |
Collapse
|
35
|
PBPK modelling of inter-individual variability in the pharmacokinetics of environmental chemicals. Toxicology 2010; 278:256-67. [DOI: 10.1016/j.tox.2010.06.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 06/17/2010] [Accepted: 06/19/2010] [Indexed: 01/07/2023]
|
36
|
Davies M, Pendlington RU, Page L, Roper CS, Sanders DJ, Bourner C, Pease CK, MacKay C. Determining Epidermal Disposition Kinetics for Use in an Integrated Nonanimal Approach to Skin Sensitization Risk Assessment. Toxicol Sci 2010; 119:308-18. [DOI: 10.1093/toxsci/kfq326] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
A two-layer diffusive model for describing the variability of transdermal drug permeation. Eur J Pharm Biopharm 2010; 74:513-7. [DOI: 10.1016/j.ejpb.2009.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/01/2009] [Accepted: 12/07/2009] [Indexed: 11/23/2022]
|
38
|
Alikhan A, Farahmand S, Maibach HI. Correlating percutaneous absorption with physicochemical parameters in vivo in man: agricultural, steroid, and other organic compounds. J Appl Toxicol 2009; 29:590-6. [PMID: 19484700 DOI: 10.1002/jat.1445] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In vitro data are currently used to predict cutaneous chemical exposure based on physicochemical parameters. However, this in vitro data may not sufficiently account for what occurs in vivo. Previously, we modeled (via multivariate analysis) percutaneous absorption with physicochemical parameters using in vivo human transdermal patch-based data. In our current study, we correlated absorption data from three human in vivo data sets to physicochemical parameters. Most univariate and multivariate analyses did not provide satisfactory fits, and only steroids demonstrated significant relationships, where: (1) total percentge absorption inversely correlated with molecular weight and number of hydrogen bond acceptor groups on the molecule; and (2) maximal absorption rate inversely correlated with molecular weight, and number of hydrogen bond donor and acceptor groups on the molecule. For the most part, however, disparities exist between our previous results with transdermal patches and our current results with acetone as the solvent. Reasons for this discordance may include: drug-vehicle interactions, compound variability and endpoint differences. With such variability between in vivo human data, current in vitro predictive models should be critically scrutinized.
Collapse
Affiliation(s)
- Ali Alikhan
- University of California at Davis, School of Medicine, Sacramento, California, USA.
| | | | | |
Collapse
|
39
|
Wang SM, Chang HY, Tsai JC, Lin WC, Shih TS, Tsai PJ. Skin penetrating abilities and reservoir effects of neat DMF and DMF/water mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:5229-5234. [PMID: 19608215 DOI: 10.1016/j.scitotenv.2009.06.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/04/2009] [Accepted: 06/23/2009] [Indexed: 05/28/2023]
Abstract
This study was set out to determine the skin permeabilities of neat N, N-dimethylformamide (DMF, denoted as DMF(100%)) and DMF/water mixtures (including 50% DMF/50% water and 10% DMF/90% water mixtures (v/v), denoted as DMF(50%) and DMF(10%), respectively) and to assess their skin reservoir effects on the systemic absorption. The penetration fluxes for DMF(10%) and DMF(50%) (=0.015 and 0.126 mg/cm(2)/h, respectively) were only approximately 1.1%and 15% in magnitude as that of DMF(100%) (=0.872+/-0.231 mg/cm(2)/h), respectively. The above results could be because the perturbation effect of the DMF content was much more significant than the rehydration effect of the water content on skin permeability. We found that 85.9%, 96.6% and 98.7% of applied doses were still remaining on the skin surface, 4.98%, 0.838% and 0.181% were still remaining in the skin layer, and 9.09%, 2.61% and 1.17% penetrated through the skin layer after the 24-h exposure for DMF(100%), DMF(50%) and DMF(10%), respectively. We found that the half-life (T(1/2)) of DMF retaining in the skin layer were 12.3, 4.07 and 1.24h for DMF(100%), DMF(50%) and DMF(10%), respectively. The estimated reservoir effect for DMF(100%) (=34.1%) was higher than that of DMF(50%) and DMF(10%) (=27.1% and 14.1%, respectively). The above results suggest that the impact associated with the internal burden of DMF could be prolonged even the external exposure of DMF is terminated, particularly for those dermal contact with DMF/water mixtures with high DMF contents.
Collapse
Affiliation(s)
- Shih-Min Wang
- Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan 70428, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Ray Chaudhuri S, Kasting GB, Krantz WB. Percutaneous absorption of volatile solvents following transient liquid exposures: I. Model development. Chem Eng Sci 2009. [DOI: 10.1016/j.ces.2008.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Kim D, Nylander-French LA. Physiologically based toxicokinetic models and their application in human exposure and internal dose assessment. EXS 2009; 99:37-55. [PMID: 19157057 DOI: 10.1007/978-3-7643-8336-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Human populations may exhibit large interindividual variation in toxicokinetic response to chemical exposures. Rapid developments in dosimetry research have brought medicine and public health closer to understanding the biological basis of this heterogeneity. The toxicokinetic behavior of chemicals is, in part, controlled by the properties of the epithelium surrounding organs, some of which are effective barriers to penetration into the systemic circulation. Physiologically based toxicokinetic (PBTK) models have been developed and used to simulate the mechanism of uptake into the systemic circulation, to extrapolate between doses and exposure routes, and to estimate internal dosimetry and sources of heterogeneity in animals and humans. Recent improvements to PBTK models include descriptions of active transport across biological membranes, carrier-mediated clearance, and fractal kinetics. The expanding area of toxicogenetics has provided valuable insight for delineating toxicokinetic differences between individuals; genetic differences include inherited single nucleotide polymorphisms, copy number variants, and dynamic changes in the methylation pattern of imprinted genes. This chapter discusses the structure of PBTK models and how toxicogenetic information and newer biological descriptions have improved our understanding of variability in response to toxicant exposures.
Collapse
Affiliation(s)
- David Kim
- Department of Environmental Health, School of Public Health,Harvard University, Boston, MA 02215, USA.
| | | |
Collapse
|
42
|
Bernardo FP, Saraiva PM. A theoretical model for transdermal drug delivery from emulsions and its dependence upon formulation. J Pharm Sci 2008; 97:3781-809. [PMID: 18186500 DOI: 10.1002/jps.21268] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article presents a theoretical model of transdermal drug delivery from an emulsion-type vehicle that addresses the vehicle heterogeneity and incorporates the prediction of drug transport parameters as function of the vehicle composition. The basic mass transfer model considers interfacial and diffusion resistances within the emulsion and partition/diffusion phenomena across two skin compartments in series. Drug transport parameters are predicted as follows: partition coefficients are derived from regular solutions theory, drug diffusivity in the continuous phase is computed from a free volume theory with segmental motion, and permeability of the surfactant layer around droplets is estimated based on a free surface area model. These relationships are incorporated within the basic mass transfer model, so that the overall model is able to predict temporal profiles of drug release from the vehicle and of drug concentration in plasma, as a function of vehicle composition. In this way, the proposed model provides a sound physicochemical basis to support the development of new formulations and the planning of experiments. A simulated case study regarding a nitroglycerin ointment is presented in detail, illustrating how thermodynamic and kinetic factors inherent to the emulsion vehicle can modulate drug release and subsequent systemic absorption.
Collapse
Affiliation(s)
- Fernando P Bernardo
- Department of Chemical Engineering, GEPSI-PSE Group, University of Coimbra, Pólo II-Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | | |
Collapse
|
43
|
Kasting GB, Miller MA, Bhatt VD. A spreadsheet-based method for estimating the skin disposition of volatile compounds: application to N,N-diethyl-m-toluamide (DEET). JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2008; 5:633-644. [PMID: 18668403 DOI: 10.1080/15459620802304245] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The disposition of N,N-diethyl-3-methylbenzamide (DEET) applied to split-thickness human cadaver skin was measured in modified Franz cells maintained at 32 degrees C and fitted with a vapor trap. Ethanolic solutions of DEET (1% w/w) spiked with (14)C radiolabel were applied to skin at a dose of 10 microL per cell, corresponding to a DEET dose of 127 microg/cm(2). Room air was drawn over the skin at velocities ranging from 10-100 mL/min. Evaporation of radiolabel from the skin surface and absorption into the receptor solution were monitored for 24 hr post-dose. The percentage of radioactivity collected in the vapor trap after 24 hr increased with airflow, ranging from 16 +/- 4% at 10 mL/min to 59 +/- 7% at 70 mL/min. The percentage of radioactivity absorbed through the skin after 24 hours decreased with increasing airflow, ranging from 69 +/- 7% at 10 mL/min to 20 +/- 1% at 80 mL/min. Tissue retention after 24 hr was 6-14% of the radioactive dose with no clear correlation to airflow. This data as well as DEET absorption data from two previous in vitro studies in which dose and location (fume hood or bench top) was varied were analyzed in terms of a recently developed diffusion/evaporation model for skin implemented on an Excel spreadsheet. A priori model calculations based on independently estimated transport parameters (Model 1) were compared with calculations based on fitted parameters (Models 2 and 3). The analysis of the combined dataset (n = 272 observations) showed that the Model 1 estimates matched the cumulative disposition profiles to within a root mean square error of 12.4% of the applied dose (r(2) = 0.65), whereas the Model 2 and Model 3 fits matched to within 9.4% (r(2) = 0.80) and 6.5% (r(2) = 0.91), respectively. The Model 3 fits were obtained using a concentration-dependent diffusivity of DEET in the stratum corneum, the value of which increased 3.4-fold between low concentrations and saturation. This result was consistent with the mild skin penetration enhancement effect for DEET reported elsewhere. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: a word document containing tables and figures including more information on the spreadsheet skin absorption model.]
Collapse
Affiliation(s)
- Gerald B Kasting
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, Ohio 45267-0004, USA.
| | | | | |
Collapse
|
44
|
Al-Qallaf B, Das DB. Optimization of square microneedle arrays for increasing drug permeability in skin. Chem Eng Sci 2008. [DOI: 10.1016/j.ces.2008.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Kim D, Farthing MW, Miller CT, Nylander-French LA. Mathematical description of the uptake of hydrocarbons in jet fuel into the stratum corneum of human volunteers. Toxicol Lett 2008; 178:146-51. [DOI: 10.1016/j.toxlet.2008.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 11/30/2022]
|
46
|
Norman AM, Kissel JC, Shirai JH, Smith JA, Stumbaugh KL, Bunge AL. Effect of PBPK Model Structure on Interpretation of In Vivo Human Aqueous Dermal Exposure Trials. Toxicol Sci 2008; 104:210-7. [DOI: 10.1093/toxsci/kfn070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Naegel A, Hansen S, Neumann D, Lehr CM, Schaefer UF, Wittum G, Heisig M. In-silico model of skin penetration based on experimentally determined input parameters. Part II: Mathematical modelling of in-vitro diffusion experiments. Identification of critical input parameters. Eur J Pharm Biopharm 2008; 68:368-79. [PMID: 17766097 DOI: 10.1016/j.ejpb.2007.05.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/21/2007] [Accepted: 05/31/2007] [Indexed: 11/19/2022]
Abstract
This work describes a framework for in-silico modelling of in-vitro diffusion experiments illustrated in an accompanying paper [S. Hansen, A. Henning, A. Naegel, M. Heisig, G. Wittum, D. Neumann, K.-H. Kostka, J. Zbytovska, C.M. Lehr, U.F. Schaefer, In-silico model of skin penetration based on experimentally determined input parameters. Part I: experimental determination of partition and diffusion coefficients, Eur. J. Pharm. Biopharm. 68 (2008) 352-367 [corrected] A mathematical model of drug permeation through stratum corneum (SC) and viable epidermis/dermis is presented. The underlying geometry for the SC is of brick-and-mortar character, meaning that the corneocytes are completely embedded in the lipid phase. The geometry is extended by an additional compartment for the deeper skin layers (DSL). All phases are modelled with homogeneous diffusivity. Lipid-donor and SC-DSL partition coefficients are determined experimentally, while corneocyte-lipid and DSL-lipid partition coefficients are derived consistently with the model. Together with experimentally determined apparent lipid- and DSL-diffusion coefficients, these data serve as direct input for computational modelling of drug transport through the skin. The apparent corneocyte diffusivity is estimated based on an approximation, which uses the apparent SC- and lipid-diffusion coefficients as well as corneocyte-lipid partition coefficients. The quality of the model is evaluated by a comparison of concentration-SC-depth-profiles of the experiment with those of the simulation. Good agreements are obtained, and by an analysis of the underlying model, critical parameters of the models can be identified more easily.
Collapse
Affiliation(s)
- Arne Naegel
- University of Heidelberg, Simulation in Technology, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Reddy MB, Looney RJ, Utell MJ, Plotzke KP, Andersen ME. Modeling of Human Dermal Absorption of Octamethylcyclotetrasiloxane (D4) and Decamethylcyclopentasiloxane (D5). Toxicol Sci 2007; 99:422-31. [PMID: 17630416 DOI: 10.1093/toxsci/kfm174] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In this study, data for human dermal absorption of octamethylcyclotetrasiloxane, D(4), and decamethylcyclopentasiloxane, D(5), through axilla skin in vivo are interpreted using pharmacokinetic models of dermal absorption by adding the dermal exposure route to inhalation physiologically based pharmacokinetics models developed previously. The compartmental model describing dermal absorption of these compounds included volatilization of the applied chemical from the skin surface, diffusion of absorbed chemical back to the skin surface and evaporation of this chemical from the skin surface after the applied dose had cleared from the application site, uptake from the skin compartment into blood, and a storage compartment within the skin. Data from exposures in volunteers (i.e., D(4) and D(5) concentrations in exhaled air and plasma) were used to estimate model parameters. In volunteers exposed to either D(4) or D(5), the maximum concentration of chemical in exhaled air reached a maximum at or prior to 1 h following administration of the test chemical. Based on model calculations, the percent of applied dose of D(4) that was absorbed into systemic circulation for men and women was 0.12 and 0.30%, respectively; for D(5) about 0.05% of the applied dose was absorbed for both men and women. For both D(4) and D(5), model calculations indicate that more than 83% of the chemical that reached systemic circulation was eliminated by exhalation within 24 h. These whole-body pharmacokinetic models for dermal absorption of two semi-volatile compounds provide a valuable tool for understanding factors controlling their dermal absorption through axilla skin and for applying results from these studies in consumer product risk assessments.
Collapse
Affiliation(s)
- Micaela B Reddy
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | |
Collapse
|
49
|
Kim D, Andersen ME, Chao YCE, Egeghy PP, Rappaport SM, Nylander-French LA. PBTK modeling demonstrates contribution of dermal and inhalation exposure components to end-exhaled breath concentrations of naphthalene. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:894-901. [PMID: 17589597 PMCID: PMC1892111 DOI: 10.1289/ehp.9778] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 02/14/2007] [Indexed: 05/10/2023]
Abstract
BACKGROUND Dermal and inhalation exposure to jet propulsion fuel 8 (JP-8) have been measured in a few occupational exposure studies. However, a quantitative understanding of the relationship between external exposures and end-exhaled air concentrations has not been described for occupational and environmental exposure scenarios. OBJECTIVE Our goal was to construct a physiologically based toxicokinetic (PBTK) model that quantitatively describes the relative contribution of dermal and inhalation exposures to the end-exhaled air concentrations of naphthalene among U.S. Air Force personnel. METHODS The PBTK model comprised five compartments representing the stratum corneum, viable epidermis, blood, fat, and other tissues. The parameters were optimized using exclusively human exposure and biological monitoring data. RESULTS The optimized values of parameters for naphthalene were a) permeability coefficient for the stratum corneum 6.8 x 10(-5) cm/hr, b) permeability coefficient for the viable epidermis 3.0 x 10(-3) cm/hr, c) fat:blood partition coefficient 25.6, and d) other tissue:blood partition coefficient 5.2. The skin permeability coefficient was comparable to the values estimated from in vitro studies. Based on simulations of workers' exposures to JP-8 during aircraft fuel-cell maintenance operations, the median relative contribution of dermal exposure to the end-exhaled breath concentration of naphthalene was 4% (10th percentile 1% and 90th percentile 11%). CONCLUSIONS PBTK modeling allowed contributions of the end-exhaled air concentration of naphthalene to be partitioned between dermal and inhalation routes of exposure. Further study of inter- and intraindividual variations in exposure assessment is required to better characterize the toxicokinetic behavior of JP-8 components after occupational and/or environmental exposures.
Collapse
Affiliation(s)
- David Kim
- Department of Environmental Sciences and Engineering, School of Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melvin E. Andersen
- CIIT Centers for Health Research, Research Triangle Park, North Carolina, USA
| | - Yi-Chun E. Chao
- Department of Environmental Sciences and Engineering, School of Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter P. Egeghy
- Department of Environmental Sciences and Engineering, School of Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen M. Rappaport
- Department of Environmental Sciences and Engineering, School of Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Leena A. Nylander-French
- Department of Environmental Sciences and Engineering, School of Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Address correspondence to L.A. Nylander-French, Department of Environmental Sciences and Engineering, School of Public Health, The University of North Carolina at Chapel Hill, CB #7431, Rosenau Hall, Chapel Hill, NC 27599-7431 USA. Telephone: (919) 966-3826. Fax: (919) 966-4711. E-mail:
| |
Collapse
|
50
|
Hansen S, Henning A, Naegel A, Heisig M, Wittum G, Neumann D, Kostka KH, Zbytovska J, Lehr CM, Schaefer UF. In-silico model of skin penetration based on experimentally determined input parameters. Part I: experimental determination of partition and diffusion coefficients. Eur J Pharm Biopharm 2007; 68:352-67. [PMID: 17587558 DOI: 10.1016/j.ejpb.2007.05.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/14/2007] [Accepted: 05/21/2007] [Indexed: 11/17/2022]
Abstract
Mathematical modeling of skin transport is considered a valuable alternative of in-vitro and in-vivo investigations especially considering ethical and economical questions. Mechanistic diffusion models describe skin transport by solving Fick's 2nd law of diffusion in time and space; however models relying entirely on a consistent experimental data set are missing. For a two-dimensional model membrane consisting of a biphasic stratum corneum (SC) and a homogeneous epidermal/dermal compartment (DSL) methods are presented to determine all relevant input parameters. The data were generated for flufenamic acid (M(W) 281.24g/mol; logK(Oct/H2O) 4.8; pK(a) 3.9) and caffeine (M(W) 194.2g/mol; logK(Oct/H2O) -0.083; pK(a) 1.39) using female abdominal skin. K(lip/don) (lipid-donor partition coefficient) was determined in equilibration experiments with human SC lipids. K(cor/lip) (corneocyte-lipid) and K(DSL/lip) (DSL-lipid) were derived from easily available experimental data, i.e. K(SC/don) (SC-donor), K(lip/don) and K(SC/DSL) (SC-DSL) considering realistic volume fractions of the lipid and corneocyte phases. Lipid and DSL diffusion coefficients D(lip) and D(DSL) were calculated based on steady state flux. The corneocyte diffusion coefficient D(cor) is not accessible experimentally and needs to be estimated by simulation. Based on these results time-dependent stratum corneum concentration-depth profiles were simulated and compared to experimental profiles in an accompanying study.
Collapse
Affiliation(s)
- Steffi Hansen
- Saarland University, Department of Biopharmaceutics and Pharmaceutical Technology, Saarbruecken, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|